Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴尚年zh_TW
dc.contributor.advisorShagnik Dasen
dc.contributor.author吳尚昱zh_TW
dc.contributor.authorSaintan Wuen
dc.date.accessioned2025-07-21T16:06:29Z-
dc.date.available2025-07-22-
dc.date.copyright2025-07-21-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation[1] J. Aaronson, D. Ellis, and I. Leader. A note on transitive union-closed families. Electron. J. Combin., 28(2):Paper No. 2.3, 4, 2021.
[2] R. Alweiss, B. Huang, and M. Sellke. Improved lower bound for Frankl’s union-closed sets conjecture. Electron. J. Combin., 31(3):Paper No. 3.35, 11, 2024.
[3] I. Balla. Minimum density of union-closed families, 2011. arXiv:1106.0369.
[4] I. Balla, B. Bollobás, and T. Eccles. Union-closed families of sets. J. Combin. Theory Ser. A, 120(3):531–544, 2013.
[5] H. Bruhn, P. Charbit, O. Schaudt, and J. A. Telle. The graph formulation of the union-closed sets conjecture. European J. Combin., 43:210–219, 2015.
[6] H. Bruhn and O. Schaudt. The journey of the union-closed sets conjecture. Graphs Combin., 31(6):2043–2074, 2015.
[7] S. Cambie. Better bounds for the union-closed sets conjecture using the entropy approach, 2022. arXiv:2212.12500.
[8] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.
[9] J. Gilmer. A constant lower bound for the union-closed sets conjecture, 2022. arXiv:2211.09055.
[10] E. Knill. Graph generated union-closed families of sets, 1994. arXiv:math/9409215.
[11] J. Liu. Improving the lower bound for the union-closed sets conjecture via conditionally iid coupling. 2024 58th Annual Conference on Information Sciences and Systems (CISS), pages 1–6, 2023.
[12] R. Morris. FC-families and improved bounds for Frankl’s conjecture. European J. Combin., 27(2):269–282, 2006.
[13] N. Nagel. Notes on the union closed sets conjecture, 2023. arXiv:2208.03803.
[14] L. Pebody. Extension of a method of Gilmer, 2022. arXiv:2211.13139.
[15] PolyMath. Frankl’s union-closed conjecture. https://www.michaelnielsen.org/polymath/index.php?title=Frankl%27s_union-closed_conjecture, 2016.
[16] D. Reimer. An average set size theorem. Combin. Probab. Comput., 12(1):89–93, 2003.
[17] J. Reinhold. Frankl’s conjecture is true for lower semimodular lattices. Graphs Combin., 16(1):115–116, 2000.
[18] I. Roberts and J. Simpson. A note on the union-closed sets conjecture. Australas. J. Combin., 47:265–267, 2010.
[19] W. Sawin. An improved lower bound for the union-closed set conjecture, 2023. arXiv:2211.11504.
[20] T. P. Vaughan. Families implying the Frankl conjecture. European J. Combin., 23(7):851–860, 2002.
[21] B. Vučković and M. Živković. The 12-element case of Frankl’s Conjecture. IPSI BgD Transactions on Internet Research, 13:65–71, 01 2017.
[22] P. Wójcik. Union-closed families of sets. Discrete Math., 199(1-3):173–182, 1999.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878-
dc.description.abstract聯集封閉集合猜想(Union-Closed Sets Conjecture)提出:對於任意一個聯集封閉的集合族 $\F$,是否總存在一個元素,包含於至少一半的集合中。2022 年,Nagel 推出此猜想的一個推廣版本,提出在一個聯集封閉集合族中,第 $k$ 常出現的元素應出現在至少 $\frac{1}{2^{k-1} + 1} |\F|$ 個集合中。

本文結合了 Gilmer 的亂度法與 Knill 的組合論證,證明了對於所有 $k \ge 2$,Nagel 的推廣猜想皆成立。此外,我們亦證明,當 $|\F| \to \infty$ 時,第 $k$ 常見的元素至少會出現在 $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ 個集合中,反映出聯集封閉集合猜想近期研究所取得的進展。
zh_TW
dc.description.abstractThe Union-Closed Sets Conjecture asks whether every union-closed set family $\F$ has an element contained in $\frac12 |\F|$ of its sets. In 2022, Nagel posed a generalisation of this problem, suggesting that the $k$th most popular element in a union-closed set family must be contained in at least $\frac{1}{2^{k-1} + 1} |\F|$ sets.

We combine the entropic method of Gilmer with the combinatorial arguments of Knill to show that this is indeed the case for all $k \ge 2$. Furthermore, we show that when $|\F| \to \infty$, the $k$th most frequent element will appear in at least $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ sets, reflecting the recent progress made for the Union-Closed Set Conjecture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-21T16:06:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-21T16:06:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xi
Chapter 1 Introductions 1
Chapter 2 Preliminary 5
2.1 Entropic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Classic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Entropic proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Equivalence of Nagel’s conjecture and Frankl’s Conjecture . . . . . . 14
Chapter 3 Large families 17
3.1 Frequencies in large families . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Projection approach . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4 Small families 27
Chapter 5 Concluding remarks 31
5.1 Piecing it all together . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Frequencies in large families . . . . . . . . . . . . . . . . . . . . . . 32
References 35
-
dc.language.isoen-
dc.subject極值集合論zh_TW
dc.subject亂度zh_TW
dc.subject第k常見元素zh_TW
dc.subject聯集封閉集合zh_TW
dc.subjectFrankl 猜想zh_TW
dc.subject極值集合論zh_TW
dc.subject亂度zh_TW
dc.subject第k常見元素zh_TW
dc.subject聯集封閉集合zh_TW
dc.subjectFrankl 猜想zh_TW
dc.subjectExtremal Set Theoryen
dc.subjectEntropyen
dc.subjectExtremal Set Theoryen
dc.subjectFrankl's Conjectureen
dc.subjectUnion-Closed Familyen
dc.subjectkth frequencyen
dc.subjectEntropyen
dc.subjectkth frequencyen
dc.subjectUnion-Closed Familyen
dc.subjectFrankl's Conjectureen
dc.title聯集封閉集合中的高頻元素zh_TW
dc.titleFrequent elements in union-closed set familiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林延輯;游森棚;俞韋亘zh_TW
dc.contributor.oralexamcommitteeYen-Chi Lin;Sen-Peng Eu;Wei-Hsuan Yuen
dc.subject.keyword極值集合論,Frankl 猜想,聯集封閉集合,第k常見元素,亂度,zh_TW
dc.subject.keywordExtremal Set Theory,Frankl's Conjecture,Union-Closed Family,kth frequency,Entropy,en
dc.relation.page36-
dc.identifier.doi10.6342/NTU202501098-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-07-22-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf634.9 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved