請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97884完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 謝秋哲 | zh_TW |
| dc.contributor.author | Qiuzhe Xie | en |
| dc.date.accessioned | 2025-07-22T16:04:14Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | [1] S. S. Martin et al., "2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association," Circulation, 2025.
[2] H. Mirzajani, P. Zolfaghari, B. Y. Koca, and H. Urey, "Minimally invasive and in situ capacitive sensing of cardiac biomarker from interstitial fluid," bioRxiv, p. 2025.05. 14.654153, 2025. [3] N. Zhang et al., "Recent Advances in Monitoring Technologies for Cardiac Troponin I: A Pivotal Biomarker in Cardiovascular Diseases," Biomolecules, vol. 15, no. 6, Jun 12 2025, doi: ARTN 85810.3390/biom15060858. [4] J. L. Anderson et al., "ACC/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction)," Circulation, vol. 116, no. 7, pp. 803-877, Aug 14 2007, doi: 10.1161/Circulationaha.107.185752. [5] G. K. Hasabnis and Z. Altintas, "Cardiac Troponin I-Responsive Nanocomposite Materials for Voltammetric Monitoring of Acute Myocardial Infarction," Acs Omega, vol. 9, no. 28, pp. 30737-30750, Jul 6 2024, doi: 10.1021/acsomega.4c03252. [6] T. H. Lee, L. C. Chen, E. Wang, C. C. Wang, Y. R. Lin, and W. L. Chen, "Development of an Electrochemical Immunosensor for Detection of Cardiac Troponin I at the Point-of-Care," Biosensors-Basel, vol. 11, no. 7, Jul 2021, doi: ARTN 21010.3390/bios11070210. [7] A. Gupta et al., "Sensitive impedimetric detection of troponin I with metal-organic framework composite electrode," Rsc Adv, vol. 11, no. 4, pp. 2167-2174, Jan 22 2021, doi: 10.1039/d0ra06665f. [8] P. Robin and S. Gerber-Lemaire, "Design and Preparation of Sensing Surfaces for Capacitive Biodetection," Biosensors-Basel, vol. 13, no. 1, Jan 2023, doi: ARTN 1710.3390/bios13010017. [9] L. Ferasin, H. Ferasin, J. Farminer, E. Hudson, and K. Lamb, "Diagnostic value of a point-of-care cardiac troponin-I assay (i-STAT®) for clinical application in canine and feline cardiology," Journal of Veterinary Cardiology, vol. 56, pp. 35-43, 2024. [10] E. Spain et al., "Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance," Acs Omega, vol. 3, no. 12, pp. 17116-17124, Dec 2018, doi: 10.1021/acsomega.8b01758. [11] M. X. Yan, J. Ye, Q. J. Zhu, L. P. Zhu, J. S. Huang, and X. R. Yang, "Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets," Anal Chem, vol. 91, no. 15, pp. 10156-10163, Aug 6 2019, doi: 10.1021/acs.analchem.9b02169. [12] A. Campu, I. Muresan, A. M. Craciun, S. Cainap, S. Astilean, and M. Focsan, "Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges," Int J Mol Sci, vol. 23, no. 14, Jul 2022, doi: ARTN 772810.3390/ijms23147728. [13] M. Abdolrahim, M. Rabiee, S. N. Alhosseini, M. Tahriri, S. Yazdanpanah, and L. Tayebi, "Development of optical biosensor technologies for cardiac troponin recognition," Anal Biochem, vol. 485, pp. 1-10, Sep 15 2015, doi: 10.1016/j.ab.2015.06.003. [14] R. Tannenberg et al., "Chemiluminescence Biosensor for the Determination of Cardiac Troponin I (cTnI)," Biosensors-Basel, vol. 13, no. 4, Apr 2023, doi: ARTN 45510.3390/bios13040455. [15] M. Norouzi, M. Z. Ghobadi, M. Golmimi, S. H. Mozhgani, H. Ghourchian, and S. A. Rezaee, "Quantum Dot-Based Biosensor for the Detection of Human T-Lymphotropic Virus-1," Anal Lett, vol. 50, no. 15, pp. 2402-2411, 2017, doi: 10.1080/00032719.2017.1287714. [16] W. Limbut, M. Hedstrom, P. Thavarungkul, P. Kanatharana, and B. Mattiasson, "Capacitive biosensor for detection of endotoxin," Anal Bioanal Chem, vol. 389, no. 2, pp. 517-525, Sep 2007, doi: 10.1007/s00216-007-1443-4. [17] C. Berggren, B. Bjarnason, and G. Johansson, "Capacitive biosensors," Electroanal, vol. 13, no. 3, pp. 173-180, Mar 2001, doi: Doi 10.1002/1521-4109(200103)13:3<173::Aid-Elan173>3.0.Co;2-B. [18] G. Ertürk and B. Mattiasson, "Capacitive Biosensors and Molecularly Imprinted Electrodes," Sensors-Basel, vol. 17, no. 2, Feb 2017, doi: ARTN 39010.3390/s17020390. [19] R. Burt, G. Birkett, and X. S. Zhao, "A review of molecular modelling of electric double layer capacitors," Phys Chem Chem Phys, vol. 16, no. 14, pp. 6519-6538, 2014, doi: 10.1039/c3cp55186e. [20] G. Wadhwa and B. Raj, "Surface Potential Modeling and Simulation Analysis of Dopingless TFET Biosensor," Silicon-Neth, vol. 14, no. 5, pp. 2147-2156, Apr 2022, doi: 10.1007/s12633-021-01011-9. [21] S. Y. Chen, H. P. Dong, and J. Yang, "Surface Potential/Charge Sensing Techniques and Applications," Sensors-Basel, vol. 20, no. 6, Mar 2020, doi: ARTN 169010.3390/s20061690. [22] K. C. Xu, S. H. Ko, and J. Chen, "Advances in wearable and implantable bioelectronics for precision medicine," Bio-Des Manuf, vol. 7, no. 4, pp. 383-387, Jul 2024, doi: 10.1007/s42242-024-00302-5. [23] L. M. Pan, D. T. Zhou, and Y. Z. Wang, "Recent advances in biosensors based on the electrochemical properties of MXenes," Analyst, vol. 150, no. 12, pp. 2469-2488, Jun 9 2025, doi: 10.1039/d5an00235d. [24] J. J. Valdes, J. G. Wall, J. P. Chambers, and M. E. Eldefrawi, "A Receptor-Based Capacitive Biosensor," J Hopkins Apl Tech D, vol. 9, no. 1, pp. 4-10, Jan-Mar 1988. [Online]. Available: <Go to ISI>://WOS:A1988N500900002. [25] B. Mattiasson and M. Hedström, "Capacitive biosensors for ultra-sensitive assays," Trac-Trend Anal Chem, vol. 79, pp. 233-238, May 2016, doi: 10.1016/j.trac.2015.10.016. [26] E. Lebègue, "Electrochemical Methods: Fundamentals and Applications, 3rd edition," Transit Metal Chem, vol. 48, no. 6, pp. 433-436, Dec 2023, doi: 10.1007/s11243-023-00555-6. [27] M. A. Brown et al., "Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface," Phys Rev X, vol. 6, no. 1, Jan 28 2016, doi: ARTN 01100710.1103/PhysRevX.6.011007. [28] D. L. Chapman, "A Contribution to the Theory of Electrocapillarity," Philos Mag, vol. 25, no. 148, pp. 475-481, Apr 1913, doi: 10.1080/14786440408634187. [29] L. Joly, C. Ybert, E. Trizac, and L. Bocquet, "Hydrodynamics within the electric double layer on slipping surfaces," Phys Rev Lett, vol. 93, no. 25, p. 257805, Dec 17 2004, doi: 10.1103/PhysRevLett.93.257805. [30] A. L. J. Cheng et al., "Recent Advances of Capacitive Sensors: Materials, Microstructure Designs, Applications, and Opportunities," Adv Mater Technol-Us, vol. 8, no. 11, Jun 2023, doi: 10.1002/admt.202201959. [31] Y. Gao, H. C. Zhang, B. W. Song, C. Zhao, and Q. F. Lu, "Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface," Biosensors-Basel, vol. 13, no. 8, Aug 2023, doi: ARTN 78710.3390/bios13080787. [32] F. Abdollahi-Mamoudan, S. Savard, C. Ibarra-Castanedo, T. Filleter, and X. Maldague, "Influence of different design parameters on a coplanar capacitive sensor performance," Ndt&E Int, vol. 126, Mar 2022, doi: ARTN 10258810.1016/j.ndteint.2021.102588. [33] E. Kosri, F. Ibrahim, A. Thiha, and M. Madou, "Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review," Nanomaterials-Basel, vol. 12, no. 23, Dec 2022, doi: ARTN 417110.3390/nano12234171. [34] Q. Z. Xie, M. W. Lin, W. E. Hsu, and C. T. Lin, "Review-Advancements of Nanoscale Structures and Materials in Impedimetric Biosensing Technologies," Ecs J Solid State Sc, vol. 9, no. 11, Dec 1 2020, doi: ARTN 11502710.1149/2162-8777/abbcb3. [35] P. Bollella and E. Katz, "Biosensors-Recent Advances and Future Challenges," Sensors (Basel), vol. 20, no. 22, Nov 20 2020, doi: 10.3390/s20226645. [36] L. Huang et al., "Capacitive biosensors for label-free and ultrasensitive detection of biomarkers," Talanta, vol. 266, no. Pt 1, p. 124951, Jan 1 2024, doi: 10.1016/j.talanta.2023.124951. [37] H. T. Hsueh and C. T. Lin, "An incremental double-layer capacitance of a planar nano gap and its application in cardiac-troponin T detection," Biosens Bioelectron, vol. 79, pp. 636-643, May 15 2016, doi: 10.1016/j.bios.2015.12.105. [38] C. X. Ma, N. M. Contento, and P. W. Bohn, "Redox Cycling on Recessed Ring-Disk Nanoelectrode Arrays in the Absence of Supporting Electrolyte," J Am Chem Soc, vol. 136, no. 20, pp. 7225-7228, May 21 2014, doi: 10.1021/ja502052s. [39] C. X. Ma, N. M. Contento, L. R. Gibson, and P. W. Bohn, "Redox Cycling in Nanoscale-Recessed Ring-Disk Electrode Arrays for Enhanced Electrochemical Sensitivity," Acs Nano, vol. 7, no. 6, pp. 5483-5490, Jun 2013, doi: 10.1021/nn401542x. [40] P. Biesheuvel, S. Porada, and J. Dykstra, "The difference between Faradaic and non-Faradaic electrode processes," arXiv preprint arXiv:1809.02930, 2018. [41] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee, "Carbon-based nanostructured materials and their composites as supercapacitor electrodes," J Mater Chem, vol. 22, no. 3, pp. 767-784, 2012, doi: 10.1039/c1jm14468e. [42] P. J. Gracie and D. Geetha, "Temperature-dependent electrical investigations and explication of the equivalent operational Warburg impedance by Bode and Nyquist plots of Yb doped silicate glass," Phys Scripta, vol. 99, no. 10, Oct 1 2024, doi: ARTN 10595410.1088/1402-4896/ad7328. [43] Q. Xie, G.-Y. Chen, C.-F. Chu, and C.-T. Lin, "An improved electrochemical biosensing device architecture with ultra-thin and surface-modified dielectric stacking structure," Sensors and Actuators B: Chemical, vol. 441, p. 137993, 2025. [44] K. Mera et al., "Glutaraldehyde is an effective cross-linker for production of antibodies against advanced glycation end-products," J Immunol Methods, vol. 334, no. 1-2, pp. 82-90, May 20 2008, doi: 10.1016/j.jim.2008.02.002. [45] Y. Wang, Q. G. Zhu, and C. Q. Huang, "`Failure analysis of short-circuit failure of metal-oxide-metal capacitor," Microelectron Reliab, vol. 137, Oct 2022, doi: ARTN 11469110.1016/j.microrel.2022.114691. [46] J. Lu, B. C. Cao, W. S. Wu, Y. F. Dai, C. J. Huang, and G. Mura, "MIM capacitor-related early-stage field failures," Microelectron Reliab, vol. 52, no. 9-10, pp. 2073-2076, Sep-Oct 2012, doi: 10.1016/j.microrel.2012.06.049. [47] D. J. M. Hamada and W. J. Roesch, "Reliability Studies on Thin Metal-Insulator-Metal (MIM) Capacitors," 2008 Rocs Workshop, Proceedings, Monterey, USA. pp. 57-61, 2008, doi: Doi 10.1109/Rocs.2008.5483617. [48] J. Y. Fu, H. P. Shang, Z. G. Li, W. B. Wang, and D. P. Chen, "Thermal annealing effects on the stress stability in silicon dioxide films grown by plasma-enhanced chemical vapor deposition," Microsyst Technol, vol. 23, no. 7, pp. 2753-2757, Jul 2017, doi: 10.1007/s00542-016-3005-1. [49] M. S. Haque, H. A. Naseem, and W. D. Brown, "Characterization of High-Rate Deposited Pecvd Silicon Dioxide Films for Mcm Applications," J Electrochem Soc, vol. 142, no. 11, pp. 3864-3869, Nov 1995, doi: Doi 10.1149/1.2048425. [50] J. Wang, "Electrochemical detection for microscale analytical systems: a review," Talanta, vol. 56, no. 2, pp. 223-31, Feb 11 2002, doi: 10.1016/s0039-9140(01)00592-6. [51] X. Chen et al., "Electrical nanogap devices for biosensing," Mater Today, vol. 13, no. 11, pp. 28-41, Nov 2010, doi: Doi 10.1016/S1369-7021(10)70201-7. [52] E. S. Yu et al., "Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures," Nat Commun, vol. 11, no. 1, p. 2804, Jun 4 2020, doi: 10.1038/s41467-020-16630-w. [53] D. Britz, J. Strutwolf, and O. Osterby, "Simulation of steady state limiting currents at arrays of square electrodes," Electrochim Acta, vol. 462, Sep 10 2023, doi: ARTN 14272810.1016/j.electacta.2023.142728. [54] D. M. Morales and M. Risch, "Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance," J Phys-Energy, vol. 3, no. 3, Jul 2021, doi: ARTN 03401310.1088/2515-7655/abee33. [55] K. Fic et al., "Revisited insights into charge storage mechanisms in electrochemical capacitors with LiSO-based electrolyte," Energy Storage Mater, vol. 22, pp. 1-14, Nov 2019, doi: 10.1016/j.ensm.2019.08.005. [56] H. N. Wang and L. Pilon, "Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances," Electrochim Acta, vol. 64, pp. 130-139, Mar 1 2012, doi: 10.1016/j.electacta.2011.12.118. [57] G. C. Gschwend and H. H. Girault, "Discrete Helmholtz model: a single layer of correlated counter-ions. Metal oxides and silica interfaces, ion-exchange and biological membranes," Chem Sci, vol. 11, no. 38, pp. 10304-10312, Oct 14 2020, doi: 10.1039/d0sc03748f. [58] S. B. Aziz et al., "The Study of Ion Transport Parameters in MC-Based Electrolyte Membranes Using EIS and Their Applications for EDLC Devices," Membranes-Basel, vol. 12, no. 2, Feb 2022, doi: ARTN 13910.3390/membranes12020139. [59] X. J. Huang, H. L. Chen, H. Q. Deng, L. S. Wang, S. J. Liao, and A. M. Tang, "A fast and simple electrochemical impedance spectroscopy measurement technique and its application in portable, low-cost instrument for impedimetric biosensing," J Electroanal Chem, vol. 657, no. 1-2, pp. 158-163, Jul 1 2011, doi: 10.1016/j.jelechem.2011.04.011. [60] D. M. G. Preethichandra and P. Sonar, "Electrochemical Impedance Spectroscopy and its Applications in Sensor Development and Measuring Battery Performance," Ieee Sens J, vol. 22, no. 11, pp. 10152-10162, Jun 1 2022, doi: 10.1109/Jsen.2021.3119650. [61] Y. R. Ge, X. Xie, J. Roscher, R. Holze, and Q. T. Qu, "How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials," J Solid State Electr, vol. 24, no. 11-12, pp. 3215-3230, Nov 2020, doi: 10.1007/s10008-020-04804-x. [62] R. Hatsuki, F. Yujiro, and T. Yamamoto, "Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy," Microfluid Nanofluid, vol. 14, no. 6, pp. 983-988, Jun 2013, doi: 10.1007/s10404-012-1105-5. [63] K. D. Huang and R. J. Yang, "Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels," Nanotechnology, vol. 18, no. 11, Mar 21 2007, doi: Artn 11570110.1088/0957-4484/18/11/115701. [64] W. L. Qu and D. Q. Li, "A model for overlapped EDL fields," J Colloid Interf Sci, vol. 224, no. 2, pp. 397-407, Apr 15 2000, doi: DOI 10.1006/jcis.1999.6708. [65] K. W. Vogt, M. Houston, M. F. Ceiler, C. E. Roberts, and P. A. Kohl, "Improvement in Dielectric-Properties of Low-Temperature Pecvd Silicon Dioxide by Reaction with Hydrazine," J Electron Mater, vol. 24, no. 6, pp. 751-755, Jun 1995, doi: Doi 10.1007/Bf02659735. [66] L. T. Zhuravlev, "The surface chemistry of amorphous silica. Zhuravlev model," Colloid Surface A, vol. 173, no. 1-3, pp. 1-38, Nov 10 2000, doi: Doi 10.1016/S0927-7757(00)00556-2. [67] D. Mallamace, S. H. Chen, C. Corsaro, E. Fazio, F. Mallamace, and H. E. Stanley, "Hydrophilic and hydrophobic competition in water-methanol solutions," Sci China Phys Mech, vol. 62, no. 10, Oct 2019, doi: ARTN 10700310.1007/s11433-018-9374-9. [68] M. J. Zhu, M. Z. Lerum, and W. Chen, "How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica," Langmuir, vol. 28, no. 1, pp. 416-423, Jan 10 2012, doi: 10.1021/la203638g. [69] Z. Stojek, "The Electrical Double Layer and Its Structure," Electroanalytical Methods: Guide to Experiments and Applications, Second Edition, pp. 3-9, 2010, doi: 10.1007/978-3-642-02915-8_1. [70] F. Baldessari and J. G. Santiago, "Electrokinetics in nanochannels. Part I. Electric double layer overlap and channel-to-well equilibrium (vol 325, pg 526, 2008)," J Colloid Interf Sci, vol. 331, no. 2, pp. 549-549, Mar 15 2009, doi: 10.1016/j.jcis.2008.12.013. [71] N. B. H. Mares et al., "Influence of APTES-Decorated Mesoporous Silica on the Dynamics of Ethylene Glycol Molecules-Insights from Variable Temperature H Solid-State NMR," J Phys Chem C, vol. 127, no. 39, pp. 19735-19746, Sep 26 2023, doi: 10.1021/acs.jpcc.3c03671. [72] M. Etienne and A. Walcarius, "Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium," Talanta, vol. 59, no. 6, pp. 1173-1188, May 1 2003, doi: 10.1016/S0039-9140(03)00024-9. [73] Q. Q. Zhao et al., "Transforming PA RO membrane with [3-(2-aminoethyl) aminopropyl] triethoxysilane (AEAPTES) for superior antifouling and water purification," J Membrane Sci, vol. 724, May 2025, doi: ARTN 12397510.1016/j.memsci.2025.123975. [74] W. A. Talavera-Pech, A. Esparza-Ruiz, P. Quintana-Owen, A. R. Vilchis-Nestor, C. Carrera-Figueiras, and A. Avila-Ortega, "Effects of different amounts of APTES on physicochemical and structural properties of amino-functionalized MCM-41-MSNs," J Sol-Gel Sci Techn, vol. 80, no. 3, pp. 697-708, Dec 2016, doi: 10.1007/s10971-016-4163-4. [75] L. Y. Zhao, J. J. Fei, H. Z. Lian, L. Mao, and X. B. Cui, "Development of a novel amine- and carboxyl-bifunctionalized hybrid monolithic column for non-invasive speciation analysis of chromium," Talanta, vol. 212, May 15 2020, doi: ARTN 12079910.1016/j.talanta.2020.120799. [76] A. Jain, A. Barve, Z. Zhao, W. Jin, and K. Cheng, "Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery," Mol Pharmaceut, vol. 14, no. 5, pp. 1517-1527, May 2017, doi: 10.1021/acs.molpharmaceut.6b00933. [77] H. Kuramitz, K. Sugawara, and S. Tanaka, "Electrochemical sensing of avidin-biotin interaction using redox markers," Electroanal, vol. 12, no. 16, pp. 1299-1303, Nov 2000, doi: Doi 10.1002/1521-4109(200011)12:16<1299::Aid-Elan1299>3.0.Co;2-6. [78] E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, "Label-Free Biosensor Based on an All-Polymer DFB Laser," Adv Opt Mater, vol. 2, no. 2, pp. 137-141, Feb 2014, doi: 10.1002/adom.201300454. [79] G. Kada, H. Falk, and H. J. Gruber, "Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin-fluorescein conjugate," Bba-Gen Subjects, vol. 1427, no. 1, pp. 33-43, Mar 14 1999, doi: Doi 10.1016/S0304-4165(98)00178-0. [80] D. Fologea, B. Ledden, D. S. McNabb, and J. L. Li, "Electrical characterization of protein molecules by a solid-state nanopore," Appl Phys Lett, vol. 91, no. 5, Jul 30 2007, doi: Artn 05390110.1063/1.2767206. [81] D. Hlushkou, R. Dhopeshwarkar, R. M. Crooks, and U. Tallarek, "The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units," Lab Chip, vol. 8, no. 7, pp. 1153-1162, 2008, doi: 10.1039/b800549d. [82] A. Plecis, R. B. Schoch, and P. Renaud, "Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip," Nano Lett, vol. 5, no. 6, pp. 1147-1155, Jun 2005, doi: 10.1021/nl050265h. [83] B. S. Kim et al., "Association of High-Sensitivity Troponin I with Cardiac and Cerebrovascular Events in Patient after Ischemic Stroke," Cerebrovasc Dis, vol. 52, no. 2, pp. 153-159, Apr 2023, doi: 10.1159/000525920. [84] S. S. Wang, J. B. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, "Electrochemical impedance spectroscopy," Nat Rev Method Prime, vol. 1, no. 1, Jun 10 2021, doi: ARTN 4110.1038/s43586-021-00039-w. [85] S. Shukla, P. Zhang, H. J. Cho, L. Ludwig, and S. Seal, "Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor," Int J Hydrogen Energ, vol. 33, no. 1, pp. 470-475, Jan 2008, doi: 10.1016/j.ijhydene.2007.07.043. [86] J. J. Talbot, D. Calamba, M. Pai, M. Ma, and T. M. Thway, "Measurement of Free Total Therapeutic Monoclonal Antibody in Pharmacokinetic Assessment is Modulated by Affinity, Incubation Time, and Bioanalytical Platform," Aaps J, vol. 17, no. 6, pp. 1446-1454, Nov 2015, doi: 10.1208/s12248-015-9807-8. [87] Y. J. Kang, "Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System," Micromachines-Basel, vol. 11, no. 2, Feb 2020, doi: ARTN 21510.3390/mi11020215. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97884 | - |
| dc.description.abstract | 心臟疾病在全球一直是主要死因之一,約占全球每年所有死亡數量的33%。而心肌肌鈣蛋白作為評估急性心肌梗塞的重要指標,對預防心肌梗塞相關疾病相當關鍵。然而,目前仍缺乏同時擁有低廉、快速和精準的檢測手段。針對這個需求,本研究中我們開發了基于電荷敏感的微孔陣列結構的電容感測器。這個感測器擁有傳統電容式傳感器的無標記、迅速的檢測特點,同時在結構方面,它以垂直堆疊的電極設計取代了傳統電容式傳感器的平面佈局。這種架構保留了奈米級平面感測器的優勢,並將感測區域的製造複雜性從奈米光刻製程轉移到更具可擴展性的化學氣相沈積製程。此外,通過把感測層從電極表面轉移到電極之間的側壁上,解決了電容式傳感器穩定度和靈敏度相互制衡的問題。
為了探究開發的微孔陣列感測器的特性,我們利用循環伏安法和電化學阻抗譜法,對其在不同的離子濃度中進行測量電雙層電容。在這個過程中,驗證了這個感測器的感測機制。並且在隨後的化學改質步驟裡,發現了矽烷會造成元件明顯的訊號變化。我們利用感測器對電荷的靈敏性,對現有的改質方式進行了優化,並利用螢光法證實,優化後的改質方式可以帶來更好的生物分子改質效率。在改善矽烷的改質策略之後,對帶有不同淨電荷的生物素和鏈黴生物素進行了檢測。結果顯示,對帶電量更多的生物素的檢測極限達到了 120 fM,並且達到了15 fM到150 pM的廣闊的動態范圍。這個結果明顯相較利用其他方法得到的結果更出眾,證明了新型微陣列傳感器對生物分子檢測的優越性。 最後,我們嘗試了多種參數下對心肌鈣蛋白的檢測結果。這些參數包括: 電極間距、培養時間、表征方法、量測溶液的離子濃度。並使用優化過後的參數對在人血清中的心肌鈣蛋白進行了檢測。結果顯示在37攝氏度的環境下讓樣品與微孔陣列感測器進行培養之後,對人血清紅的心肌鈣蛋白可以達到272.32 fg/mL的檢測極限,並且呈現出100 fg/mL到1 ng/mL的動態范圍。這些結果凸顯了新型堆疊式微孔陣列傳感器的先進性,同時,對心肌鈣蛋白的精確、快速的檢測能力也填補了目前檢測方法的空白。我相信這種新型傳感器可以在更廣闊的生醫領域進行運用。 | zh_TW |
| dc.description.abstract | Cardiovascular diseases have consistently ranked among the leading causes of death worldwide, accounting for approximately 33% of all annual global fatalities. Cardiac troponin I (cTnI) serves as a critical biomarker for assessing acute myocardial infarction and plays a key role in the prevention of related conditions. However, current detection methods lack the combined advantages of low cost, rapid response, and high precision. To address this issue, we developed a capacitive sensor based on a charge-sensitive microwell array structure. This sensor retains the label-free and rapid detection characteristics of conventional capacitive sensors, while replacing the traditional planar electrode layout with a vertically stacked design. This architecture preserves the benefits of nanoscale planar sensors and shifts the complexity of sensor fabrication from nanolithography to a more scalable chemical vapor deposition process. Moreover, by relocating the sensing layer from the electrode surface to the sidewalls between electrodes, we resolved the trade-off between stability and sensitivity in capacitive sensing.
To investigate the sensor’s characteristics, cyclic voltammetry and electrochemical impedance spectroscopy were employed to measure the electrical double-layer capacitance under varying ionic concentrations, validating the sensing mechanism. During subsequent chemical modification steps, we observed significant signal changes induced by silane treatment. Leveraging the sensor’s charge sensitivity, we optimized the modification protocol, which was confirmed by fluorescence analysis to enhance biomolecular functionalization efficiency. After optimizing the modification strategy of aminosilanes, we tested biotin and streptavidin with different net charges. The sensor achieved a detection limit of 120 fM for highly charged biotin and demonstrated a broad dynamic range from 15 fM to 150 pM. These results outperform existing methods and highlight the superior performance of the novel micropore array sensor in biomolecular detection. Finally, we evaluated cTnI detection under various parameters, including electrode spacing, incubation time, characterization methods, and ionic concentration of the measurement solution. Using optimized conditions, the sensor achieved a detection limit of 272.32 fg/mL and a dynamic range from 100 fg/mL to 1 ng/mL in human serum at 37 °C. These findings underscore the advancement of the stacked microwells array sensor and its potential for precise and rapid cTnI detection, filling a critical gap in current diagnostic technologies. We believe this novel sensor holds great promise for broader biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:04:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:04:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………i
Abstract……………………………………………………………………iii Table of Contents v List of Figures viii List of Tables …………………………………………………………….xiii Chapter 1 Introduction 1 1.1 Cardiac troponin I 1 1.2 cTnI-targeted biosensor 4 1.2.1 Electrochemical biosensors 5 1.2.1.1 Capacitive and impedimetric sensors 5 1.2.1.2 Voltammetric, amperometric, and electrochemiluminescence (ECL) systems 7 1.2.2 Optical biosensors 8 1.3 Challenge in capacitive biosensor 10 1.4 Motivation 12 Chapter 2 Mechanisms of capacitive biosensing 14 2.1 Electrochemical basics 14 2.1.1 Faradaic processes 14 2.1.2 Non-Faradaic processes 15 2.1.3 Surface potential 16 2.1.4 Electric double layer 17 2.2 Electrochemical measurement methods 20 2.2.1 Non-Faradaic cyclic voltammetry (CV) 20 2.2.2 Electrochemical impedance spectroscopy 21 Chapter 3 Experimental 25 3.1 Device fabrication processes 25 3.1.1 MWA device 26 3.1.2 Mock device 27 3.2 Modification processes 28 3.2.1 Self-assembly monolayer coating 28 3.2.2 Strept(avidin) immobilization process 28 3.2.3 cTnI immobilization process 29 3.3 Characterization method 30 3.3.1 CV and EIS 30 3.3.2 Surface analysis with KPFM and AFM 32 3.3.3 Fluorescein microscopy and intensity quantification 33 Chapter 4 Analysis and discussion of experimental findings 35 4.1 Analysis of solid-state structural properties 35 4.1.1 Fabrication techniques for improved device reliability 35 4.1.2 Simulation-based estimation of current density for different electrode geometries 37 4.2 Analysis of basic electrochemical properties 40 4.2.1 CV measurements 40 4.2.2 EIS measurements 44 4.3 Sensing mechanism determination 46 4.3.1 Influence of surface functionalization site on the electrical signal characteristics of the device 46 4.3.2 Device concept examination 48 4.3.3 Equivalent circuit model for MWA device 54 4.4 Applications of MWA biosensor 55 4.4.1 Aminosilane monitoring 55 4.4.1.1 Validation of sensing capability 56 4.4.1.2 Optimization of aminosilane-based modification stretagy 58 4.4.2 Strept(avidin) detection 65 4.4.3 cTnI detection 73 Chapter 5 Conclusion 81 Reference………………………………………………………………….83 Appendix A………………………………………………………………..89 Appendix B………………………………………………………………..91 Appendix C………………………………………………………………..93 | - |
| dc.language.iso | en | - |
| dc.subject | 生物素 | zh_TW |
| dc.subject | 微孔陣列傳感器 | zh_TW |
| dc.subject | 心肌鈣蛋白 | zh_TW |
| dc.subject | 電化學阻抗譜 | zh_TW |
| dc.subject | 堆疊式結構 | zh_TW |
| dc.subject | 電雙層電容 | zh_TW |
| dc.subject | 循環伏安法 | zh_TW |
| dc.subject | 微孔陣列傳感器 | zh_TW |
| dc.subject | 心肌鈣蛋白 | zh_TW |
| dc.subject | 電化學阻抗譜 | zh_TW |
| dc.subject | 生物素 | zh_TW |
| dc.subject | 堆疊式結構 | zh_TW |
| dc.subject | 電雙層電容 | zh_TW |
| dc.subject | 循環伏安法 | zh_TW |
| dc.subject | stacked structure | en |
| dc.subject | electrochemical impedance spectroscopy | en |
| dc.subject | biotin | en |
| dc.subject | electrical double layer capacitance | en |
| dc.subject | microwell array sensor | en |
| dc.subject | cardiac troponin | en |
| dc.subject | electrochemical impedance spectroscopy | en |
| dc.subject | biotin | en |
| dc.subject | cyclic voltammetry | en |
| dc.subject | stacked structure | en |
| dc.subject | electrical double layer capacitance | en |
| dc.subject | cyclic voltammetry | en |
| dc.subject | microwell array sensor | en |
| dc.subject | cardiac troponin | en |
| dc.title | 具超薄且表面改質介電堆疊結構之改良型電化學生物感測器應用於心肌肌鈣蛋白I檢測 | zh_TW |
| dc.title | An Improved Electrochemical Biosensing Device with Ultra-thin and Surface-modified Dielectric Stacking Structure for Cardiac Troponin I Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳林祈;張子璿;陳建甫;吳靖宙;余靈珊 | zh_TW |
| dc.contributor.oralexamcommittee | Lin-Chi Chen;Tzu-Hsuan Chang;Chien-Fu Chen;Ching-Chou Wu;Ling-Shan Yu | en |
| dc.subject.keyword | 微孔陣列傳感器,心肌鈣蛋白,電化學阻抗譜,生物素,堆疊式結構,電雙層電容,循環伏安法, | zh_TW |
| dc.subject.keyword | microwell array sensor,cardiac troponin,electrochemical impedance spectroscopy,biotin,stacked structure,electrical double layer capacitance,cyclic voltammetry, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202502009 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-23 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
