請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝明慧 | zh_TW |
| dc.contributor.advisor | Ming-Huei Hsieh | en |
| dc.contributor.author | 林承佑 | zh_TW |
| dc.contributor.author | Jammy Cheng-Yu Lin | en |
| dc.date.accessioned | 2025-07-18T16:08:18Z | - |
| dc.date.available | 2025-07-19 | - |
| dc.date.copyright | 2025-07-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-14 | - |
| dc.identifier.citation | Hammer, M., & Champy, J. (1993). Reengineering the Corporation: A Manifesto for Business Revolution. HarperBusiness.
Hammer, M. (2007). The Process Audit. Harvard Business Review, 85(4). 111-123. Davenport, T. H. (1993). Process Innovation: Reengineering Work Through Information Technology. Harvard Business School Press. Smith, H., & Fingar, P. (2003). Business Process Management (BPM).: The Third Wave. Meghan-Kiffer Press. Wil van der Aalst, W. M. P., W. M. P. (2004). Process mining: a research agenda. Computer Performance Evaluation. 36(2-3).. 71-93. Womack, J. P., & Jones, D. T. (1996). .Lean Thinking: Banish Waste and Create Wealth in Your Corporation. Simon & Schuster. Harry, M., & Schroeder, R. (2000). Six Sigma: The breakthrough management strategy revolutionizing the world's top corporations. New York: Doubleday. United States Department of Defense. (1989). Total quality management: A guide to implementation (DoD 5000. 51-G). National Technical Information Service. Wil van der Aalst, W. M. P. (2016). Process Mining: Data Science in Action. Springer. Agile Manifesto (2001). Manifesto for agile software development. https://agilemanifesto.org/iso/zhcht/manifesto. html. Kirchmer, M. (2017). High Performance Through Business Process Management: Strategy Execution in a Digital World. Springer. Davenport (2025).:進入流程改善2. 0版,你準備好了嗎?,哈佛商業評論221期. Davenport, T. H., & Ronanki, R. (2018). "Artificial Intelligence for the Real World. "Harvard Business Review, 96(1). 108-116. Davenport, T. H., & Kirby, J. (2022). The Rise of Intelligent Automation in Business Processes. Harvard Business Review, 100(4). 87-95. Chen, J., & Wang, H. (2022). Machine Learning Applications in Business Process Optimization. International Journal of Information Management, 60, 102-115. Liu, Y., Li, X., & Zhang, Z. (2023). Natural Language Processing in Business Intelligence: Trends and Challenges. Journal of Business Analytics, 15(2). 89-105. Brown, T., & Yuan, X. (2023). Generative AI: Transforming Creative Industries. AI Magazine, 44(1). 55-68. Zhang, M., & Zhao, L. (2021). Computer Vision in Quality Control: A Review. Journal of Manufacturing Systems, 58, 334-349. Jha, N., & Gupta, P. (2023). Generative AI for marketing: A review, research agenda and industry use cases. Journal of Business Research, 163, 113947. Verma, S., Sharma, R. R., Deb, S., & Bedi, P. (2021). Artificial intelligence-based demand forecasting for inventory management: A review and framework. Production Planning & Control, 32(16). 1339-1358. Remme, M., Wybrow, M., Vo, A., & soundtrack, A. P. (2022). Procedural Generation of Material Microstructures with Diffusion Models. arXiv preprint arXiv:2212. 04488. Ullah, F., Sepasgozar, S. M. E., & de Vries, B. (2020). Generative design and optimisation in architecture and construction: A state-of-the-art review. Architectural Engineering and Design Management, 16(6). 425-446. Choi, T. Y., & Chiu, C. H. (2024). Generative artificial intelligence in supply chain management: potentials and research directions. Annals of Operations Research, 1-28. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: extending the supply chain resilience angles towards supply network robustness and adaptive recovery. Annals of Operations Research, 283(1). 307-335. Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4. 0 scenarios: A literature review. Dortmund Germany:Technische Universität Dortmund, Tech Rep, 78(1). 441-448. Li, X., Peng, K., Zeng, Z., & Qiao, F. (2021). An intelligent fault diagnosis method for rotating machinery based on improved variational mode decomposition and optimized convolutional neural network. Measurement, 176, 109167. Park, J., Park, J. H., & Ham, Y. S. (2023). Synthetic Defect Image Generation for Industrial Visual Inspection Using Style-and Shape-Aware GAN. Sensors, 23(8). 4117. Tao, F., Cheng, J., Qi, Q., Zhang, M., & Zhang, H. (2021). Digital twin-driven smart manufacturing. Wiley Handbook of Smart Manufacturing, 185-211. Wang, L., Wang, G. G., & Gao, L. (2022). Deep reinforcement learning for flexible job shop scheduling with dispatching and sequencing optimization. IEEE Transactions on Cybernetics, 53(1). 458-471. Chatterjee, R., Ghosh, S. K., & Bandyopadhyay, S. (2023). Adoption of artificial intelligence in customer service: a study of Indian consumers. Journal of Services Marketing, 37(7). 1003-1018. Dwivedi, Y. K., Hughes, L., Ismagilova, E. Y., Rialp, J., Koay, K. Y., &рым Kарабах, Е. (2021).Artificial intelligence (AI).: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 102252. Huang, M. H., & Rust, R. T. (2021). Artificial intelligence in customer service: Transforming the role of frontline employees. Marketing Science, 40(6). 1099–1117. Smith, A. (2021). The critical role of data quality in AI-based process optimization. Journal of Information Technology, 36(3). 250-265. Jones, P., & Brown, S. (2022).. Data preparation strategies for successful AI implementation in process management. Data Science and Management, 1(1). 10-25. Li, W. (2020). The talent bottleneck: Overcoming skill shortages in AI-driven process optimization. AI & Society, 35(4). 901-915. Chen, L., Wang, Y., Zhang, X., & Li, H. (2023). Bridging the AI skills gap: Investing in employee training for effective process optimization. Journal of Business Analytics, 6(2). 150-168. Garcia, R. (2019). Evaluating the total cost of ownership in AI investments for business process automation. International Journal of Information Management, 49, 230-245. Williams, K., & Davis, M. (2024). A phased approach to AI adoption: Mitigating risk and maximizing ROI in process management. Strategic Management Journal, 45(1). 75-92. Anderson, K. (2021). Selecting appropriate AI tools for process optimization: A complexity-based approach. Journal of Business Process Management, 27(5). 1200-1218. Martinez, L., & Wilson, R. (2022). Human-centered AI in process automation: Ensuring reliability and robustness. Human-Computer Interaction, 37(2). 250-268. Taylor, G. (2020). Organizational culture and AI adoption: Fostering innovation for successful implementation. Academy of Management Perspectives, 34(4). 480-495. Young, S., & Patel, N. (2023). Change management and employee communication in AI-driven process transformation. Journal of Organizational Change Management, 36(1). 80-98. Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or Not, AI Comes- An Interview Study of Organizational AI Readiness Factors. Business & Information Systems Engineering, 63(1). 5–20. DAMA International. (2017). DAMA-DMBOK: Data Management Body of Knowledge (2nd ed.). . Technics Publications. Vial, G. (2021). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2). 118-144. Burnes, B. (2020). The origins of Lewin’s three-step model of change. The Journal of Applied Behavioral Science, 56(1). 32-59. Schrage, M., & Schwartz, J. (2022). The future of teamwork: The co-creation imperative. Harvard Business Review, 100(1). 42-49. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97842 | - |
| dc.description.abstract | 本研究旨在探討企業於推動流程優化過程中,成功的關鍵因素為何,人工智慧(AI)能力是否能有效助力流程績效提升,以及不同流程角色對於成熟度與實際效益之影響。研究架構延伸自Hammer(2007)所提出之PEMM模型,並建構AI-PEMM架構,結合問卷資料與訪談質性分析,針對I公司六大流程進行評估。
本研究嘗試以五個流程資料進行初步分析,建構出『效益 = 50.11 × 成熟度 − 177.51』模型,結果顯示成熟度與流程效益之間呈現正向關係,但因樣本數有限,尚待更多資料驗證其穩健性。質性探討歸納出企業流程優化成功的「3+1」關鍵要素,分別為AI治理、流程負責人、流程標準化,以及需審慎關注的AI接受度;其中「AI整合、AI治理與AI轉型領導力」三者構成驅動高效績效之「黃金三角」。 角色觀點分析顯示,流程設計者在流程優化中扮演關鍵推進者,其價值不僅在於熟稔細節、具備跨部門協作歷練,更關鍵在於能夠橋接部門間認知落差、主動發掘改善機會,並具備推動數位與AI專案之能力。唯有設計者能跳脫既有流程框架,從技術整合與資訊流重塑的角度切入,方能促成流程實質變革。另一方面,流程負責人需具備整合視野與決策引導能力,其top-down行動不僅能破除組織穀倉,更是促進團隊共識與資源集中之驅動點。訪談詞頻分析亦指出,流程負責人對負向詞彙出現頻率高於正向,反映其對基礎治理與橫向協作之敏感度與高標準。 本研究提出AI-PEMM模型,實務上則歸納「強化溝通、治理優先、角色激勵、效益追蹤」之AI導入流程優化四步驟,並強調資料治理與欄位標準化為推動AI應用落地的基礎工程。綜合量化與質性觀察,提供企業導入AI與推進流程優化之策略方針。 | zh_TW |
| dc.description.abstract | This research investigates the key success factors influencing enterprise process optimization, the extent to which artificial intelligence (AI) capabilities contribute to performance enhancement, and the varying impacts of different process roles on maturity and actual outcomes. Building upon Hammer’s (2007) Process and Enterprise Maturity Model (PEMM), this study proposes an extended AI-PEMM framework, integrating structured survey data with in-depth qualitative interviews to assess six core processes within a case organization (Company I).
