Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97865
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊明仁zh_TW
dc.contributor.advisorMing-Jen Yangen
dc.contributor.author劉伃茗zh_TW
dc.contributor.authorYu-Ming Liuen
dc.date.accessioned2025-07-18T16:12:27Z-
dc.date.available2025-07-19-
dc.date.copyright2025-07-18-
dc.date.issued2025-
dc.date.submitted2025-07-11-
dc.identifier.citation陳泰然、周鴻祺、紀水上、黃心怡及楊進賢. (2012). 台灣與其他地區暖季弓形回波之特徵與環境條件. 大氣科學,40(1),49-75. [Chen, George Tai-Jen, Hon-Chi Chou, Shui-Shang Chi, Shin-Yi Huang, and Jinn-Shang Yang. "Characteristics and Environmental Conditions of Bow Echoes Occurred Over Taiwan and Other Areas." Atmospheric Science 40, no. 1 (2012): 49–75.]

陳泰然、陳來發、周蘭芬 李育祺. (1988). 1985年與1986年暖季西太平洋高層冷心低壓之初步分析,氣象學報,第三十四卷,275-284. [A Preliminary Study on the Western Pacific Upper-Tropospheric Cold Vortices in the Warm Months of 1985-1986]

吳宗堯.(1976).夏季東亞高層冷心低壓之分析. 大氣科學,3(1),1-11. [An Observational Stz of the Cold Core Low in the upper Troposphere in Far East in Summer.]

楊明仁,鄭明典,黃清勇,林沛練,林博雄,李清勝,王重傑,劉清煌,呂國臣,張保亮,黃椿喜,侯昭平,鍾高陞,張偉裕,林品芳,2023:臺灣區域豪雨觀測暨預報實驗(TAHOPE)簡介,中華民國氣象學會會刊,64,50–67。

Agee, E., and E. Jones, 2009: Proposed Conceptual Taxonomy for Proper Identification and Classification of Tornado Events. Weather and Forecasting, 24(2), 609-617, https://doi.org/10.1175/2008waf2222163.1

Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST. Journal of the Atmospheric Sciences, 69(11), 3197-3222. https://doi.org/10.1175/Jas-D-11-0276.1

Benjamin, T. B., 1968: Gravity currents and related phenomena. Journal of fluid mechanics, 31(2), 209-248, https://doi.org/ doi:10.1017/S0022112068000133

Cha, T. Y., and M. M. Bell, 2023: Three-Dimensional Variational Multi-Doppler Wind Retrieval over Complex Terrain. Journal of Atmospheric and Oceanic Technology, 40(11), 1381-1405, https://doi.org/10.1175/Jtech-D-23-0019.1

Chen, G. T.-J., C.-C. Wang, and H.-C. Chou, 2007: Case study of a bow echo near Taiwan during wintertime. Journal of the Meteorological Society of Japan. Ser. II, 85(3), 233-253, https://doi.org/10.2151/jmsj.85.233

Chisholm, A. J., 1973: Alberta hailstorms Part I: Radar case studies and airflow models. In Alberta Hailstorms (pp. 1-36). Springer.

Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Weather and Forecasting, 19(2), 320-337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2

Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Weather and Forecasting, 16(3), 329-342. https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2

Fujita, T. T. 1978: Manual of downburst identification for project NIMROD.

Grim, J. A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. P. Jorgensen, 2009: Development and Forcing of the Rear Inflow Jet in a Rapidly Developing and Decaying Squall Line during BAMEX. Monthly Weather Review, 137(4), 1206-1229, https://doi.org/10.1175/2008mwr2503.1

James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Monthly Weather Review, 134(3), 950-964, https://doi.org/10.1175/Mwr3109.1

Klimowski, B. A., M. R. Hjelmfelt, and M. J. Bunkers, 2004: Radar observations of the early evolution of bow echoes. Weather and Forecasting, 19(4), 727-734, https://doi.org/10.1175/1520-0434(2004)019<0727:Rootee>2.0.Co;2

Kumjian, M. R., O. P. Prat, K. J. Reimel, M. van Lier-Walqui, and H. C. Morrison, 2022: Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sensing, 14(15), https://doi.org/10.3390/rs14153706

Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-Resolution Polarimetric Radar Observations of Snow-Generating Cells. Journal of Applied Meteorology and Climatology, 53(6), 1636-1658, https://doi.org/10.1175/Jamc-D-13-0312.1

Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and Forecasting, 26(1), 44-60, https:// doi.org/10.1175/2010WAF2222386.1

Liu, Q., X. Xu, K. Zhao, and A. Zhou, 2023: A Merger-Formation Bow Echo Caused by Low-Level Mesovortex in South China. Journal of Geophysical Research-Atmospheres, 128(8), https://doi.org/10.1029/2022JD037954

Lombardo, K. A. and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U.S. coast. Mon. Wea. Rev., 140, 3805–3819, https://doi.org/10.1175/MWR-D-12-00050

Mahoney, K. M., G. M. Lackmann, and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 3316–3338, https://doi.org/10.1175/2009MWR2895.1

Marquis, J. N., Z. Feng, A. C. Varble, T. C. Nelson, A. Houston, J. M. Peters, J. P. Mulholland, and J. Hardin, 2023: Near-Cloud Atmospheric Ingredients for Deep Convection Initiation. Monthly Weather Review, 151(5), 1247-1267, https://doi.org/10.1175/Mwr-D-22-0243.1

Mashiko, W. 2024: Structure and Maintenance of a Quasi-Linear Mesoscale Convective System That Caused Torrential Rain in Southern Kyushu, Japan, on 11 July 2021. Monthly Weather Review, 152(8), 1903-1921, https://doi.org/10.1175/MWR-D-23-0209.1

Mathias, L., V. Ermert, F. D. Kelemen, P. Ludwig, and J. G. Pinto, 2017: Synoptic Analysis and Hindcast of an Intense Bow Echo in Western Europe: The 9 June 2014 Storm. Weather and Forecasting, 32(3), 1121-1141, https://doi.org/10.1175/Waf-D-16-0192.1

McMurdie, L. A., A. K. Rowe, R. A. Houze, S. R. Brodzik, J. P. Zagrodnik, and T. M. Schuldt, 2018: Terrain‐enhanced precipitation processes above the melting layer: Results from OLYMPEX. Journal of Geophysical Research: Atmospheres, 123(21), 12,194-112,209, https://doi.org/10.1029/2018JD029161

Miao, J.-E., and M.-J. Yang, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. J. Meteor. Soc. Japan, 98, 129–152, https://doi.org/10.2151/jmsj.2020-008

Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does vertical wind shear influence entrainment in squall lines? Journal of the Atmospheric Sciences, 78(6), 1931-1946, https://doi.org/10.1175/JAS-D-20-0299.1

Orlanski, I. 1975: A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 527-530, http://www.jstor.org/stable/26216020

Ooyama, K. V., 2002: The cubic-spline transform method: Basic definitions and tests in a 1D single domain. Mon. Wea. Rev., 130, 2392–2415.

Pan, Y.-T., and M.-J. Yang, 2022: Asymmetric Structures of a Squall-Line MCS over Taiwan with Significant Hydraulic Jumps. Asia-Pacific Journal of Atmospheric Sciences, 58(3), 415-433. https://doi.org/10.1007/s13143-021-00262-1

Parker, M. D. (2010). Relationship between system slope and updraft intensity in squall lines. Monthly Weather Review, 138(9), 3572-3578, https://doi.org/10.1175/2010MWR3441.1

Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A Theory for Strong, Long-Lived Squall Lines. Journal of the Atmospheric Sciences, 45(3), 463-485, https://doi.org/10.1175/1520-0469(1988)045<0463:Atfsll>2.0.Co;2

Smull, B. F., and R. A. Houze, 1987: Rear Inflow in Squall Lines with Trailing Stratiform Precipitation. Monthly Weather Review, 115(12), 2869-2889, https://doi.org/10.1175/1520-0493(1987)115<2869:Riislw>2.0.Co;2

Spuler, S. M., M. Hayman, R. A. Stillwell, J. Carnes, T. Bernatsky, and K. S. Repasky, 2021: MicroPulse DIAL (MPD)–a diode-laser-based lidar architecture for quantitative atmospheric profiling. Atmospheric Measurement Techniques, 14(6), 4593-4616, https://doi.org/10.5194/amt-14-4593-2021.

van Lier-Walqui, M., and Coauthors, 2016: On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Monthly Weather Review, 144(2), 737-758, https://doi.org/10.1175/MWR-D-15-0100.1.

Wakimoto, R. M., P. Stauffer, and W.-C. Lee, 2015: The Vertical Vorticity Structure within a Squall Line Observed during BAMEX: Banded Vorticity Features and the Evolution of a Bowing Segment. Monthly Weather Review, 143(1), 341-362, https://doi.org/10.1175/Mwr-D-14-00246.1

Weisman, M. L. 1992: The Role of Convectively Generated Rear-Inflow Jets in the Evolution of Long-Lived Mesoconvective Systems. Journal of the Atmospheric Sciences, 49(19), 1826-1847, https://doi.org/10.1175/1520-0469(1992)049<1826:Trocgr>2.0.Co;2

