請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李志煌 | zh_TW |
| dc.contributor.advisor | Jhih-Huang Li | en |
| dc.contributor.author | 劉耀聰 | zh_TW |
| dc.contributor.author | Yao-Tsung Liu | en |
| dc.date.accessioned | 2025-07-22T16:07:31Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Benjamin Wieland. “A large dihedral symmetry of the set of alternating sign matrices”. In: Electron. J. Combin. 7 (2000), Research Paper 37, 13. DOI: 10.37236/1515.
Luigi Cantini and Andrea Sportiello. “Proof of the Razumov-Stroganov conjecture”. In: J. Combin. Theory Ser. A 118.5 (2011), pp. 1549–1574. ISSN: 0097-3165. DOI: 10.1016/j.jcta.2011.01.007. H. N. V. Temperley and E. H. Lieb. “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”. In: Proc. Roy. Soc. London Ser. A 322.1549 (1971), pp. 251–280. ISSN: 0962-8444. DOI: 10.1098/rspa.1971.0067. A. V. Razumov and Yu. G. Stroganov. “Combinatorial nature of the ground-state vector of the O(1) loop model”. In: Teoret. Mat. Fiz. 138.3 (2004), pp. 395–400. ISSN: 0564-6162. DOI: 10.1023/B:TAMP.0000018450.36514.d7. David A. Levin and Yuval Peres. Markov chains and mixing times. American Mathematical Society, Providence, RI, 2017, pp. xvi+447. ISBN: 978-1-4704-2962-1. DOI: 10.1090/mbk/107. Richard P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015, pp. viii+215. ISBN: 978-1-107-42774-7; 978-1-107-07509-2. DOI: 10.1017/CBO9781139871495. Elliott H. Lieb. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice”. In: Phys. Rev. Lett. 18 (17 Apr. 1967), pp. 692–694. DOI: 10.1103/PhysRevLett.18.692. W. H. Mills, David P. Robbins, and Howard Rumsey Jr. “Proof of the Macdonald conjecture”. In: Invent. Math. 66.1 (1982), pp. 73–87. ISSN: 0020-9910. DOI: 10.1007/BF01404757. James Propp. “The many faces of alternating-sign matrices”. In: Discrete models: combinatorics, computation, and geometry (Paris, 2001). Discrete Math. Theor. Comput. Sci. Proc., AA. Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 043–058. P. Di Francesco. “Totally symmetric self-complementary plane partitions and the quantum Knizhnik-Zamolodchikov equation: a conjecture”. In: J. Stat. Mech. Theory Exp. 9 (2006), P09008, 14. DOI: 10.1088/1742-5468/2006/09/p09008. Doron Zeilberger. “Proof of the alternating sign matrix conjecture”. In: vol. 3. 2. The Foata Festschrift. 1996, Research Paper 13, approx. 84. DOI: 10.37236/1271. Greg Kuperberg. “Another proof of the alternating-sign matrix conjecture”. In: Internat. Math. Res. Notices 3 (1996), pp. 139–150. ISSN: 1073-7928. DOI: 10.1155/S1073792896000128. Doron Zeilberger. “Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins’ two favorite combinatorial objects”. In: Personal Journal of SB Ekhad and D. Zeilberger (2007). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97898 | - |
| dc.description.abstract | 本論文旨在研究一特定馬可夫鏈的收斂性質,此馬可夫鏈由 Temperley–Lieb 哈密頓量 $\\H_m = \\frac{1}{2m}\\sum_{j=1}^{2m} e_j$ 在非自交鏈結圖形 $\\LP(m)$ 上之作用所給出。此馬可夫鏈出現於可積 loop 模型與 Temperley–Lieb 代數的組合表示論等研究中。關於此鏈,一個重要結果是 Razumov–Stroganov(RS)對應,它將 $\\H_m$ 的基態與 fully-packed loop 模型上的均勻分布聯繫起來。
本論文分為兩大部分:首先,我們整理了 RS 對應及 Wieland 關於二面體對稱性(dihedral symmetry)的定理 [1, 2],並呈現二面體對稱性的一個組合證明,這個證明能幫助我們更加理解本論文中馬可夫鏈的不變測度 $\\mu$。其次,藉由數值模擬,我們研究了不同初始條件下此鏈的收斂行為。具體而言,我們指出 $\\H_m$ 的譜隙數值上以 $m^{-1.9133}$ 的速度衰減,並發現了收斂速率基於奇偶性的二分現象。本論文最後討論了關於 cutoff 現象與 $m$ 足夠大時的漸近行為等開放問題。 | zh_TW |
| dc.description.abstract | We study the convergence properties of the Markov chain induced by the Temperley–Lieb Hamiltonian $\\H_m = \\frac{1}{2m}\\sum_{j=1}^{2m} e_j$ acting on the space of non-crossing link patterns $\\LP(m)$. This chain arises in the study of integrable loop models and combinatorial representations of the Temperley–Lieb algebra. One particularly important result regarding this chain is the Razumov–Stroganov (RS) correspondence, which connect the ground state of $\\H_m$ and the uniform distribution on fully-packed loop (FPL) configurations.