A preliminary empirical model—Benefit = 50.11 × Maturity − 177.51—suggests a positive correlation between process maturity and optimization benefits. However, given the limited sample size, this result remains indicative and requires further validation. On the qualitative side, the analysis identifies a “3+1” critical success structure comprising AI governance, process ownership, process standardization, and the closely linked but potentially constraining factor of AI acceptance. Among them, AI integration, AI governance, and AI transformation leadership are conceptualized as the “Golden Triangle” driving high-impact performance outcomes. Role-based analysis reveals that process designers play a pivotal role as transformation agents. Their impact is not limited to operational familiarity or cross-functional experience, but more critically, in their ability to reconcile interdepartmental perspectives, proactively identify improvement opportunities, and lead digital and AI-enabled initiatives. The capability to transcend legacy constraints and reframe processes through system integration and information flow redesign is essential to realizing tangible transformation. In parallel, process owners must exhibit strategic vision and decisive top-down leadership to dismantle organizational silos, consolidate team consensus, and align internal resources. Interview-based text analysis further shows that process owners frequently express concerns using negative sentiment, reflecting a high sensitivity to governance, risk, and horizontal coordination challenges. Practically, this study presents the AI-PEMM framework and proposes a four-phase roadmap for AI-driven process optimization: (1) strengthening internal communication, (2) prioritizing governance, (3) activating and aligning roles, and (4) systematically tracking optimization benefits. Furthermore, it emphasizes that data governance and field-level standardization constitute the essential foundation for AI deployment. Synthesizing both quantitative indicators and qualitative insights, this research contributes actionable recommendations for enterprises aiming to scale AI adoption and enhance process performance in a structured and sustainable manner. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:08:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-18T16:08:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 II 中文摘要 III 英文摘要 IV 目 次 VI 圖 次 VII 表 次 VIII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究問題與目的 3 第二章 文獻探討 4 第一節 企業流程優化相關文獻 4 第二節 AI 輔助流程優化相關文獻 8 第三章 研究架構與方法 14 第一節 研究設計 14 第二節 研究架構 16 第三節 研究範疇與限制 25 第四章 分析結果 26 第一節 成熟度與財務績效(Y)關聯性 26 第二節 影響績效的關鍵因子 31 第三節 角色對於成熟度與績效間的關係 34 第四節 流程負責人訪談分析 41 第五章 結論與貢獻 51 第一節 研究發現 51 第二節 研究貢獻 54 第三節 研究限制與未來研究方向 59 第四節 結論與建議 64 參考文獻 66 附錄 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | AI-PEMM | zh_TW |
| dc.subject | AI導入流程優化步驟 | zh_TW |
| dc.subject | 詞頻分析 | zh_TW |
| dc.subject | 關鍵成功因素 | zh_TW |
| dc.subject | 企業流程優化 | zh_TW |
| dc.subject | AI-PEMM | zh_TW |
| dc.subject | 流程角色差異 | zh_TW |
| dc.subject | 詞頻分析 | zh_TW |
| dc.subject | 關鍵成功因素 | zh_TW |
| dc.subject | AI導入流程優化步驟 | zh_TW |
| dc.subject | 流程角色差異 | zh_TW |
| dc.subject | 企業流程優化 | zh_TW |
| dc.subject | Business Process Optimization | en |
| dc.subject | Word Frequency Analysis | en |
| dc.subject | Critical Success Factors (CSFs) | en |
| dc.subject | AI-Driven Process Transformation Steps | en |
| dc.subject | Role-Based Maturity Perspective | en |
| dc.subject | AI-PEMM | en |
| dc.subject | Business Process Optimization | en |
| dc.subject | Word Frequency Analysis | en |
| dc.subject | Critical Success Factors (CSFs) | en |
| dc.subject | AI-Driven Process Transformation Steps | en |
| dc.subject | Role-Based Maturity Perspective | en |
| dc.subject | AI-PEMM | en |
| dc.title | 企業流程優化的關鍵成功因素-以I公司為例 | zh_TW |
| dc.title | Critical Success Factors in Business Process Optimization: A Case Study of Company I | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林永松 | zh_TW |
| dc.contributor.coadvisor | Yeong-Sung Lin | en |
| dc.contributor.oralexamcommittee | 陸洛;余峻瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Luo Lu;Jiun-Yu Yu | en |
| dc.subject.keyword | 企業流程優化,AI-PEMM,流程角色差異,AI導入流程優化步驟,關鍵成功因素,詞頻分析, | zh_TW |
| dc.subject.keyword | Business Process Optimization,AI-PEMM,Role-Based Maturity Perspective,AI-Driven Process Transformation Steps,Critical Success Factors (CSFs),Word Frequency Analysis, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202501730 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 碩士在職專班資訊管理組 | - |
| dc.date.embargo-lift | 2025-07-19 | - |
| 顯示於系所單位: | 資訊管理組 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
