請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴尚年 | zh_TW |
| dc.contributor.advisor | Shagnik Das | en |
| dc.contributor.author | 吳尚昱 | zh_TW |
| dc.contributor.author | Saintan Wu | en |
| dc.date.accessioned | 2025-07-21T16:06:29Z | - |
| dc.date.available | 2025-07-22 | - |
| dc.date.copyright | 2025-07-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | [1] J. Aaronson, D. Ellis, and I. Leader. A note on transitive union-closed families. Electron. J. Combin., 28(2):Paper No. 2.3, 4, 2021.
[2] R. Alweiss, B. Huang, and M. Sellke. Improved lower bound for Frankl’s union-closed sets conjecture. Electron. J. Combin., 31(3):Paper No. 3.35, 11, 2024. [3] I. Balla. Minimum density of union-closed families, 2011. arXiv:1106.0369. [4] I. Balla, B. Bollobás, and T. Eccles. Union-closed families of sets. J. Combin. Theory Ser. A, 120(3):531–544, 2013. [5] H. Bruhn, P. Charbit, O. Schaudt, and J. A. Telle. The graph formulation of the union-closed sets conjecture. European J. Combin., 43:210–219, 2015. [6] H. Bruhn and O. Schaudt. The journey of the union-closed sets conjecture. Graphs Combin., 31(6):2043–2074, 2015. [7] S. Cambie. Better bounds for the union-closed sets conjecture using the entropy approach, 2022. arXiv:2212.12500. [8] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999. [9] J. Gilmer. A constant lower bound for the union-closed sets conjecture, 2022. arXiv:2211.09055. [10] E. Knill. Graph generated union-closed families of sets, 1994. arXiv:math/9409215. [11] J. Liu. Improving the lower bound for the union-closed sets conjecture via conditionally iid coupling. 2024 58th Annual Conference on Information Sciences and Systems (CISS), pages 1–6, 2023. [12] R. Morris. FC-families and improved bounds for Frankl’s conjecture. European J. Combin., 27(2):269–282, 2006. [13] N. Nagel. Notes on the union closed sets conjecture, 2023. arXiv:2208.03803. [14] L. Pebody. Extension of a method of Gilmer, 2022. arXiv:2211.13139. [15] PolyMath. Frankl’s union-closed conjecture. https://www.michaelnielsen.org/polymath/index.php?title=Frankl%27s_union-closed_conjecture, 2016. [16] D. Reimer. An average set size theorem. Combin. Probab. Comput., 12(1):89–93, 2003. [17] J. Reinhold. Frankl’s conjecture is true for lower semimodular lattices. Graphs Combin., 16(1):115–116, 2000. [18] I. Roberts and J. Simpson. A note on the union-closed sets conjecture. Australas. J. Combin., 47:265–267, 2010. [19] W. Sawin. An improved lower bound for the union-closed set conjecture, 2023. arXiv:2211.11504. [20] T. P. Vaughan. Families implying the Frankl conjecture. European J. Combin., 23(7):851–860, 2002. [21] B. Vučković and M. Živković. The 12-element case of Frankl’s Conjecture. IPSI BgD Transactions on Internet Research, 13:65–71, 01 2017. [22] P. Wójcik. Union-closed families of sets. Discrete Math., 199(1-3):173–182, 1999. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878 | - |
| dc.description.abstract | 聯集封閉集合猜想(Union-Closed Sets Conjecture)提出:對於任意一個聯集封閉的集合族 $\F$,是否總存在一個元素,包含於至少一半的集合中。2022 年,Nagel 推出此猜想的一個推廣版本,提出在一個聯集封閉集合族中,第 $k$ 常出現的元素應出現在至少 $\frac{1}{2^{k-1} + 1} |\F|$ 個集合中。
本文結合了 Gilmer 的亂度法與 Knill 的組合論證,證明了對於所有 $k \ge 2$,Nagel 的推廣猜想皆成立。此外,我們亦證明,當 $|\F| \to \infty$ 時,第 $k$ 常見的元素至少會出現在 $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ 個集合中,反映出聯集封閉集合猜想近期研究所取得的進展。 | zh_TW |
| dc.description.abstract | The Union-Closed Sets Conjecture asks whether every union-closed set family $\F$ has an element contained in $\frac12 |\F|$ of its sets. In 2022, Nagel posed a generalisation of this problem, suggesting that the $k$th most popular element in a union-closed set family must be contained in at least $\frac{1}{2^{k-1} + 1} |\F|$ sets.
We combine the entropic method of Gilmer with the combinatorial arguments of Knill to show that this is indeed the case for all $k \ge 2$. Furthermore, we show that when $|\F| \to \infty$, the $k$th most frequent element will appear in at least $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ sets, reflecting the recent progress made for the Union-Closed Set Conjecture. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-21T16:06:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-21T16:06:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xi Chapter 1 Introductions 1 Chapter 2 Preliminary 5 2.1 Entropic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Classic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Entropic proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Equivalence of Nagel’s conjecture and Frankl’s Conjecture . . . . . . 14 Chapter 3 Large families 17 3.1 Frequencies in large families . . . . . . . . . . . . . . . . . . . . . . 17 3.2 The proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Projection approach . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4 Small families 27 Chapter 5 Concluding remarks 31 5.1 Piecing it all together . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Frequencies in large families . . . . . . . . . . . . . . . . . . . . . . 32 References 35 | - |
| dc.language.iso | en | - |
| dc.subject | 極值集合論 | zh_TW |
| dc.subject | 亂度 | zh_TW |
| dc.subject | 第k常見元素 | zh_TW |
| dc.subject | 聯集封閉集合 | zh_TW |
| dc.subject | Frankl 猜想 | zh_TW |
| dc.subject | 極值集合論 | zh_TW |
| dc.subject | 亂度 | zh_TW |
| dc.subject | 第k常見元素 | zh_TW |
| dc.subject | 聯集封閉集合 | zh_TW |
| dc.subject | Frankl 猜想 | zh_TW |
| dc.subject | Extremal Set Theory | en |
| dc.subject | Entropy | en |
| dc.subject | Extremal Set Theory | en |
| dc.subject | Frankl's Conjecture | en |
| dc.subject | Union-Closed Family | en |
| dc.subject | kth frequency | en |
| dc.subject | Entropy | en |
| dc.subject | kth frequency | en |
| dc.subject | Union-Closed Family | en |
| dc.subject | Frankl's Conjecture | en |
| dc.title | 聯集封閉集合中的高頻元素 | zh_TW |
| dc.title | Frequent elements in union-closed set families | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林延輯;游森棚;俞韋亘 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Chi Lin;Sen-Peng Eu;Wei-Hsuan Yu | en |
| dc.subject.keyword | 極值集合論,Frankl 猜想,聯集封閉集合,第k常見元素,亂度, | zh_TW |
| dc.subject.keyword | Extremal Set Theory,Frankl's Conjecture,Union-Closed Family,kth frequency,Entropy, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202501098 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2025-07-22 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 634.9 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