This thesis is divided into two main parts. First, we survey the RS correspondence and Wieland's theorem on dihedral symmetry [1, 2]. A combinatorial proof of the dihedral symmetry is presented, which provides insight into understanding the invariant measure $\\mu$ of the Markov chain. Second, we numerically study the convergence behavior of the chain under different initial conditions. More precisely, we numerically show that the spectral gap of $\\H_m$ decays as $m^{-1.9133}$, and reveal a parity-dependent ``dichotomous" behavior for the convergence rates. Open questions regarding cutoff phenomena and large-$m$ asymptotics are discussed in the end of this paper. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:07:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:07:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Contents v 1 Introduction and Motivation 1 2 Preliminary: Markov Chains 2 2.1 Invariant Measure and Convergence 3 2.2 Mixing and Cutoff 3 3 Preliminary: Models 5 3.1 The Link Patterns 5 3.2 The Temperley–Lieb Algebra 6 3.2.1 The Link Modules 8 3.2.2 The Temperley–Lieb Hamiltonian 9 3.2.3 The Associated Markov Chain 9 3.3 Fully Packed Loops 10 3.3.1 Square Domain with Alternating Boundary 11 4 Main Results on the Invariant Measure 12 4.1 Irreducibility and Aperiodicity of the Chain 12 4.2 From Fpl(m, +) to LP(m) 13 4.2.1 Another Distribution on LP(m) 13 4.3 Dihedral Symmetry 14 4.4 The Razumov–Stroganov Correspondence 14 5 Proof of the Dihedral Symmetry 15 5.1 Gyrations 15 5.2 FPL on Graphs of Degree 4 and/or 2 15 5.3 Bijections between FPLs on the Graph 17 5.4 The Action of Gyrations on the Link Patterns 19 5.5 Construction of the Bijections H 22 6 Convergence Results 26 6.1 Choices of the Initial Distribution 26 6.2 Short-time Behaviors 28 6.3 Asymptotic Behaviors 29 6.3.1 Even m 29 6.3.2 Odd m 30 6.4 Asymptotics with Respect to the System Size m 31 7 Conclusion and Future Directions 33 7.1 Further Discussions on the Convergence Results 33 7.2 Conclusion and Future Directions 33 References 36 | - |
| dc.language.iso | en | - |
| dc.subject | 馬可夫鏈的收斂速度 | zh_TW |
| dc.subject | 二面體對稱性 | zh_TW |
| dc.subject | Razumov–Stroganov 對應 | zh_TW |
| dc.subject | 鏈結圖形 | zh_TW |
| dc.subject | Temperley–Lieb 哈密頓量 | zh_TW |
| dc.subject | Temperley–Lieb 代數 | zh_TW |
| dc.subject | 馬可夫鏈的收斂速度 | zh_TW |
| dc.subject | 馬可夫鏈 | zh_TW |
| dc.subject | 二面體對稱性 | zh_TW |
| dc.subject | Razumov–Stroganov 對應 | zh_TW |
| dc.subject | 鏈結圖形 | zh_TW |
| dc.subject | Temperley–Lieb 哈密頓量 | zh_TW |
| dc.subject | Temperley–Lieb 代數 | zh_TW |
| dc.subject | 馬可夫鏈 | zh_TW |
| dc.subject | dihedral symmetry | en |
| dc.subject | Markov chain | en |
| dc.subject | convergence rate of Markov chains | en |
| dc.subject | Temperley–Lieb algebra | en |
| dc.subject | Temperley–Lieb Hamiltonian | en |
| dc.subject | link pattern | en |
| dc.subject | Razumov–Stroganov correspondence | en |
| dc.subject | dihedral symmetry | en |
| dc.subject | Markov chain | en |
| dc.subject | convergence rate of Markov chains | en |
| dc.subject | Temperley–Lieb algebra | en |
| dc.subject | Temperley–Lieb Hamiltonian | en |
| dc.subject | link pattern | en |
| dc.subject | Razumov–Stroganov correspondence | en |
| dc.title | 週期邊界條件下Temperley–Lieb哈密頓量於鏈結模上的馬可夫鏈研究 | zh_TW |
| dc.title | Around Temperley–Lieb Hamiltonian on the Link Module with Periodic Boundary Condition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許柏翰;陳冠宇 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Han Hsu;Guan-Yu Chen | en |
| dc.subject.keyword | 馬可夫鏈,馬可夫鏈的收斂速度,Temperley–Lieb 代數,Temperley–Lieb 哈密頓量,鏈結圖形,Razumov–Stroganov 對應,二面體對稱性, | zh_TW |
| dc.subject.keyword | Markov chain,convergence rate of Markov chains,Temperley–Lieb algebra,Temperley–Lieb Hamiltonian,link pattern,Razumov–Stroganov correspondence,dihedral symmetry, | en |
| dc.relation.page | 37 | - |
| dc.identifier.doi | 10.6342/NTU202501304 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2026-01-01 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
