Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author趙宥霖zh_TW
dc.contributor.authorYu-Lin Chaoen
dc.date.accessioned2025-07-18T16:09:01Z-
dc.date.available2025-07-19-
dc.date.copyright2025-07-18-
dc.date.issued2025-
dc.date.submitted2025-07-09-
dc.identifier.citation[1] Y. -L. Chao, C. -J. Tsai, Y. -R. Huang, W. -C. Liu, S. -H. Ma and C. -J. Chen, "A 4-MHz Ultra-Fast Transient Response Capacitor Current Adaptive On-Time (CCAOT) Controlled Buck Converter with Passive Ramp Compensation," IEEE Transactions on Industry Applications, vol. 60, no. 2, pp. 3397-3410, March-April 2024.
[2] S. -H. Pan, C. -J. Chen and C. -J. Tsai, "A Novel Capacitor Current Constant on-Time Controlled Buck Converter at 4-MHz Switching Frequency," in Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6008-6013.
[3] Y. -L. Chao, C. -J. Tsai, Y. -M. Chen and C. -J. Chen, "A Ramp Integrating Capacitor Current Constant On-time (RICCCOT) Controlled Buck Converter with High Noise Immunity in DCM," in Proc. 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2024, pp. 2144-2147.
[4] R. Redl and J. Sun, "Ripple-Based Control of Switching Regulators—An Overview," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009
[5] S. -J. Cheng, C. -J. Tsai, S. -Y. Wang, W. -Y. Liu and C. -P. Chen, "A Ripple-Based Constant On-Time Controlled DC-DC Buck Converter with Inductor Current Sensing Technique," in Proc. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023, pp. 1-5.
[6] C. -J. Chen, D. Chen, C. -W. Tseng, C. -T. Tseng, Y. -W. Chang and K. Wang, "A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors," in Proc. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 2011, pp. 1488-1493.
[7] Y. -C. Lin, C. -J. Chen, D. Chen and B. Wang, "A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters," IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[8] D. Goder and W. R. Pelletier, “V2 architecture provides ultra-fast transient response in switch mode power supplies”, in Proc. HFPC, 1996, pp.19-23.
[9] J. Li and F. C. Lee, "Modeling of V2 Current-Mode Control," in Proc. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 2009, pp. 298-304.
[10] W. Huang, "A new control for multi-phase buck converter with fast transient response," in Proc. APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), Anaheim, CA, USA, 2001, pp. 273-279 vol.1.
[11] Y. Yan, F. C. Lee, P. Mattavelli and S. Tian, "Small Signal Analysis of V2 Control Using Equivalent Circuit Model of Current Mode Controls," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5344-5353, July 2016.
[12] K. -Y. Cheng, F. Yu, Y. Yan, F. C. Lee, P. Mattavelli and W. Wu, "Analysis of multi-phase hybrid ripple-based adaptive on-time control for voltage regulator modules," in Proc. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2012, pp. 1088-1095.
[13] Y. -R. Huang and C. -J. Chen, "A Novel Describing Function Small-Signal Modeling Approach for Passive Ripple Constant On-Time Controlled Converter With Exponentially Varying Slope," IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 8425-8435, July 2024.
[14] Y. Yan, F. C. Lee, S. Tian and P. -H. Liu, "Modeling and Design Optimization of Capacitor Current Ramp Compensated Constant On-Time V2 Control," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7288-7296, Aug. 2018.
[15] W. -C. Liu, C. -H. Cheng, C. C. Mi and P. P. Mercier, "A Novel Ultrafast Transient Constant on-Time Buck Converter for Multiphase Operation," IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 13096-13106, Nov. 2021.
[16] S. Bari, Q. Li and F. C. Lee, "High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control," in Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6000-6007.
[17] S. Bari, Q. Li and F. C. Lee, "Inverse Charge Constant On-Time Control With Ultrafast Transient Performance," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 68-78, Feb. 2021.
[18] C. -J. Tsai, I. -F. Lo, T. -H. Lin and C. -J. Chen, "An One-Cycle Load Transient Response and 0.81 mV/A Load-Regulation Time-Domain Cascaded-VCO-Controlled Buck Converter for Powering Gaming SoC," in Proc. 2022 IEEE Asian Solid-State Circuits Conference (A-SSCC), Taipei, Taiwan, 2022, pp. 1-3.
