Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97898
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李志煌zh_TW
dc.contributor.advisorJhih-Huang Lien
dc.contributor.author劉耀聰zh_TW
dc.contributor.authorYao-Tsung Liuen
dc.date.accessioned2025-07-22T16:07:31Z-
dc.date.available2025-07-23-
dc.date.copyright2025-07-22-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citationBenjamin Wieland. “A large dihedral symmetry of the set of alternating sign matrices”. In: Electron. J. Combin. 7 (2000), Research Paper 37, 13. DOI: 10.37236/1515.
Luigi Cantini and Andrea Sportiello. “Proof of the Razumov-Stroganov conjecture”. In: J. Combin. Theory Ser. A 118.5 (2011), pp. 1549–1574. ISSN: 0097-3165. DOI: 10.1016/j.jcta.2011.01.007.
H. N. V. Temperley and E. H. Lieb. “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”. In: Proc. Roy. Soc. London Ser. A 322.1549 (1971), pp. 251–280. ISSN: 0962-8444. DOI: 10.1098/rspa.1971.0067.
A. V. Razumov and Yu. G. Stroganov. “Combinatorial nature of the ground-state vector of the O(1) loop model”. In: Teoret. Mat. Fiz. 138.3 (2004), pp. 395–400. ISSN: 0564-6162. DOI: 10.1023/B:TAMP.0000018450.36514.d7.
David A. Levin and Yuval Peres. Markov chains and mixing times. American Mathematical Society, Providence, RI, 2017, pp. xvi+447. ISBN: 978-1-4704-2962-1. DOI: 10.1090/mbk/107.
Richard P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015, pp. viii+215. ISBN: 978-1-107-42774-7; 978-1-107-07509-2. DOI: 10.1017/CBO9781139871495.
Elliott H. Lieb. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice”. In: Phys. Rev. Lett. 18 (17 Apr. 1967), pp. 692–694. DOI: 10.1103/PhysRevLett.18.692.
W. H. Mills, David P. Robbins, and Howard Rumsey Jr. “Proof of the Macdonald conjecture”. In: Invent. Math. 66.1 (1982), pp. 73–87. ISSN: 0020-9910. DOI: 10.1007/BF01404757.
James Propp. “The many faces of alternating-sign matrices”. In: Discrete models: combinatorics, computation, and geometry (Paris, 2001). Discrete Math. Theor. Comput. Sci. Proc., AA. Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 043–058.
P. Di Francesco. “Totally symmetric self-complementary plane partitions and the quantum Knizhnik-Zamolodchikov equation: a conjecture”. In: J. Stat. Mech. Theory Exp. 9 (2006), P09008, 14. DOI: 10.1088/1742-5468/2006/09/p09008.
Doron Zeilberger. “Proof of the alternating sign matrix conjecture”. In: vol. 3. 2. The Foata Festschrift. 1996, Research Paper 13, approx. 84. DOI: 10.37236/1271.
Greg Kuperberg. “Another proof of the alternating-sign matrix conjecture”. In: Internat. Math. Res. Notices 3 (1996), pp. 139–150. ISSN: 1073-7928. DOI: 10.1155/S1073792896000128.
Doron Zeilberger. “Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins’ two favorite combinatorial objects”. In: Personal Journal of SB Ekhad and D. Zeilberger (2007).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97898-
dc.description.abstract本論文旨在研究一特定馬可夫鏈的收斂性質,此馬可夫鏈由 Temperley–Lieb 哈密頓量 $\\H_m = \\frac{1}{2m}\\sum_{j=1}^{2m} e_j$ 在非自交鏈結圖形 $\\LP(m)$ 上之作用所給出。此馬可夫鏈出現於可積 loop 模型與 Temperley–Lieb 代數的組合表示論等研究中。關於此鏈,一個重要結果是 Razumov–Stroganov(RS)對應,它將 $\\H_m$ 的基態與 fully-packed loop 模型上的均勻分布聯繫起來。
本論文分為兩大部分:首先,我們整理了 RS 對應及 Wieland 關於二面體對稱性(dihedral symmetry)的定理 [1, 2],並呈現二面體對稱性的一個組合證明,這個證明能幫助我們更加理解本論文中馬可夫鏈的不變測度 $\\mu$。其次,藉由數值模擬,我們研究了不同初始條件下此鏈的收斂行為。具體而言,我們指出 $\\H_m$ 的譜隙數值上以 $m^{-1.9133}$ 的速度衰減,並發現了收斂速率基於奇偶性的二分現象。本論文最後討論了關於 cutoff 現象與 $m$ 足夠大時的漸近行為等開放問題。
zh_TW
dc.description.abstractWe study the convergence properties of the Markov chain induced by the Temperley–Lieb Hamiltonian $\\H_m = \\frac{1}{2m}\\sum_{j=1}^{2m} e_j$ acting on the space of non-crossing link patterns $\\LP(m)$. This chain arises in the study of integrable loop models and combinatorial representations of the Temperley–Lieb algebra. One particularly important result regarding this chain is the Razumov–Stroganov (RS) correspondence, which connect the ground state of $\\H_m$ and the uniform distribution on fully-packed loop (FPL) configurations.
This thesis is divided into two main parts. First, we survey the RS correspondence and Wieland's theorem on dihedral symmetry [1, 2]. A combinatorial proof of the dihedral symmetry is presented, which provides insight into understanding the invariant measure $\\mu$ of the Markov chain. Second, we numerically study the convergence behavior of the chain under different initial conditions. More precisely, we numerically show that the spectral gap of $\\H_m$ decays as $m^{-1.9133}$, and reveal a parity-dependent ``dichotomous" behavior for the convergence rates. Open questions regarding cutoff phenomena and large-$m$ asymptotics are discussed in the end of this paper.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:07:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-22T16:07:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents v
1 Introduction and Motivation 1
2 Preliminary: Markov Chains 2
2.1 Invariant Measure and Convergence 3
2.2 Mixing and Cutoff 3
3 Preliminary: Models 5
3.1 The Link Patterns 5
3.2 The Temperley–Lieb Algebra 6
3.2.1 The Link Modules 8
3.2.2 The Temperley–Lieb Hamiltonian 9
3.2.3 The Associated Markov Chain 9
3.3 Fully Packed Loops 10
3.3.1 Square Domain with Alternating Boundary 11
4 Main Results on the Invariant Measure 12
4.1 Irreducibility and Aperiodicity of the Chain 12
4.2 From Fpl(m, +) to LP(m) 13
4.2.1 Another Distribution on LP(m) 13
4.3 Dihedral Symmetry 14
4.4 The Razumov–Stroganov Correspondence 14
5 Proof of the Dihedral Symmetry 15
5.1 Gyrations 15
5.2 FPL on Graphs of Degree 4 and/or 2 15
5.3 Bijections between FPLs on the Graph 17
5.4 The Action of Gyrations on the Link Patterns 19
5.5 Construction of the Bijections H 22
6 Convergence Results 26
6.1 Choices of the Initial Distribution 26
6.2 Short-time Behaviors 28
6.3 Asymptotic Behaviors 29
6.3.1 Even m 29
6.3.2 Odd m 30
6.4 Asymptotics with Respect to the System Size m 31
7 Conclusion and Future Directions 33
7.1 Further Discussions on the Convergence Results 33
7.2 Conclusion and Future Directions 33
References 36
-
dc.language.isoen-
dc.subject馬可夫鏈的收斂速度zh_TW
dc.subject二面體對稱性zh_TW
dc.subjectRazumov–Stroganov 對應zh_TW
dc.subject鏈結圖形zh_TW
dc.subjectTemperley–Lieb 哈密頓量zh_TW
dc.subjectTemperley–Lieb 代數zh_TW
dc.subject馬可夫鏈的收斂速度zh_TW
dc.subject馬可夫鏈zh_TW
dc.subject二面體對稱性zh_TW
dc.subjectRazumov–Stroganov 對應zh_TW
dc.subject鏈結圖形zh_TW
dc.subjectTemperley–Lieb 哈密頓量zh_TW
dc.subjectTemperley–Lieb 代數zh_TW
dc.subject馬可夫鏈zh_TW
dc.subjectdihedral symmetryen
dc.subjectMarkov chainen
dc.subjectconvergence rate of Markov chainsen
dc.subjectTemperley–Lieb algebraen
dc.subjectTemperley–Lieb Hamiltonianen
dc.subjectlink patternen
dc.subjectRazumov–Stroganov correspondenceen
dc.subjectdihedral symmetryen
dc.subjectMarkov chainen
dc.subjectconvergence rate of Markov chainsen
dc.subjectTemperley–Lieb algebraen
dc.subjectTemperley–Lieb Hamiltonianen
dc.subjectlink patternen
dc.subjectRazumov–Stroganov correspondenceen
dc.title週期邊界條件下Temperley–Lieb哈密頓量於鏈結模上的馬可夫鏈研究zh_TW
dc.titleAround Temperley–Lieb Hamiltonian on the Link Module with Periodic Boundary Conditionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許柏翰;陳冠宇zh_TW
dc.contributor.oralexamcommitteePo-Han Hsu;Guan-Yu Chenen
dc.subject.keyword馬可夫鏈,馬可夫鏈的收斂速度,Temperley–Lieb 代數,Temperley–Lieb 哈密頓量,鏈結圖形,Razumov–Stroganov 對應,二面體對稱性,zh_TW
dc.subject.keywordMarkov chain,convergence rate of Markov chains,Temperley–Lieb algebra,Temperley–Lieb Hamiltonian,link pattern,Razumov–Stroganov correspondence,dihedral symmetry,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202501304-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved