請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康敦彥 | zh_TW |
| dc.contributor.advisor | Dun-Yen Kang | en |
| dc.contributor.author | 郭立淮 | zh_TW |
| dc.contributor.author | Li-Huai Kuo | en |
| dc.date.accessioned | 2025-07-22T16:07:05Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-27 | - |
| dc.identifier.citation | [1] O. M. Yaghi, M. J. Kalmutzki, and C. S. Diercks, Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. John Wiley & Sons, 2019.
[2] O. M. Yaghi, G. Li, and H. Li, "Selective binding and removal of guests in a microporous metal–organic framework," Nature, vol. 378, no. 6558, pp. 703-706, 1995. [3] P. Z. Moghadam et al., "Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD)," Chemical science, vol. 11, no. 32, pp. 8373-8387, 2020. [4] P. Z. Moghadam et al., "Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future," Chemistry of materials, vol. 29, no. 7, pp. 2618-2625, 2017. [5] V. V. e. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, "Metal-organic frameworks: structure, properties, methods of synthesis and characterization," Russian Chemical Reviews, vol. 85, no. 3, p. 280, 2016. [6] S. Wang, C. M. McGuirk, A. d'Aquino, J. A. Mason, and C. A. Mirkin, "Metal–organic framework nanoparticles," Advanced Materials, vol. 30, no. 37, p. 1800202, 2018. [7] Q. Wang and D. Astruc, "State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis," Chemical reviews, vol. 120, no. 2, pp. 1438-1511, 2019. [8] J. Liu et al., "MOF-enabled confinement and related effects for chemical catalyst presentation and utilization," Chemical Society Reviews, vol. 51, no. 3, pp. 1045-1097, 2022. [9] I. Luz, F. L. i Xamena, and A. Corma, "Bridging homogeneous and heterogeneous catalysis with MOFs:“Click” reactions with Cu-MOF catalysts," Journal of Catalysis, vol. 276, no. 1, pp. 134-140, 2010. [10] Q. Qian et al., "MOF-based membranes for gas separations," Chemical reviews, vol. 120, no. 16, pp. 8161-8266, 2020. [11] E. Adatoz, A. K. Avci, and S. Keskin, "Opportunities and challenges of MOF-based membranes in gas separations," Separation and Purification Technology, vol. 152, pp. 207-237, 2015. [12] R.-B. Lin, S. Xiang, W. Zhou, and B. Chen, "Microporous metal-organic framework materials for gas separation," Chem, vol. 6, no. 2, pp. 337-363, 2020. [13] M. X. Wu and Y. W. Yang, "Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy," Advanced Materials, vol. 29, no. 23, p. 1606134, 2017. [14] J. Cao, X. Li, and H. Tian, "Metal-organic framework (MOF)-based drug delivery," Current medicinal chemistry, vol. 27, no. 35, pp. 5949-5969, 2020. [15] M. Moharramnejad et al., "MOF as nanoscale drug delivery devices: Synthesis and recent progress in biomedical applications," Journal of Drug Delivery Science and Technology, vol. 81, p. 104285, 2023. [16] B.-M. Jun et al., "Applications of metal-organic framework based membranes in water purification: A review," Separation and Purification Technology, vol. 247, p. 116947, 2020. [17] A. Ibrahim and Y. Lin, "Pervaporation separation of organic mixtures by MOF-5 membranes," Industrial & Engineering Chemistry Research, vol. 55, no. 31, pp. 8652-8658, 2016. [18] F.-H. Hu et al., "Mixed-linker MOF-303 membranes for pervaporation," Journal of Membrane Science Letters, vol. 3, no. 2, p. 100053, 2023. [19] H.-C. Zhou, J. R. Long, and O. M. Yaghi, "Introduction to metal–organic frameworks," vol. 112, ed: ACS Publications, 2012, pp. 673-674. [20] V. F. Yusuf, N. I. Malek, and S. K. Kailasa, "Review on metal–organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment," ACS omega, vol. 7, no. 49, pp. 44507-44531, 2022. [21] J. G. Vitillo, B. Smit, and L. Gagliardi, "Introduction: carbon capture and separation," vol. 117, ed: ACS Publications, 2017, pp. 9521-9523. [22] C. Font-Palma, D. Cann, and C. Udemu, "Review of cryogenic carbon capture innovations and their potential applications," C, vol. 7, no. 3, p. 58, 2021. [23] M. Shen et al., "Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review," Separation and Purification Technology, vol. 299, p. 121734, 2022. [24] J. Wilcox, R. Haghpanah, E. C. Rupp, J. He, and K. Lee, "Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge," Annual review of chemical and biomolecular engineering, vol. 5, no. 1, pp. 479-505, 2014. [25] R. Ben-Mansour et al., "Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review," Applied Energy, vol. 161, pp. 225-255, 2016. [26] I. Sreedhar, T. Nahar, A. Venugopal, and B. Srinivas, "Carbon capture by absorption–Path covered and ahead," Renewable and sustainable energy reviews, vol. 76, pp. 1080-1107, 2017. [27] F. De Meyer and S. Jouenne, "Industrial carbon capture by absorption: recent advances and path forward," Current Opinion in Chemical Engineering, vol. 38, p. 100868, 2022. [28] J. Yu, L.-H. Xie, J.-R. Li, Y. Ma, J. M. Seminario, and P. B. Balbuena, "CO2 capture and separations using MOFs: computational and experimental studies," Chemical reviews, vol. 117, no. 14, pp. 9674-9754, 2017. [29] K. Sumida et al., "Carbon dioxide capture in metal–organic frameworks," Chemical reviews, vol. 112, no. 2, pp. 724-781, 2012. [30] M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities," Macromolecules, vol. 50, no. 20, pp. 7809-7843, 2017. [31] R. W. Baker and K. Lokhandwala, "Natural gas processing with membranes: an overview," Industrial & Engineering Chemistry Research, vol. 47, no. 7, pp. 2109-2121, 2008. [32] O. Maile, E. Muzenda, and H. Tesfagiorgis, "Chemical absorption of carbon dioxide in biogas purification," Procedia Manufacturing, vol. 7, pp. 639-646, 2017. [33] S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, and I. F. Vankelecom, "Membrane-based technologies for biogas separations," Chemical Society Reviews, vol. 39, no. 2, pp. 750-768, 2010. [34] A.-M. Ecker, H. Klein, and A. Peschel, "Systematic and efficient optimisation-based design of a process for CO2 removal from natural gas," Chemical Engineering Journal, vol. 445, p. 136178, 2022. [35] V. Batoon et al., "Scale-up testing of advanced Polaris™ membrane CO2 capture technology," in Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), 2022, pp. 23-24. [36] L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes," Journal of membrane science, vol. 62, no. 2, pp. 165-185, 1991. [37] B. Comesaña-Gándara et al., "Redefining the Robeson upper bounds for CO 2/CH 4 and CO 2/N 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity," Energy & Environmental Science, vol. 12, no. 9, pp. 2733-2740, 2019. [38] L. M. Robeson, "The upper bound revisited," Journal of membrane science, vol. 320, no. 1-2, pp. 390-400, 2008. [39] J. Coronas and J. Santamaría, "Separations using zeolite membranes," Separation and Purification methods, vol. 28, no. 2, pp. 127-177, 1999. [40] W. Li et al., "Transformation of