[19] J. Li, “Current-mode control: Modeling and its digital application,” Ph.D. dissertation, Virginia Polytechnic Institute and State Univ., Blacksburg, VA, USA, Apr. 2009. [Online]. Available: https://vtechworks.lib.vt.edu/handle/10919/27019
[20] J. Li and F. C. Lee, "New Modeling Approach and Equivalent Circuit Representation for Current-Mode Control," IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1218-1230, May 2010.
[21] Cheung Fai Lee and P. K. T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[22] Y. -C. Hsu, D. Chen, S. -F. Hsiao, H. -Y. Cheng and C. -S. Huang, "Modeling of the Control Behavior of Current-Mode Constant On-Time Boost Converters," IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4919-4927, Nov.-Dec. 2016.
[23] P. -H. Liu, F. C. Lee and Q. Li, "Modeling and autotuning of AVP control with inductor DCR current sensing," in Proc. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA, 2014, pp. 1066-1072
[24] S. -H. Pan, C. -J. Chen and C. -J. Tsai, "A Novel Capacitor Current Constant on-Time Controlled Buck Converter at 4-MHz Switching Frequency," in Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6008-6013.
[25] Y. -C. Li, C. -J. Chen and C. -J. Tsai, "A Constant On-Time Buck Converter With Analog Time-Optimized On-Time Control," IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3754-3765, April 2020.
[26] W. -C. Liu, C. -J. Chen, C. -H. Cheng and H. -J. Chen, "A Novel Accurate Adaptive Constant On-Time Buck Converter for a Wide-Range Operation," IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3729-3739, April 2020.
[27] Y. -W. Huang, T. -H. Kuo, S. -Y. Huang and K. -Y. Fang, "A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.
[28] Y. -W. Huang and T. -H. Kuo, "Fixed-Switching-Frequency Background Capacitor-Current-Sensor Calibration for DC–DC Converters," IEEE Journal of Solid-State Circuits, vol. 57, no. 5, pp. 1504-1516, May 2022.
[29] P. -J. Liu, W. -Y. Cheng, L. -H. Chien and J. -Y. Lin, "A Fast Transient Current-Mode Buck Converter With Linear Regulation Mode," IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3513-3522, March 2023.
[30] K. Wei and D. B. Ma, "A 10-MHz DAB Hysteretic Control Switching Power Converter for 5G IoT Power Delivery," IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2113-2122, July 2021.
[31] C. -J. Tsai, H. -H. Chen and C. -J. Chen, "A 2 μ A Iq Passive-Ramp-Adaptive-Extended-TON Controlled Buck Converter Leveraging Clamped Adaptive Biased Error Amplifier to Achieve DVS/Load Transient One-Cycle Recovery Time," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 11, pp. 4924-4936, Nov. 2024.
[32] Y. Yan, F. C. Lee, P. Mattavelli and S. Tian, "Small Signal Analysis of V2 Control Using Equivalent Circuit Model of Current Mode Controls," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5344-5353, July 2016.
[33] S. Tian, F. C. Lee, Q. Li and Y. Yan, "Unified equivalent circuit model of V2 control," in Proc. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA, 2014, pp. 1016-1023.
[34] C. -Y. Wu, C. -J. Tsai, C. -J. Chen, C. -C. Tu, S. -T. Wang and Y. -H. Wen, "A 200 nA Quiescent Current N-FinFET Power Stage Buck Converter with Passive Ramp On-Off-Time Control in 12 nm FinFET," in Proc. 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), HsinChu, Taiwan, 2023, pp. 1-4.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97846-
dc.description.abstract在邊緣AI運算與可攜式裝置對低功耗與快速暫態響應需求日益提升的趨勢下,直流-直流降壓轉換器的控制架構面臨穩定性與響應速度之間的權衡挑戰。傳統以電容電流為感測基礎的控制雖具備優異的暫態響應能力,卻易受感測電路不匹配影響,導致系統穩定性降低。為解決上述問題,本論文提出兩種以電容電流感測為基礎之改良型定導通時間(Constant On-Time, COT)控制架構,兼顧高速暫態響應與系統穩定性。首先,本論文針對電容電流定導通時間(Capacitor Current Constant On-Time, CCCOT)控制在感測不匹配條件下的穩定性挑戰,提出加入被動斜率補償之改良架構。該設計在僅略微犧牲負載暫態響應的情況下,實現感測器與輸出電容阻抗誤差容忍度達 ±40%。本控制器採用台積電 0.18 μm CMOS 製程實現,晶片面積為 1189 μm × 1199 μm。量測結果顯示,在輸出電壓為 1.1 V、負載電流變化量 1 A、電流變化斜率為 1 A/500 ns 的情況下,電壓下跌僅 42 mV,回復時間為 1 μs,具備優異的暫態性能。進一步地,為解決 CCCOT 架構需以暫態響應犧牲換取穩定性,以及難以穩定操作於不連續導通模式(DCM)之限制,本論文提出雙電容電流積分斜坡定導通時間(Double Capacitor Current Ramp Integrating COT, DCCRICOT)控制架構。該架構透過兩路電容電流感測路徑與積分斜坡調變訊號,不僅保留快速暫態響應特性,亦大幅提升系統穩定性與雜訊容忍度。DCCRICOT 架構可穩定操作於連續與不連續導通模式(CCM/DCM),並在 10 mA–1.1 A 負載範圍內展現穩健性能。此晶片亦以台積電 0.18 μm CMOS 製程實現,晶片面積為 1289 μm × 1199 μm,並導入改良的負載電流變化產生器,可實現 1.1 A/70 ns 的負載電流斜率。實測結果顯示,在負載步階為 1.1 A、電流斜率為 1.1 A/70 ns 的條件下,輸出電壓下跌為 62 mV(偏離理想比率僅 1.9%),回復時間為 1.6 μs,且系統無不穩定現象,驗證所提架構具備高速與高穩定度之優勢。zh_TW
dc.description.abstractWith the growing demand for low power consumption and fast transient response in edge AI and portable devices, the control architecture of DC-DC buck converters faces increasing challenges in balancing stability and response speed. Traditional control schemes based on capacitor current sensing offer excellent transient response, but are highly susceptible to sensing mismatch, which compromises system stability. To address this issue, this dissertation proposes two improved constant on-time (COT) control architectures based on capacitor current sensing that jointly enhance both transient speed and stability. First, this work introduces a passive ramp-compensated architecture to improve the stability of the capacitor current constant on-time (CCCOT) control scheme under sensing mismatch. The proposed design achieves tolerance to sensor and capacitor impedance deviations up to ±40%, with only a minor compromise in transient response. Fabricated using TSMC 0.18 μm CMOS technology, the chip occupies an area of 1189 μm × 1199 μm. Measurement results show that under 1.1 V output voltage, a 1 A load step, and a load current slew rate of 1 A/500 ns, the output voltage undershoot is only 42 mV, with a recovery time of 1 μs—demonstrating excellent transient performance. To further resolve the trade-off between transient response and stability and overcome CCCOT’s inability to operate reliably in discontinuous conduction mode (DCM), this dissertation proposes a novel control scheme: Double Capacitor Current Ramp Integrating COT (DCCRICOT). By employing two separate capacitor current sensing paths and an integrated ramp modulation signal, this architecture retains the fast response benefits of CCCOT while significantly improving system stability and noise immunity. The DCCRICOT control scheme supports robust operation in both continuous (CCM) and discontinuous (DCM) conduction modes and demonstrates stable performance across a wide load range from 10 mA to 1.1 A. The chip, also implemented in TSMC 0.18 μm CMOS, occupies 1289 μm × 1199 μm and features an enhanced load current step generator capable of generating a slew rate up to 1.1 A/70 ns. Experimental results show that under a 1.1 A load step with a 1.1 A/70 ns slew rate, the output voltage dip is only 62 mV (with a deviation-from-ideal rate of just 1.9%) and the recovery time is 1.6 μs. No instability was observed, validating the proposed design’s superior speed and stability.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:09:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-18T16:09:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試審定書 I
致謝 II
摘要 IV
Abstract VI
Table of Contents VIII
List of Figures X
List of Tables XIV
Chapter 1. Introduction 1
1.1 Research Background 1
1.2 Motivation and Objectives 2
1.3 Contribution of This Work 3
1.4 Organization 4
Chapter 2. Literature Review and Fundamentals of Control Architectures 5
2.1 Overview of Constant On-Time (COT) Control Architecture 5
2.2 Review of Ripple-based Control 8
2.3 Current Mode COT and Capacitor Current Sensing 11
2.4 Classification of Control Strategies Investigated in This Work 16
Chapter 3. CCCOT and Stability Improvement Techniques 18
3.1 Control Principles and Modulation Mechanism of CCCOT 18
3.2 Analysis of In-phase Ramp Compensation 22
3.2.1 Adding Inductor Current Ramp for Stability 22
3.2.2 Equivalent Circuit Model of CCCOT 24
3.2.3 Adding a Passive Ramp for Stability 28
3.3 Proposed CCCOT with Passive Ramp Compensation 31
3.4 Chip Measurement Results 34
3.5 Summary and Limitation Discussion 38
Chapter 4. Development of the Proposed DCCRICOT Control Architecture 41
4.1 Motivation and System-Level Overview 41
4.2 Comparative Small-Signal Analysis of CMCOT and IQCOT 44
4.3 Comparative Small-Signal Analysis of CCCOT and CC-IQCOT 48
4.4 Ramp-Integrating COT Overview 54
4.5 Architecture and Circuit Implementation of DCCRICOT 58
4.5.1 Architecture of DCCRICOT 58
4.5.2 Circuit Implementation of Non-invasive Capacitor Current Sensor 61
4.5.3 Circuit Implementation of Integrating Ramp Generator 64
4.6 DCCRICOT Chip Photo and Measurement Environment 66
4.7 Measurement Results and Evaluation of Transient Performance Metrics (FOM, DFI) 68
Chapter 5. Conclusion and Future Work 79
5.1 Summary of Research Outcomes 79
5.2 Future Research Directions 81
Reference 84
Vita 92
-
dc.language.isoen-
dc.subject定導通時間控制zh_TW
dc.subject漣波控制zh_TW
dc.subject電壓調節模組zh_TW
dc.subject電容電流zh_TW
dc.subject積分斜坡zh_TW
dc.subject負載暫態響應zh_TW
dc.subject非連續導通模式zh_TW
dc.subject漣波控制zh_TW
dc.subject電壓調節模組zh_TW
dc.subject電容電流zh_TW
dc.subject定導通時間控制zh_TW
dc.subject積分斜坡zh_TW
dc.subject負載暫態響應zh_TW
dc.subject非連續導通模式zh_TW
dc.subjectramp integratingen
dc.subjectcapacitor currenten
dc.subjectconstant on-time (COT) controlen
dc.subjectload transient responseen
dc.subjectRipple-based controlen
dc.subjectvoltage regulator module (VRM)en
dc.subjectcapacitor currenten
dc.subjectconstant on-time (COT) controlen
dc.subjectdiscontinuous conduction mode (DCM)en
dc.subjectramp integratingen
dc.subjectload transient responseen
dc.subjectdiscontinuous conduction mode (DCM)en
dc.subjectRipple-based controlen
dc.subjectvoltage regulator module (VRM)en
dc.title具快速負載暫態響應之電容電流定導通時間控制降壓轉換器zh_TW
dc.titleCapacitor Current Constant On-time Controlled Buck Converter with Fast Load Transient Responseen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳耀銘;陳信樹;黃育賢;劉宇晨;黃顗融zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Hsin-Shu Chen;Yuh-Shyan Hwang;Yu-Chen Liu;Yi-Rong Huangen
dc.subject.keyword漣波控制,電壓調節模組,電容電流,定導通時間控制,積分斜坡,負載暫態響應,非連續導通模式,zh_TW
dc.subject.keywordRipple-based control,voltage regulator module (VRM),capacitor current,constant on-time (COT) control,ramp integrating,load transient response,discontinuous conduction mode (DCM),en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202501674-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2030-07-09-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-09
5.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved