請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97833完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康 | zh_TW |
| dc.contributor.advisor | Chen-Kang Huang | en |
| dc.contributor.author | 王敬憲 | zh_TW |
| dc.contributor.author | Jing-Xian Wang | en |
| dc.date.accessioned | 2025-07-18T16:06:41Z | - |
| dc.date.available | 2025-07-19 | - |
| dc.date.copyright | 2025-07-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | Alvariño, P. F., M. L. S. Simón, M. dos Santos Guzella, J. M. A. Paz, J. M. S. Jabardo and L. C. Gómez. 2019. Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces. International Journal of Heat and Mass Transfer. 139: 269-279.
Arya, M., S. Khandekar, D. Pratap and S. A. Ramakrishna. 2016. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions. Heat and Mass Transfer. 52: 1725-1737. Bar-Cohen, A. and T. W. Simon. 1988. Wall superheat excursions in the boiling incipience of dielectric fluids. Heat Transfer Engineering. 9(3): 19-31. Benjamin, R. and A. Balakrishnan. 1996. Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. International Journal of Heat and Mass Transfer. 39(12): 2495-2504. Bourdon, B., R. Rioboo, M. Marengo, E. Gosselin and J. De Coninck. 2012. Influence of the wettability on the boiling onset. Langmuir. 28(2): 1618-1624. Carey, V. P. 2020. Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. CRC Press. Dhir, V. and S. Liaw. 1989. Framework for a unified model for nucleate and transition pool boiling. ASME Journal of Heat and Mass Transfer. 111(3): 739-746. El-Genk, M. S. and J. L. Parker. 2005. Enhanced boiling of HFE-7100 dielectric liquid on porous graphite. Energy Conversion and Management. 46(15-16): 2455-2481. Fan, X., S. Gu, J. Lei, G. Luo, F. Meng, L. Wu and S. Gu. 2022. Experimental and Analytical Study on the Influence of Saturation Pressure and Surface Roughness on Pool Boiling CHF of HFE‐7100. International Journal of Chemical Engineering. 2022(1): 4875208. Farber, E. and R. Scorah. 1951. Heat transfer to water boiling under pressure. Journal of Fluids Engineering. 70(4): 369-380. Ferng, Y. and Y. Tseng. 2023. Investigating effects of heating orientations on boiling heat transfer and bubble dynamics for pool boiling on downward facing heating surface. Nuclear Engineering and Design. 406: 112230. Ghazvini, M., M. Hafez, C. Pena, P. Mandin, R. Inguanta and M. Kim. 2024. Dual-tracer laser-induced fluorescence thermometry for understanding bubble growth during nucleate boiling on oriented surfaces. International Journal of Heat and Mass Transfer. 227: 125517. Han, C.-Y. and P. Griffith. 1965. The mechanism of heat transfer in nucleate pool boiling—Part I: Bubble initiaton, growth and departure. International Journal of Heat and Mass Transfer. 8(6): 887-904. Huang, C.-K., C.-W. Lee and C.-K. Wang. 2011. Boiling enhancement by TiO2 nanoparticle deposition. International Journal of Heat and Mass Transfer. 54(23-24): 4895-4903. Incropera, F. P., D. P. DeWitt, T. L. Bergman and A. S. Lavine. 1996. Fundamentals of heat and mass transfer Vol. 6. Wiley New York. Jo, H. S., J.-G. Lee, S. An, T. G. Kim, S. C. James, J. Choi and S. S. Yoon. 2017. Supersonically sprayed, triangular copper lines for pool boiling enhancement. International Journal of Heat and Mass Transfer. 113: 210-216. Kandlikar, S. G. 2001. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. ASME Journal of Heat and Mass Transfer. 123(6): 1071-1079. Khooshehchin, M., S. Fathi, A. Mohammadidoust, F. Salimi and S. Ovaysi. 2022. Experimental study of the effects of horizontal and vertical roughnesses of heater surface on bubble dynamic and heat transfer coefficient in pool boiling. Heat and Mass Transfer. 58(8): 1319-1338. Kocamustafaogullari, G. and M. Ishii. 1983. Interfacial area and nucleation site density in boiling systems. International Journal of Heat and Mass Transfer. 26(9): 1377-1387. Kwark, S. M., M. Amaya, R. Kumar, G. Moreno and S. M. You. 2010. Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. International Journal of Heat and Mass Transfer. 53(23-24): 5199-5208. Kwark, S. M., G. Moreno, R. Kumar, H. Moon and S. M. You. 2010. Nanocoating characterization in pool boiling heat transfer of pure water. International Journal of Heat and Mass Transfer. 53(21-22): 4579-4587. Liang, G. and I. Mudawar. 2019. Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer. 128: 892-933. Linehard, J. and V. K. Dhir. 1973. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes NASA-CR-2270). NASA. Lu, K., X. Wei, F. Xue and M. Liu. 2021. Semiconductor nanotubes enhance boiling heat transfer. International Journal of Heat and Mass Transfer. 164: 120597. Ma, X., M. He, C. Han and J. Xu. 2024. Boiling heat transfer enhancement by a pair of elastic plates. International Journal of Heat and Mass Transfer. 227: 125580. Manetti, L. L., A. S. O. H. Moita, R. R. de Souza and E. M. Cardoso. 2020. Effect of copper foam thickness on pool boiling heat transfer of HFE-7100. International Journal of Heat and Mass Transfer. 152: 119547. Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science. 1(1): 3-17. Moita, A., E. Teodori and A. Moreira. 2015. Influence of surface topography in the boiling mechanisms. International Journal of Heat and Fluid Flow. 52: 50-63. Morgan, A., L. Bromley and C. Wilke. 1949. Effect of surface tension on heat transfer in boiling. Industrial & Engineering Chemistry. 41(12): 2767-2769. Nukiyama, S. 1966. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer. 9(12): 1419-1433. Pastuszko, R. 2010. Pool boiling on micro-fin array with wire mesh structures. International Journal of Thermal Sciences. 49(12): 2289-2298. Reed, S. and I. Mudawar. 1999. Elimination of boiling incipience temperature drop in highly wetting fluids using spherical contact with a flat surface. International Journal of Heat and Mass Transfer. 42(13): 2439-2454. Rohsenow, W. M. 1952. A method of correlating heat-transfer data for surface boiling of liquids. Transactions of the American Society of Mechanical Engineers. 74(6): 969-975. Scriven, L. 1995. On the dynamics of phase growth. Chemical Engineering Science. 50(24): 3907-3917. Shil, B., D. Sen, A. K. Das, P. Sen and S. Kalita. 2024. Pool boiling performance enhancement of micro/nanoporous coated surfaces fabricated through novel hybrid method. Heat and Mass Transfer. 60(1): 47-66. Sun, K.-H. and J. H. Lienhard. 1970. The peak pool boiling heat flux on horizontal cylinders. International Journal of Heat and Mass Transfer. 13(9): 1425-1439. Sur, A., Y. Lu, C. Pascente, P. Ruchhoeft and D. Liu. 2018. Pool boiling heat transfer enhancement with electrowetting. International Journal of Heat and Mass Transfer. 120: 202-217. Theofanous, T., T.-N. Dinh, J. Tu and A. Dinh. 2002. The boiling crisis phenomenon: Part II: dryout dynamics and burnout. Experimental Thermal and Fluid Science. 26(6-7): 793-810. Thiagarajan, S. J., R. Yang, C. King and S. Narumanchi. 2015. Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. International Journal of Heat and Mass Transfer. 89: 1297-1315. Vu, N. T., Y. Huang and J. A. Weibel. 2024. High-speed visualization and infrared thermography of pool boiling on surfaces having differing dynamic wettability. International Journal of Heat and Mass Transfer. 221: 125105. Wang, C., P. Li, D. Zhang, W. Tian, S. Qiu, G. Su and J. Deng. 2022. Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling. Nuclear Engineering and Technology. 54(1): 61-71. Wang, S., H.-E. Hsieh, Z. Zhang, S. Wang and X. Cai. 2024. CHF and heat transfer enhancement by SiO2 nanofluids on a inclined downward facing heating surface. Progress in Nuclear Energy. 171: 105197. Wu, F., T. Hisano, Y. Umehara, Y. Takata and S. Mori. 2023. Improvement in the onset of the nucleate pool boiling of HFE-7100 with the use of a honeycomb porous plate and heated fine wire. International Journal of Heat and Mass Transfer. 217: 124738. You, S., J. Kim and K. Kim. 2003. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied physics letters. 83(16): 3374-3376. Zuber, N. 1959. Hydrodynamic aspects of boiling heat transfer. United States Atomic Energy Commission, Technical Information Service. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97833 | - |
| dc.description.abstract | 核沸騰現象與我們日常生活息息相關,由於沸騰過程中的兩相變化能顯著提升熱傳遞效率,因此在現代化社會中被廣泛應用;然而,核沸騰過程中的熱通量存在明顯的限制,稱為「臨界熱通量(Critical Heat Flux, CHF)」,當熱通量超過CHF時,系統的溫度會迅速上升,進而引發材料損壞甚至系統失效。因此掌握CHF的大小能有效地提高系統運行的安全性。核沸騰的熱傳遞機制包括汽泡的生成、成長、分離以及液體再濕潤。這些機制受到多種因素的影響,包括液體的物理特性(黏度、表面張力)、加熱表面特性(粗糙度、潤濕性、傾角)。故本研究的主旨為利用鋁線以及鎳線及0.1 mm、0.2 mm、0.3 mm三種不同線徑作為加熱表面,並使用去離子水(Deionized water, DI water)、及電子氟化液(HFE-7100)為工作流體進行0°、30°、60°及90° 四種不同傾角之池沸騰實驗,並觀察加熱表面的差異及不同工作流體對沸騰熱傳性能的影響。 研究結果顯示,高熱傳導率的鋁線在線徑由0.3 mm減至0.1 mm時,CHF顯著提升53%,歸因於較小韋伯數促進汽泡脫離與液體回流;相反地,低熱傳導率的鎳線呈現相反趨勢,0.2 mm與0.1 mm線徑分別使CHF下降23.3%與27.5%,同時核沸騰起始點(Onset of Nucleate Boiling, ONB)過熱度延後4°C與4.6°C。 傾角對沸騰熱傳之影響結果顯示,DI water在30°傾角達最佳CHF值,而後隨角度增加而下降,90°時最高下降32.5%;而HFE-7100因較低表面張力特性, 0.1 mm鋁線在30°與60°時CHF分別提升9.2%與13%,然90°下降13.8%。 | zh_TW |
| dc.description.abstract | The two-phase change that occurs during boiling significantly enhances heat transfer efficiency, making it widely applicable in modern systems. However, nucleate boiling is limited by the Critical Heat Flux (CHF); exceeding this threshold can lead to rapid temperature increases and potential material damage. Therefore, enhancing CHF is crucial for improving safety. Heat transfer in nucleate boiling involves several processes: bubble nucleation, growth, departure, and liquid rewetting. These processes are influenced by the properties of the liquid properties (viscosity, surface tension) and the characteristics of the heating surface characteristics (roughness, wettability, and inclination). This study utilized aluminum and nickel wires of three different diameters (0.1 mm, 0.2 mm, and 0.3 mm) as heating surfaces. Pool boiling experiments were conducted using deionized water and HFE-7100 at four inclination angles (0°, 30°, 60°, and 90°) to assess the effects of material, diameter, fluid, and angle on boiling performance. For high-conductivity aluminum wires, reducing the diameter from 0.3 mm to 0.1 mm increased CHF by 53%, attributed to improved bubble departure and rewetting resulting from a lower Weber number. In contrast, low-conductivity nickel wires exhibited opposite trends; diameters of 0.2 mm and 0.1 mm decreased the CHF by 23.3% and 27.5%, respectively, and delayed ONB by 4 to 4.6°C. Regarding inclination, DI water exhibited peak CHF at an angle of 30°, which decreased by 32.5% at 90°. In contrast, HFE-7100, with its lower surface tension, resulted in CHF increases of 9.2% and 13% at 30° and 60°, respectively, while experiencing only a 13.8% decline at 90°. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:06:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-18T16:06:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iii 圖次 vi 表次 x 符號索引 xi 第一章 緒論 1 1.1 前言 1 1.2 沸騰曲線 2 1.3 臨界熱通量之影響 4 1.4 加熱表面方向 5 1.5 研究動機 5 1.6 研究目的 6 第二章 文獻探討 7 2.1 核沸騰 7 2.2 池沸騰之臨界熱通量 9 2.3 遲滯現象 10 2.4 工作流體 11 2.4.1 純水 11 2.4.2 HFE-7100 22 第三章 研究方法 29 3.1 實驗設備 29 3.1.1 池沸騰容器 29 3.1.2 工作流體 31 3.1.3 線材 32 3.1.4 冷凝系統 32 3.1.5 輔助溫度控制系統 33 3.1.6 加熱系統 33 3.1.7 影像拍攝系統 33 3.1.8 金屬導線夾持台 34 3.2 實驗方法 39 3.2.1 實驗準備 39 3.2.2 池沸騰實驗流程 39 3.3 沸騰熱傳特性評估方法 40 3.3.1 臨界熱通量、熱傳遞係數比較及核沸騰起始點之表面過熱度 40 3.3.2 接觸角量測 41 3.3.3 汽泡影像拍攝 43 3.4 實驗數據計算 45 3.4.1 金屬導線溫度推算 45 3.4.2 熱通量計算 45 3.5 不確定性分析 46 3.5.1 鋁線不確定度分析 46 3.5.2 鎳線不確定度分析 50 第四章 結果與討論 56 4.1 導線池沸騰汽泡運動 56 4.2 導線材料及線徑對DI water的CHF之影響 57 4.2.1 鋁線線徑之影響 57 4.2.2 鎳線線徑之影響 61 4.3 汽泡於傾斜表面之受力分析 64 4.4 不同傾角對DI water沸騰熱傳之影響 66 4.4.1 線徑0.1 mm鋁線 66 4.4.2 線徑0.3 mm鎳線 71 4.5 HFE-7100之沸騰熱傳 77 4.5.1 HFE-7100之遲滯現象 77 4.5.2 HFE-7100之臨界熱通量 79 4.6 不同傾角對HFE-7100沸騰熱傳之影響 85 4.6.1 線徑0.1 mm鋁線 85 4.6.2 線徑0.3 mm鎳線 91 4.7 其他影響實驗之因素 97 4.7.1 夾持台與黃銅棒材料不同所造成之影響 97 4.7.2 夾持台因氧化所造成之影響 99 第五章 結論與建議 101 5.1 結論 101 5.2 建議 102 參考文獻 104 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 池沸騰 | zh_TW |
| dc.subject | 導線傾角 | zh_TW |
| dc.subject | 汽泡影像 | zh_TW |
| dc.subject | 電子氟化液 | zh_TW |
| dc.subject | 臨界熱通量 | zh_TW |
| dc.subject | Critical heat flux | en |
| dc.subject | Wire inclination | en |
| dc.subject | Pool boiling | en |
| dc.subject | Bubble image | en |
| dc.subject | Fluorinert electronic liquid | en |
| dc.title | 加熱線傾角對池沸騰熱傳之影響 | zh_TW |
| dc.title | Effects of Heating Wire Inclination on Pool Boiling Heat Transfer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 翁輝竹;李宜庭 | zh_TW |
| dc.contributor.oralexamcommittee | Huei-Chu Weng;Yee-Ting Lee | en |
| dc.subject.keyword | 池沸騰,臨界熱通量,電子氟化液,汽泡影像,導線傾角, | zh_TW |
| dc.subject.keyword | Pool boiling,Critical heat flux,Fluorinert electronic liquid,Bubble image,Wire inclination, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202501877 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 14.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