metal-organic frameworks for molecular sieving membranes," Nature communications, vol. 7, no. 1, p. 11315, 2016. [41] J. G. Wijmans and R. W. Baker, "The solution-diffusion model: a review," Journal of membrane science, vol. 107, no. 1-2, pp. 1-21, 1995. [42] T. Watanabe and D. S. Sholl, "Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials," Langmuir, vol. 28, no. 40, pp. 14114-14128, 2012. [43] H. Daglar and S. Keskin, "Computational screening of metal–organic frameworks for membrane-based CO2/N2/H2O separations: Best materials for flue gas separation," The Journal of Physical Chemistry C, vol. 122, no. 30, pp. 17347-17357, 2018. [44] A. O. Yazaydın et al., "Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules," Chemistry of Materials, vol. 21, no. 8, pp. 1425-1430, 2009. [45] W. Xiang, Y. Zhang, Y. Chen, C.-j. Liu, and X. Tu, "Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives," Journal of Materials Chemistry A, vol. 8, no. 41, pp. 21526-21546, 2020. [46] X. Si et al., "High and selective CO 2 uptake, H 2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1," Energy & Environmental Science, vol. 4, no. 11, pp. 4522-4527, 2011. [47] E. Ren and F.-X. Coudert, "Prediction of the diffusion coefficient through machine learning based on transition-state theory descriptors," The Journal of Physical Chemistry C, vol. 128, no. 16, pp. 6917-6926, 2024. [48] D.-Y. Kang and J. S. Lee, "Challenges in developing MOF-based membranes for gas separation," Langmuir, vol. 39, no. 8, pp. 2871-2880, 2023. [49] D. T. Lee, J. Zhao, C. J. Oldham, G. W. Peterson, and G. N. Parsons, "UiO-66-NH2 metal–organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants," ACS applied materials & interfaces, vol. 9, no. 51, pp. 44847-44855, 2017. [50] T. Han, C. Li, X. Guo, H. Huang, D. Liu, and C. Zhong, "In-situ synthesis of SiO2@ MOF composites for high-efficiency removal of aniline from aqueous solution," Applied Surface Science, vol. 390, pp. 506-512, 2016. [51] B. Pan et al., "In situ growth of MOF-303 membranes onto porous anodic aluminum oxide substrates for harvesting salinity-gradient energy," ACS Applied Materials & Interfaces, vol. 15, no. 51, pp. 59463-59474, 2023. [52] C. Wang, T. Ji, Y. Wu, G. He, and Y. Liu, "Fabrication of MIL-125 membrane with unprecedented CO2/N2 selectivity using Ti6-oxo cluster source," ACS Materials Letters, vol. 5, no. 5, pp. 1311-1316, 2023. [53] S. Meshkat, S. Kaliaguine, and D. Rodrigue, "Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation," Separation and Purification Technology, vol. 200, pp. 177-190, 2018. [54] I.-D. Carja et al., "Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization," ACS Applied Materials & Interfaces, vol. 13, no. 24, pp. 29041-29047, 2021. [55] D. S. Chiou et al., "Highly CO2 selective metal–organic framework membranes with favorable coulombic effect," Advanced Functional Materials, vol. 31, no. 4, p. 2006924, 2021. [56] S. Qiu, M. Xue, and G. Zhu, "Metal–organic framework membranes: from synthesis to separation application," Chemical Society Reviews, vol. 43, no. 16, pp. 6116-6140, 2014. [57] Y. Zhou, Y. Yuan, X. Liu, and Z. Wang, "Highly permeable MOF NH2-MIL-101 (Cr) fragment membranes for CO2/N2 separation," Journal of Membrane Science, vol. 722, p. 123918, 2025. [58] S. Chen et al., "The preparation and characterization of gel-mixed matrix membranes (g-MMMs) with high CO2 permeability and stability performance," Journal of Membrane Science, vol. 652, p. 120471, 2022. [59] Y. Cheng, S. J. Datta, S. Zhou, J. Jia, O. Shekhah, and M. Eddaoudi, "Advances in metal–organic framework-based membranes," Chemical Society Reviews, vol. 51, no. 19, pp. 8300-8350, 2022. [60] B. Wang et al., "Unobstructed ultrathin gas transport channels in composite membranes by interfacial self‐assembly," Advanced Materials, vol. 32, no. 22, p. 1907701, 2020. [61] T. H. Lee et al., "Defect engineering in metal–organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation," Angewandte Chemie International Edition, vol. 60, no. 23, pp. 13081-13088, 2021. [62] S. K. Elsaidi, S. R. Venna, M. H. Mohamed, M. J. Gipple, and D. P. Hopkinson, "Dual-layer MOF composite membranes with tuned interface interaction for postcombustion carbon dioxide separation," Cell Reports Physical Science, vol. 1, no. 5, 2020. [63] Y. Wang et al., "A MOF glass membrane for gas separation," Angewandte Chemie, vol. 132, no. 11, pp. 4395-4399, 2020. [64] M. Yoshikawa, K. Fujimoto, H. Kinugawa, T. Kitao, and N. Ogata, "Selective Permeation of Carbon Dioxide through Synthetic Polymeric Membranes Having Amine Moiety," Chemistry letters, no. 2, pp. 243-246, 1994. [65] M. Pérez-Miana, J. M. Luque-Alled, M. Yahia, Á. Mayoral, and J. Coronas, "ZIF-8 modified with 2-undecylimidazolate as filler for mixed matrix membranes for CO 2 separation," Journal of Materials Chemistry A, vol. 12, no. 17, pp. 10316-10328, 2024. [66] M. R. Khdhayyer et al., "Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1," Separation and Purification Technology, vol. 173, pp. 304-313, 2017. [67] P.-H. Tang, P. B. So, W.-H. Li, Z.-Y. Hui, C.-C. Hu, and C.-H. Lin, "Carbon dioxide enrichment PEBAX/MOF composite membrane for CO2 separation," Membranes, vol. 11, no. 6, p. 404, 2021. [68] C. Wang et al., "CO2-philic nanocomposite polymer matrix incorporated with MXene nanosheets for ultraefficient CO2 capture," ACS Applied Materials & Interfaces, vol. 16, no. 11, pp. 14152-14161, 2024. [69] N. Li, C. Ma, Z. Wang, D. Li, Z. Qiao, and C. Zhong, "Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation," Journal of Membrane Science, vol. 715, p. 123453, 2025. [70] W. Wu, J. Fan, D. Wang, Y. Zhao, X. Zhao, and Y. Wei, "Ultrathin UiO-66-NH2 polycrystalline membrane for CO2/CH4 separation," Carbon Capture Science & Technology, vol. 11, p. 100183, 2024. [71] Q. Hou, Y. Wu, S. Zhou, Y. Wei, J. Caro, and H. Wang, "Ultra‐tuning of the aperture size in stiffened ZIF‐8_Cm frameworks with mixed‐linker strategy for enhanced CO2/CH4 separation," Angewandte Chemie International Edition, vol. 58, no. 1, pp. 327-331, 2019. [72] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, and M. Tsapatsis, "Zeolite membranes–a review and comparison with MOFs," Chemical Society Reviews, vol. 44, no. 20, pp. 7128-7154, 2015. [73] P. G. Boyd et al., "Data-driven design of metal–organic frameworks for wet flue gas CO2 capture," Nature, vol. 576, no. 7786, pp. 253-256, 2019. [74] Z. Kang, L. Fan, and D. Sun, "Recent advances and challenges of metal–organic framework membranes for gas separation," Journal of Materials Chemistry A, vol. 5, no. 21, pp. 10073-10091, 2017. [75] F. Cacho-Bailo, G. Caro, M. Etxeberría-Benavides, O. Karvan, C. Téllez, and J. Coronas, "High selectivity ZIF-93 hollow fiber membranes for gas separation," Chemical Communications, vol. 51, no. 56, pp. 11283-11285, 2015. [76] Y. Liu, G. Zeng, Y. Pan, and Z. Lai, "Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties," Journal of membrane science, vol. 379, no. 1-2, pp. 46-51, 2011. [77] X. Wang, S. Kusaka, A. Hori, S. Sen, and R. Matsuda, "Heterobilayer membranes from isostructural metal-organic frameworks for efficient CO2 separation," Microporous and Mesoporous Materials, vol. 338, p. 111950, 2022. [78] J. Li, P. M. Bhatt, J. Li, M. Eddaoudi, and Y. Liu, "Recent progress on microfine design of metal–organic frameworks: structure regulation and gas sorption and separation," Advanced Materials, vol. 32, no. 44, p. 2002563, 2020. [79] S. Li, J. L. Falconer, and R. D. Noble, "SAPO-34 membranes for CO2/CH4 separation," Journal of Membrane Science, vol. 241, no. 1, pp. 121-135, 2004. [80] Y. Peng, Y. Li, Y. Ban, and W. Yang, "Two‐dimensional metal–organic framework nanosheets for membrane‐based gas separation," Angewandte Chemie, vol. 129, no. 33, pp. 9889-9893, 2017. [81] G. T. Rochelle, "Amine scrubbing for CO2 capture," Science, vol. 325, no. 5948, pp. 1652-1654, 2009. [82] W. Fan et al., "Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation," Journal of the American Chemical Society, vol. 143, no. 42, pp. 17716-17723, 2021. [83] H. Reinsch, S. Waitschat, and N. Stock, "Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics," Dalton Transactions, vol. 42, no. 14, pp. 4840-4847, 2013. [84] C. Tan, J. Chen, X.-J. Wu, and H. Zhang, "Epitaxial growth of hybrid nanostructures," Nature Reviews Materials, vol. 3, no. 2, pp. 1-13, 2018. [85] Y. Gu, Y. n. Wu, L. Li, W. Chen, F. Li, and S. Kitagawa, "Controllable modular growth of hierarchical MOF‐on‐MOF architectures," Angewandte Chemie, vol. 129, no. 49, pp. 15864-15868, 2017. [86] M. S. Yao et al., "Van der Waals Heterostructured MOF‐on‐MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing," Angewandte Chemie, vol. 131, no. 42, pp. 15057-15061, 2019. [87] G. Lee, S. Lee, S. Oh, D. Kim, and M. Oh, "Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment," Journal of the American Chemical Society, vol. 142, no. 6, pp. 3042-3049, 2020. [88] W. Liu et al., "Multi‐shelled hollow metal–organic frameworks," Angewandte Chemie International Edition, vol. 56, no. 20, pp. 5512-5516, 2017. [89] O. Shekhah et al., "MOF-on-MOF heteroepitaxy: perfectly oriented [Zn 2 (ndc) 2 (dabco)] n grown on [Cu 2 (ndc) 2 (dabco)] n thin films," Dalton Transactions, vol. 40, no. 18, pp. 4954-4958, 2011. [90] K. Koh, A. G. Wong-Foy, and A. J. Matzger, "MOF@ MOF: microporous core–shell architectures," Chemical Communications, no. 41, pp. 6162-6164, 2009. [91] M. Sun et al., "Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy," Advanced Materials (Deerfield Beach, Fla.), vol. 28, no. 5, pp. 898-904, 2015. [92] Q. Yue et al., "Plasmolysis-inspired nanoengineering of functional yolk–shell microspheres with magnetic core and mesoporous silica shell," Journal of the American Chemical Society, vol. 139, no. 43, pp. 15486-15493, 2017. [93] D. Mao, J. Wan, J. Wang, and D. Wang, "Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures," Advanced Materials, vol. 31, no. 38, p. 1802874, 2019. [94] Z.-G. Gu and J. Zhang, "Epitaxial growth and applications of oriented metal–organic framework thin films," Coordination Chemistry Reviews, vol. 378, pp. 513-532, 2019. [95] C. Liu, J. Wang, J. Wan, and C. Yu, "MOF-on-MOF hybrids: Synthesis and applications," Coordination Chemistry Reviews, vol. 432, p. 213743, 2021. [96] Z. Wang et al., "The synergistic effect of heterostructured dissimilar metal–organic framework thin films on adsorption properties," Journal of Materials Chemistry A, vol. 8, no. 26, pp. 12990-12995, 2020. [97] H. T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An, and J. S. Lee, "Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances," Journal of the American Chemical Society, vol. 137, no. 38, pp. 12304-12311, 2015. [98] S. Kim et al., "Europium‐Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones and Photoluminescence Tracking," Advanced Synthesis & Catalysis, vol. 361, no. 6, pp. 1259-1264, 2019. [99] C. Guo et al., "Synthesis of core–shell ZIF-67@ Co-MOF-74 catalyst with controllable shell thickness and enhanced photocatalytic activity for visible light-driven water oxidation," CrystEngComm, vol. 20, no. 47, pp. 7659-7665, 2018. [100] M. Wang et al., "Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells," Biosensors and Bioelectronics, vol. 142, p. 111536, 2019. [101] M. Lu et al., "Core-shell MOF@ MOF composites for sensitive nonenzymatic glucose sensing in human serum," Analytica Chimica Acta, vol. 1110, pp. 35-43, 2020. [102] D. H. Hong, H. S. Shim, J. Ha, and H. R. Moon, "MOF‐on‐MOF architectures: applications in separation, catalysis, and sensing," Bulletin of the Korean Chemical Society, vol. 42, no. 7, pp. 956-969, 2021. [103] H.-Y. Wang et al., "In Situ Synthesis of MIL-160 Tubular Membrane with High Selectivity for Gas Separation," Industrial & Engineering Chemistry Research, 2025. [104] J.-Y. Lai, T.-Y. Wang, C. Zou, J.-J. Chen, L.-C. Lin, and D.-Y. Kang, "Highly-selective MOF-303 membrane for alcohol dehydration," Journal of Membrane Science, vol. 661, p. 120879, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97896 | - |
| dc.description.abstract | 有機金屬框架(Metal-Organic Frameworks, MOFs)由有機配體與金屬節點構成,形成高度多孔的晶體結構,具備優異的氣體分離潛力。相較於傳統的蒸餾與吸附等氣體分離技術,由MOF構成的薄膜材料具備更優異的通量和選擇性,為具有潛力的氣體分離材料。本研究採用多孔α-氧化鋁(α-Al₂O₃)為基材,並採用MOF-on-MOF策略合成複合MOF薄膜。此薄膜由MIL-160和MOF-303兩種MOF共同構成,於 MIL-160薄膜表面生長MOF-303,製備出複合結構MOF-303@MIL-160。兩種材料具有相似的配位方式與化學結構,故具良好的配體相容性與表面接合能力,有助於降低界面缺陷、提升膜層結晶性與結構穩定性,藉此複合兩種材料達到良好的氣體分離效能。本研究測試MOF-303@MIL-160膜對CO₂/N₂與 CO₂/CH₄的分離能力,並與單一MOF薄膜(MIL-160與 MOF-303)進行比較。結果顯示,MOF-on-MOF結構雖略降低通量,但顯著提升選擇性。具體而言,MOF-303@MIL-160對CO₂/N₂的選擇率為114.49,對CO₂/CH₄為154.54,均高於MIL-160(71.86與85.46)與MOF-303(62.00與132.98)。為驗證 MOF-303成功生長於MIL-160上,本研究結合多項量測手段。X光繞射(XRD) 圖譜與CCDC模擬對照證實兩相訊號共存;13C核磁共振光譜(NMR)進一步支持此結構。此外,共軛焦顯微鏡則揭示MOF-303薄層主要生長於 MIL-160晶粒邊界。本研究成功開發出具高CO₂分離效能的MOF-on-MOF複合薄膜,提供了一種以複合材料達到良好薄膜氣體分離效能的具體策略。 | zh_TW |
| dc.description.abstract | Metal–Organic Frameworks (MOFs), composed of organic linkers and metal nodes, form highly porous crystalline structures with excellent potential for gas separation. Compared to conventional gas separation technologies such as distillation and adsorption, MOF-based membranes exhibit superior permeability and selectivity, making them promising candidates for gas separation applications. In this study, porous α-alumina (α-Al₂O₃) was used as the substrate, and a MOF-on-MOF strategy was adopted to fabricate composite MOF membranes. The resulting membrane, composed of MIL-160 and MOF-303, features a layered structure where MOF-303 is grown on the surface of a MIL-160 membrane, forming a MOF-303@MIL-160 composite. Due to their similar coordination environments and chemical structures, the two MOFs exhibit good ligand compatibility and interfacial adhesion. It helps reduce interfacial defects, enhance membrane crystallinity, and improve structural stability. By integrating the properties of both materials, the composite membrane achieves excellent gas separation performance. The gas separation ability of the MOF-303@MIL-160 membrane was evaluated for CO₂/N₂ and CO₂/CH₄ systems and compared to single-component MOF membranes (MIL-160 and MOF-303). Results show that although the MOF-on-MOF structure slightly reduces the gas flux, it significantly improves selectivity. Specifically, the MOF-303@MIL-160 membrane exhibited a CO₂/N₂ selectivity of 114.49 and a CO₂/CH₄ selectivity of 154.54, both higher than those of MIL-160 (71.86 and 85.46) and MOF-303 (62.00 and 132.98), respectively. To confirm the successful growth of MOF-303 on MIL-160, multiple characterization techniques were employed. X-ray diffraction (XRD) patterns, in comparison with CCDC simulations, verified the coexistence of both MOF phases. Solid-state ¹³C nuclear magnetic resonance (NMR) further supported the composite structure. In addition, confocal microscopy revealed that the MOF-303 layer primarily grew along the grain boundaries of MIL-160. This study successfully demonstrates a high-performance MOF-on-MOF composite membrane for CO₂ separation and provides a concrete strategy for enhancing membrane separation performance through MOF hybridization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:07:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:07:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 III 摘要 V Abstract VI 目次 VIII 圖次 X 表次 XIII 第1章 緒論與文獻回顧 1 1.1金屬有機骨架介紹 1 1.2 薄膜氣體分離 3 1.3 薄膜分離機制 8 1.4 金屬有機骨架薄膜生長方式與氣體分離應用 14 1.5 金屬有機骨架MOF-ON-MOF 19 1.7 研究動機與架構 22 第2章 實驗方法 24 2.1 實驗藥品與基材 24 2.2 粉體合成 25 2.3 薄膜合成 26 2.4 材料檢測 29 2.5 薄膜氣體滲透實驗 31 2.6 孔洞特性理論計算 34 第3章 實驗結果與討論 35 3.1 MOF材料鑑定與模擬 35 3.2 MOF-303@MIL-160薄膜製備 36 3.3 MOF-ON-MOF材料鑑定 41 3.4 MOF-303@MIL-160薄膜氣體滲透量測 46 第4章 結論和展望 52 參考文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 複合金屬有機骨架 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | 薄膜氣體分離 | zh_TW |
| dc.subject | 二氧化碳分離 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | 薄膜氣體分離 | zh_TW |
| dc.subject | 二氧化碳分離 | zh_TW |
| dc.subject | 複合金屬有機骨架 | zh_TW |
| dc.subject | Carbon Dioxide Separation | en |
| dc.subject | MOF-on-MOF Hybrids | en |
| dc.subject | Gas Separation Membranes | en |
| dc.subject | Metal–Organic Frameworks | en |
| dc.subject | MOF-on-MOF Hybrids | en |
| dc.subject | Carbon Dioxide Separation | en |
| dc.subject | Gas Separation Membranes | en |
| dc.subject | Metal–Organic Frameworks | en |
| dc.title | 以複合金屬有機骨架薄膜提昇二氧化碳分離效能 | zh_TW |
| dc.title | MOF-on-MOF Hybrid Membranes for Enhanced Carbon Dioxide Separation Performance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅世強;杜育銘 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Chyang Luo;Yu-Ming Tu | en |
| dc.subject.keyword | 金屬有機骨架,薄膜氣體分離,二氧化碳分離,複合金屬有機骨架, | zh_TW |
| dc.subject.keyword | Metal–Organic Frameworks,Gas Separation Membranes,Carbon Dioxide Separation,MOF-on-MOF Hybrids, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202501339 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-23 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