Weisman, M. L. 1993: The Genesis of Severe, Long-Lived Bow Echoes. Journal of the Atmospheric Sciences, 50(4), 645-670, https://doi.org/10.1175/1520-0469(1993)050<0645:Tgosll>2.0.Co;2

Weisman, M. L. 2001: Bow echoes: A tribute to TT Fujita. Bulletin of the American Meteorological Society, 82(1), 97-116, https://doi.org/10.1175/1520-0477(2001)082<0097:BEATTT>2.3.CO;2

Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. Journal of the Atmospheric Sciences, 55(16), 2603-2622, https://doi.org/10.1175/1520-0469(1998)055<2603:Mftgom>2.0.Co;2

Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. Journal of the Atmospheric Sciences, 61(4), 361-382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2

Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Monthly Weather Review, 131(11), 2779-2803, https://doi.org/10.1175/1520-0493(2003)131<2779:Lmwsla>2.0.Co;2

Xie, J., and R. A. Scofield, 1989: Satellite-derived rainfall estimates and propagation characteristics associated with mesoscale convective systems (MCSs). https://repository.library.noaa.gov/view/noaa/19349

Yang, M. J., and R. A. Houze, 1995: Multicell Squall-Line Structure as a Manifestation of Vertically Trapped Gravity-Waves. Monthly Weather Review, 123(3), 641-661, https://doi.org/10.1175/1520-0493(1995)123<0641:Mslsaa>2.0.Co;2

Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Monthly Weather Review, 123(7), 1941-1963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2

Zhou, A., K. Zhao, W.-C. Lee, H. Huang, D. Hu, and P. Fu, 2020: VDRAS and Polarimetric Radar Investigation of a Bow Echo Formation After a Squall Line Merged With a Preline Convective Cell. Journal of Geophysical Research-Atmospheres, 125(7), https://doi.org/10.1029/2019JD031719
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97865-
dc.description.abstract本研究探討2022年6月29日於TAHOPE(Taiwan-Area Heavy Rain Observation and Prediction Experiment)第四次特別觀測期間(SOP4)所觀測到的一個準線性對流系統(QLCS)之演變與特徵。該系統在弱綜觀系統與垂直風切較弱的環境中發展,儘管如此,系統仍展現出短暫的弓形狀回波結構與地面風速增強的現象,這些特徵通常較常出現在強風切環境中。透過NCAR S-Pol都卜勒雙偏極化雷達資料、地面氣象站觀測以及SAMURAI雷達風場反演技術,本研究分析了該對流系統的結構演變、渦度生成與微物理過程。該對流系統逐漸發展為一條長度約90公里的QLCS,並形成短暫的弓形狀回波,其伴隨較強的降水與冷池現象。此弓形回波的生成可歸因於冷池所引發的水平浮力梯度,此梯度產生水平渦度,進而被低層上升氣流傾斜並拉伸為垂直渦度偶極結構。隨著系統分裂,對流系統向北移動並通過S-Pol雷達站上空,於新屋氣象站觀測到地面風速增強與風向轉變。由對流胞所伴隨的後到前(Rear to Front; RTF)氣流與下沉氣流,可能為導致此地面風速增強與風向變化的主因。根據地面氣壓差與對流系統前方由新屋風剖儀所提供的環境垂直風切資料計算顯示,此事件中的冷池強度大於環境垂直風切。依據Rotunno–Klemp–Weisman(RKW)理論,這種不平衡可以解釋系統隨後的減弱與消散現象。對流系統的移動主要受到新對流胞發展位置的控制,而新對流胞的生成除了受到海風輻合作用的影響外,亦與具有較高相當位溫(θₑ)(具有較大潛在不穩定度)的熱力條件有關。雙偏極化雷達分析(包括隨高度變化的頻率分布圖CFAD)顯示降水微物理特性隨對流強度及系統演變階段而變化,並觀測到RTF氣流通過低層時亦會影響其微物理過程。zh_TW
dc.description.abstractThis study investigates the evolution and characteristics of a quasi-linear convective system (QLCS) observed on 29 June 2022 during the TAHOPE (Taiwan-Area Heavy Rain Observation and Prediction Experiment) Special Observation Period 4. The system developed under weak synoptic forcing and low vertical wind shear. Despite this, it exhibited transient bow-shaped echo structures and enhanced surface winds, which are typically associated with stronger shear environments. Using dual-polarization Doppler radar data from the NCAR S-Pol radar, surface station observations, and wind retrieval techniques (SAMURAI), this study analyzed the convective system structural evolution, vorticity development, and microphysical processes.
This convective system evolved into a 90-km long QLCS featuring a short-lived bow-shaped echo with enhanced precipitation and cold pool. The formation of the bow-shaped echo was attributed to cold-pool-induced horizontal buoyancy gradients, which generated horizontal vorticity that was subsequently tilted and stretched by low-level updrafts to form vertical vorticity couplets. As the system split, the convective system moved northward, passing over the S-Pol radar site and producing intensified surface winds and directional shifts at the Xinwu station. The rear-to-front (RTF) flow with downdrafts from the convection, likely contributed to the observed surface wind strengthened and direction changed. Based on pressure differences derived from surface stations and ambient vertical wind shear derived from the Xinwu wind profiler ahead of the convective system, it showed that the cold pool was stronger than the ambient vertical wind shear. According to the Rotunno–Klemp–Weisman (RKW) theory, this imbalance can explain the subsequent weakening and dissipation of the convection. The movement of the convection was governed by the location of new convective cell development, which was influenced not only by sea-breeze convergence but also by thermodynamically favorable regions with higher θₑ (greater instability). Dual-polarization radar analysis, including Contoured Frequency by Altitude Diagrams (CFADs), revealed changes in precipitation microphysics associated with size sorting, evaporation, and stratiform bright band features. These microphysics varied from convective intensity and the stages of convection evolution, and were also associated with observed rear-to-front (RTF) flow passing through low-level layers, influencing microphysical processes along its path.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:12:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-18T16:12:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Oral Defense Approval Form………………………………………………………….. i
Acknowledgments……………………………………………………………………. ii
Abstract (in Chinese)……………………………………………………...…………. iii
Abstract (in English)…………………………………………………………………. iv
Tabel of Contents…………………………………………………………………….. vi
List of Tables……………………………………………………………………….. viii
List of Figures………………………………………………………………………... ix
Chapter 1 Introduction……………………………………………………………....... 1
Chapter 2 Data and Method ……………………………………………………........ 7
2.1 Surface Observations………………………………………………………. 7
2.2 Radar Observations and Wind Field Retrieval……………………………... 9
Chapter 3 Case Overview……………………………………………………………. 11
3.1 Synoptic condition…………………………………………………………. 11
3.2 Evolution of Convective System…………………………………………… 12
3.3 Surface Observations………………………………………………………. 13
Chapter 4 Bow-shaped echo…………………………………………………………. 15
4.1 Formation and Evolution…………………………………………………… 15
4.2 Mechanisms of Bow-shaped Echo…………………………………………. 17
Chapter 5 Movement of convection and strong surface wind……………………….. 22
5.1 Formation and Evolution…………………………………………………… 22
5.2 Rear-to-Front Flow and Bounded Weak Echo Region…………………........ 23
5.3 Surface Wind Intensification……………………………………………….. 25
5.4 System Dissipation…………………………………………………………. 26
Chapter 6 Dual-Polarization Parameter Analysis……………………………………. 31
6.1 Z_H-Z_DR Difference Space…………………………………………………. 31
6.2 RHI CFADs during Bow-shaped Echo……………………………………... 33
6.3 RHI CFADs in Stratiform Region…………………………………………... 35
6.4 RHI CFADs of Rear Inflow………………………………………………… 36
Chapter 7 Summary………………………………………………………………….. 38

Appendix.…………………………………………………………………….……... 42
Reference……………………………………………………………………………. 48
Tables……………………………………………………………………………....... 54
Figures………………………………………………………………………………. 56
-
dc.language.isoen-
dc.subjectRKW-theoryzh_TW
dc.subjectTAHOPEzh_TW
dc.subjectS-Polzh_TW
dc.subject弓形狀回波zh_TW
dc.subjectTAHOPEzh_TW
dc.subjectS-Polzh_TW
dc.subject弓形狀回波zh_TW
dc.subjectRKW-theoryzh_TW
dc.subjectBow-shaped echoen
dc.subjectRKW-theoryen
dc.subjectS-Polen
dc.subjectTAHOPEen
dc.subjectRKW-theoryen
dc.subjectBow-shaped echoen
dc.subjectS-Polen
dc.subjectTAHOPEen
dc.titleTAHOPE SOP4期間之準線性對流系統:都卜勒雷達分析下的對流特徵與演變zh_TW
dc.titleA Quasi-Linear Convective System during the TAHOPE SOP 4: Convection Characteristics and Evolution from Doppler Radar Data Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭鴻基;廖宇慶;劉清煌;宋偉國zh_TW
dc.contributor.oralexamcommitteeHung-Chi Kuo;Yu-Chieng Liou;Ching-Hwang Liu;Wei-Kuo Soongen
dc.subject.keywordTAHOPE,S-Pol,弓形狀回波,RKW-theory,zh_TW
dc.subject.keywordTAHOPE,S-Pol,Bow-shaped echo,RKW-theory,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202501681-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2025-07-19-
Appears in Collections:大氣科學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf10.56 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved