Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9781
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學(Ming-Shyue Lee)
dc.contributor.authorYing-Chieh Luen
dc.contributor.author盧盈潔zh_TW
dc.date.accessioned2021-05-20T20:40:58Z-
dc.date.available2011-10-05
dc.date.available2021-05-20T20:40:58Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-09
dc.identifier.citation1. Kumar-Sinha, C., Tomlins, S.A., and Chinnaiyan, A.M. 2008. Recurrent gene fusions in prostate cancer. Nature Reviews Cancer 8:497-511.
2. 中華民國行政院衛生署. 2011.
3. Feldman, B.J., and Feldman, D. 2001. The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34-45.
4. Huggins, C. 1967. Endocrine-induced regression of cancers. Cancer Res 27:1925-1930.
5. Palmberg, C., Koivisto, P., Visakorpi, T., and Tammela, T.L. 1999. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur Urol 36:191-196.
6. Denmeade, S.R., and Isaacs, J.T. 2002. A history of prostate cancer treatment. Nat Rev Cancer 2:389-396.
7. Ohshima, H., Tazawa, H., Sylla, B.S., and Sawa, T. 2005. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res 591:110-122.
8. De Marzo, A.M., Platz, E.A., Sutcliffe, S., Xu, J., Grönberg, H., Drake, C.G., Nakai, Y., Isaacs, W.B., and Nelson, W.G. 2007. Inflammation in prostate carcinogenesis. Nature Reviews Cancer 7:256-269.
9. De Marzo, A.M., Marchi, V.L., Epstein, J.I., and Nelson, W.G. 1999. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155:1985-1992.
10. Wang, D., and DuBois, R.N. 2010. Eicosanoids and cancer. Nature Reviews Cancer 10:181-193.
11. Hla, T., and Neilson, K. 1992. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A 89:7384-7388.
12. Gupta, R.A., and Dubois, R.N. 2001. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11-21.
13. Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., and DuBois, R.N. 1998. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705-716.
14. Dannenberg, A.J., Altorki, N.K., Boyle, J.O., Dang, C., Howe, L.R., Weksler, B.B., and Subbaramaiah, K. 2001. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2:544-551.
15. Guadagni, F., Ferroni, P., Palmirotta, R., Del Monte, G., Formica, V., and Roselli, M. 2007. Non-steroidal anti-inflammatory drugs in cancer prevention and therapy. Anticancer Res 27:3147-3162.
16. Dorsam, R.T., and Gutkind, J.S. 2007. G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79-94.
17. Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., Oshima, M., and Taketo, M.M. 2001. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med 7:1048-1051.
18. Tsujii, M., and DuBois, R.N. 1995. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493-501.
19. Stolina, M., Sharma, S., Lin, Y., Dohadwala, M., Gardner, B., Luo, J., Zhu, L., Kronenberg, M., Miller, P.W., Portanova, J., Lee, J.C., and Dubinett, S.M. 2000. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361-370.
20. Attiga, F.A., Fernandez, P.M., Weeraratna, A.T., Manyak, M.J., and Patierno, S.R. 2000. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 60:4629-4637.
21. Marnett, L.J., and Kalgutkar, A.S. 1999. Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol Sci 20:465-469.
22. Platz, E.A., Rohrmann, S., Pearson, J.D., Corrada, M.M., Watson, D.J., De Marzo, A.M., Landis, P.K., Metter, E.J., and Carter, H.B. 2005. Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiol Biomarkers Prev 14:390-396.
23. Grosch, S., Maier, T.J., Schiffmann, S., and Geisslinger, G. 2006. Cyclooxygenase-2 (COX-2)-Independent Anticarcinogenic Effects of Selective COX-2 Inhibitors. JNCI Journal of the National Cancer Institute 98:736-747.
24. Abedinpour, P., Baron, V.T., Welsh, J., and Borgstrom, P. 2011. Regression of prostate tumors upon combination of hormone ablation therapy and celecoxib in vivo. Prostate 71:813-823.
25. Xu, S., Zhou, W.Q., Zhang, Z.Y., Ge, J.P., and Gao, J.P. 2008. [Effects of a selective cyclooxygenase 2 inhibitor celecoxib on the proliferation and apoptosis of human prostate cancer cell line PC-3]. Zhonghua Nan Ke Xue 14:489-493.
26. Kulp, S.K., Yang, Y.T., Hung, C.C., Chen, K.F., Lai, J.P., Tseng, P.H., Fowble, J.W., Ward, P.J., and Chen, C.S. 2004. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444-1451.
27. Hanada, M., Feng, J., and Hemmings, B.A. 2004. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta 1697:3-16.
28. Peluffo, G.D., Stillitani, I., Rodriguez, V.A., Diament, M.J., and Klein, S.M. 2004. Reduction of tumor progression and paraneoplastic syndrome development in murine lung adenocarcinoma by nonsteroidal antiinflammatory drugs. Int J Cancer 110:825-830.
29. Lee, H.C., Park, I.C., Park, M.J., An, S., Woo, S.H., Jin, H.O., Chung, H.Y., Lee, S.J., Gwak, H.S., Hong, Y.J., Yoo, D.H., Rhee, C.H., and Hong, S.I. 2005. Sulindac and its metabolites inhibit invasion of glioblastoma cells via down-regulation of Akt/PKB and MMP-2. J Cell Biochem 94:597-610.
30. Shi, Y.E., Torri, J., Yieh, L., Wellstein, A., Lippman, M.E., and Dickson, R.B. 1993. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53:1409-1415.
31. Lin, C.Y., Wang, J.K., Torri, J., Dou, L., Sang, Q.A., and Dickson, R.B. 1997. Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem 272:9147-9152.
32. Cho, E.G., Kim, M.G., Kim, C., Kim, S.R., Seong, I.S., Chung, C., Schwartz, R.H., and Park, D. 2001. N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem 276:44581-44589.
33. Tanimoto, H., Underwood, L.J., Wang, Y., Shigemasa, K., Parmley, T.H., and O'Brien, T.J. 2001. Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 22:104-114.
34. Tanimoto, H., Shigemasa, K., Tian, X., Gu, L., Beard, J.B., Sawasaki, T., and O'Brien, T.J. 2005. Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer 92:278-283.
35. Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A., and Dickson, R.B. 1999. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 274:18231-18236.
36. MS, L. 2006. Matrix-Degrading Type II Transmembrane Serine Protease Matriptase: Its Role in Cancer Development and Malignancy. Journal of Cancer Molecules 2:183-190.
37. Takeuchi, T., Harris, J.L., Huang, W., Yan, K.W., Coughlin, S.R., and Craik, C.S. 2000. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275:26333-26342.
38. Oberst, M.D., Williams, C.A., Dickson, R.B., Johnson, M.D., and Lin, C.Y. 2003. The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 278:26773-26779.
39. Kojima, K., Tsuzuki, S., Fushiki, T., and Inouye, K. 2009. Role of the stem domain of matriptase in the interaction with its physiological inhibitor, hepatocyte growth factor activator inhibitor type I. J Biochem 145:783-790.
40. Friedrich, R., Fuentes-Prior, P., Ong, E., Coombs, G., Hunter, M., Oehler, R., Pierson, D., Gonzalez, R., Huber, R., Bode, W., and Madison, E.L. 2002. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 277:2160-2168.
41. Miyake, Y., Yasumoto, M., Tsuzuki, S., Fushiki, T., and Inouye, K. 2009. Activation of a membrane-bound serine protease matriptase on the cell surface. J Biochem 146:273-282.
42. Cho, E.G., Schwartz, R.H., and Kim, M.G. 2005. Shedding of membrane epithin is blocked without LDLRA4 and its protease activation site. Biochem Biophys Res Commun 327:328-334.
43. Kim C, C.Y., Kang CH, Kim MG, Lee H, Cho EG, Park D. 2005. Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO Rep. 6:1045-1051.
44. Oberst, M.D., Chen, L.Y., Kiyomiya, K., Williams, C.A., Lee, M.S., Johnson, M.D., Dickson, R.B., and Lin, C.Y. 2005. HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 289:C462-470.
45. Benaud, C., Dickson, R.B., and Lin, C.Y. 2001. Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 268:1439-1447.
46. Kiyomiya, K., Lee, M.S., Tseng, I.C., Zuo, H., Barndt, R.J., Johnson, M.D., Dickson, R.B., and Lin, C.Y. 2006. Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 291:C40-49.
47. Shimomura, T., Denda, K., Kitamura, A., Kawaguchi, T., Kito, M., Kondo, J., Kagaya, S., Qin, L., Takata, H., Miyazawa, K., and Kitamura, N. 1997. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 272:6370-6376.
48. Lin, C.Y., Anders, J., Johnson, M., and Dickson, R.B. 1999. Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 274:18237-18242.
49. Oberst, M.D., Johnson, M.D., Dickson, R.B., Lin, C.Y., Singh, B., Stewart, M., Williams, A., al-Nafussi, A., Smyth, J.F., Gabra, H., and Sellar, G.C. 2002. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8:1101-1107.
50. List, K., Szabo, R., Molinolo, A., Nielsen, B.S., and Bugge, T.H. 2006. Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168:1513-1525.
51. Oberst, M.D., Singh, B., Ozdemirli, M., Dickson, R.B., Johnson, M.D., and Lin, C.Y. 2003. Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 51:1017-1025.
52. List, K., Haudenschild, C.C., Szabo, R., Chen, W., Wahl, S.M., Swaim, W., Engelholm, L.H., Behrendt, N., and Bugge, T.H. 2002. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21:3765-3779.
53. Satomi, S., Yamasaki, Y., Tsuzuki, S., Hitomi, Y., Iwanaga, T., and Fushiki, T. 2001. A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 287:995-1002.
54. Netzel-Arnett, S., Currie, B.M., Szabo, R., Lin, C.Y., Chen, L.M., Chai, K.X., Antalis, T.M., Bugge, T.H., and List, K. 2006. Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281:32941-32945.
55. List, K., Kosa, P., Szabo, R., Bey, A.L., Wang, C.B., Molinolo, A., and Bugge, T.H. 2009. Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175:1453-1463.
56. List, K., Szabo, R., Wertz, P.W., Segre, J., Haudenschild, C.C., Kim, S.Y., and Bugge, T.H. 2003. Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163:901-910.
57. Forbs, D., Thiel, S., Stella, M.C., Sturzebecher, A., Schweinitz, A., Steinmetzer, T., Sturzebecher, J., and Uhland, K. 2005. In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27:1061-1070.
58. Riddick, A.C., Shukla, C.J., Pennington, C.J., Bass, R., Nuttall, R.K., Hogan, A., Sethia, K.K., Ellis, V., Collins, A.T., Maitland, N.J., Ball, R.Y., and Edwards, D.R. 2005. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 92:2171-2180.
59. Kang, J.Y., Dolled-Filhart, M., Ocal, I.T., Singh, B., Lin, C.Y., Dickson, R.B., Rimm, D.L., and Camp, R.L. 2003. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101-1105.
60. Zeng, L., Cao, J., and Zhang, X. 2005. Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol 11:6202-6207.
61. Santin, A.D., Zhan, F., Bellone, S., Palmieri, M., Cane, S., Bignotti, E., Anfossi, S., Gokden, M., Dunn, D., Roman, J.J., O'Brien, T.J., Tian, E., Cannon, M.J., Shaughnessy, J., Jr., and Pecorelli, S. 2004. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer 112:14-25.
62. Jin, J.S., Chen, A., Hsieh, D.S., Yao, C.W., Cheng, M.F., and Lin, Y.F. 2006. Expression of serine protease matriptase in renal cell carcinoma: correlation of tissue microarray immunohistochemical expression analysis results with clinicopathological parameters. Int J Surg Pathol 14:65-72.
63. Saleem, M., Adhami, V.M., Zhong, W., Longley, B.J., Lin, C.Y., Dickson, R.B., Reagan-Shaw, S., Jarrard, D.F., and Mukhtar, H. 2006. A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15:217-227.
64. Ding, K.F., Sun, L.F., Ge, W.T., Hu, H.G., Zhang, S.Z., and Zheng, S. 2005. Effect of SNC19/ST14 gene overexpression on invasion of colorectal cancer cells. World J Gastroenterol 11:5651-5654.
65. Uhland, K. 2006. Matriptase and its putative role in cancer. Cell Mol Life Sci 63:2968-2978.
66. Lee, S.L., Dickson, R.B., and Lin, C.Y. 2000. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275:36720-36725.
67. List, K., Szabo, R., Molinolo, A., Sriuranpong, V., Redeye, V., Murdock, T., Burke, B., Nielsen, B.S., Gutkind, J.S., and Bugge, T.H. 2005. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934-1950.
68. Kaighn, M.E., Narayan, K.S., Ohnuki, Y., Lechner, J.F., and Jones, L.W. 1979. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16-23.
69. Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., and Paulson, D.F. 1978. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21:274-281.
70. Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., Kim, U., Chai, L.S., Kakati, S., Arya, S.K., and Sandberg, A.A. 1980. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37:115-132.
71. Edwards, J., Mukherjee, R., Munro, A.F., Wells, A.C., Almushatat, A., and Bartlett, J.M. 2004. HER2 and COX2 expression in human prostate cancer. Eur J Cancer 40:50-55.
72. Lee, M.S. 2006. Matrix-degrading Type II transmembrane serine protease matriptase: its role in cancer development and malignancy. Journal of Cancer Molecules 2:183-190.
73. Lokeshwar, B.L. 1999. MMP inhibition in prostate cancer. Ann N Y Acad Sci 878:271-289.
74. Miyake, H., Hara, I., Yamanaka, K., Gohji, K., Arakawa, S., and Kamidono, S. 1999. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 39:123-129.
75. Mantovani, A. 2005. Cancer: inflammation by remote control. Nature 435:752-753.
76. Coussens, L.M., and Werb, Z. 2002. Inflammation and cancer. Nature 420:860-867.
77. Koul, H.K., Kumar, B., Koul, S., Deb, A.A., Hwa, J.S., Maroni, P., van Bokhoven, A., Lucia, M.S., Kim, F.J., and Meacham, R.B. 2010. The role of inflammation and infection in prostate cancer: Importance in prevention, diagnosis and treatment. Drugs Today (Barc) 46:929-943.
78. Takahashi, Y., Kawahara, F., Noguchi, M., Miwa, K., Sato, H., Seiki, M., Inoue, H., Tanabe, T., and Yoshimoto, T. 1999. Activation of matrix metalloproteinase-2 in human breast cancer cells overexpressing cyclooxygenase-1 or -2. FEBS Lett 460:145-148.
79. Tsujii, M., Kawano, S., and DuBois, R.N. 1997. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94:3336-3340.
80. Madaan, S., Abel, P.D., Chaudhary, K.S., Hewitt, R., Stott, M.A., Stamp, G.W., and Lalani, E.N. 2000. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 86:736-741.
81. Walter, B., Rogenhofer, S., Vogelhuber, M., Berand, A., Wieland, W.F., Andreesen, R., and Reichle, A. 2010. Modular therapy approach in metastatic castration-refractory prostate cancer. World Journal of Urology 28:745-750.
82. Gravitz, L. 2011. Chemoprevention: First line of defence. Nature 471:S5-7.
83. Sade, A., Tuncay, S., Cimen, I., Severcan, F., and Banerjee, S. 2011. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci Rep.
84. Fingleton, B. 2006. Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11:479-491.
85. Egeblad, M., and Werb, Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174.
86. Sternlicht, M.D., and Werb, Z. 2001. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463-516.
87. Wu, S.R., Cheng, T.S., Chen, W.C., Shyu, H.Y., Ko, C.J., Huang, H.P., Teng, C.H., Lin, C.H., Johnson, M.D., Lin, C.Y., and Lee, M.S. 2010. Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol 177:3145-3158.
88. Liu, X.H., Kirschenbaum, A., Lu, M., Yao, S., Klausner, A., Preston, C., Holland, J.F., and Levine, A.C. 2002. Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun 290:249-255.
89. Chen, Y., and Hughes-Fulford, M. 2000. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer 82:2000-2006.
90. Nithipatikom, K., Isbell, M.A., Lindholm, P.F., Kajdacsy-Balla, A., Kaul, S., and Campell, W.B. 2002. Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion. Clin Exp Metastasis 19:593-601.
91. Liu, X.H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J.F., and Levine, A.C. 2002. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. J Biol Chem 277:50081-50086.
92. Li, Y., Niu, Y., Wu, H., Zhang, B., Sun, Y., Huang, H., Li, Q., Fan, L., Liu, L., and Mei, Q. 2009. PC-407, a celecoxib derivative, inhibited the growth of colorectal tumorin vitroandin vivo. Cancer Science 100:2451-2458.
93. Fulton, A.M., Ma, X., and Kundu, N. 2006. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res 66:9794-9797.
94. Legler, D.F., Bruckner, M., Uetz-von Allmen, E., and Krause, P. 2010. Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. Int J Biochem Cell Biol 42:198-201.
95. Narumiya, S., Sugimoto, Y., and Ushikubi, F. 1999. Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193-1226.
96. Wang, X., and Klein, R.D. 2007. Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Molecular Carcinogenesis 46:912-923.
97. Lee, M.S., Kiyomiya, K., Benaud, C., Dickson, R.B., and Lin, C.Y. 2005. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol 288:C932-941.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9781-
dc.description.abstract攝護腺癌的致死率在西方男性世界中排名第二位;在台灣,攝護腺癌的發生率以及死亡率亦有逐年增加的趨勢。有些研究指出發炎與攝護腺癌的產生以及惡化有關。希樂葆 (Celebrex) 是一種亞型環氧化酶 (Cyclooxygenase-2, COX-2) 抑制物,近年研究指出希樂葆具有抗發炎、抗癌以及預防癌症產生 (chemoprevention) 的功能。然而,希樂葆是如何抑制攝護腺癌細胞侵襲的分子機制尚未清楚了解。在本篇研究裡,我們建立了攝護腺癌細胞侵襲能力進化的細胞模式 (PC-3以及M2I2 PC-3細胞),並發現幾個發炎相關蛋白,亞型環氧化酶、磷酸化JUN激酶以及第一型介白素在M2I2 PC-3細胞的表現量增加。進而檢測了希樂葆對於攝護腺癌PC-3細胞的生長、移動與侵襲的影響。實驗結果指出希樂葆可有效地抑制攝護腺癌細胞的生長、移動與侵襲能力。為了更進一步研究希樂葆抑制攝護腺癌細胞移動與侵襲的分子機制,我探討希樂葆對於間質蛋白酶 (Matriptase) 可能的影響。間質蛋白酶是第二型嵌膜絲胺酸蛋白酶,近年來研究指出異常活化的間質蛋白酶與許多癌症的演進有相關聯,包括攝護腺癌。本篇實驗結果指出,希樂葆可以降低間質蛋白酶的表現以及釋出到細胞外的量;此量的降低,主要藉由抑制間質蛋白酶基因的表達以降低其表現量。更進一步地,在兩株不具亞型環氧化酶的攝護腺癌DU-145和LNCaP細胞中,希樂葆一樣可以藉由降低間質蛋白酶活化及表現量來抑制這兩種癌細胞的移動與侵襲能力。同時發現,在所有市面上可購得的非類固醇抗炎藥物中,希樂葆是最具潛力的藥物可抑制攝護腺癌細胞的間質蛋白酶活化。同時亞型環氧化酶主要產物PGE2可刺激間質蛋白酶的活化。為了更進一步了解PGE2如何促進間質蛋白酶的活化,我使用不同的EP接受器抑制物並發現EP1接受器可能參與間質蛋白酶的活化。整體來說,本論文實驗結果指出希樂葆具有抑制間質蛋白酶功能以及壓抑攝護腺癌細胞侵襲的能力。因此希樂葆是一個未來具有潛力的藥物,可用以抗攝護腺癌或預防此癌症的產生。zh_TW
dc.description.abstractProstate cancer is the second leading cause of cancer-related death in men of the western world. In Taiwan, the incidence and mortality of prostate cancer (PCa) have been rising progressively in recent years. Several studies have showed that inflammation is involved in the development and progression of PCa. Celebrex, a COX-2 specific inhib¬itor, has been shown with anti-inflammatory, anti-carcinogenic, and chemopreventive effects. However, the molecular mechanism how celebrex suppresses PCa cell invasion is not well understood. In this study, we established a PC-3 cell invasion progression model (parental and M2I2 PC-3 cells) and found that several inflammation-associated proteins, COX-2, p-JNK and IL-1β were up-regulated in M2I2 PC-3 cells. The results showed that celebrex could significantly suppress PCa cell migration and invasion, at least in part, due to down regulation of a tumor-promoting serine protease matriptase at the gene expression and activation levels. Similarly, celebrex also can execute its anti-cancer properties in two COX-2-null PCa DU-145 and LNCaP cells, via a similar mechanism as shown in PC3 cells. Furthermore, PGE2, a main product of COX-2, could induce matriptase activation and its EP1 receptor was identified to be involved in matriptase activation in PCa cells. Taken together, the data indicated that celebrex exhibits a suppressive effect on PCa cell migration and invasion, at least in part, by down-regulating matriptase function.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:40:58Z (GMT). No. of bitstreams: 1
ntu-100-R98442014-1.pdf: 8312287 bytes, checksum: 4402d54448c6af17b8c655648e71642c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract iv
Chapter 1. Introduction 1
1.1 Prostate cancer 2
1.2 Inflammation in prostate carcinogenesis 2
1.3 Cyclooxygenase-2 and cancer progression 3
1.4 Non-steroidal anti-inflammatory drugs (NSAIDs) 4
1.5. Celebrex (Celecoxib) 5
1.6 Matriptase 7
1.7 Research motivation 14
Chapter 2. Materials and methods 16
2.1 Materials 17
2.2 Methods 21
2.3 Buffer 30
Chapter 3. Results 32
3.1 Correlation of inflammation-associated protein expression and matriptase activation in a PC-3 cell invasion progression model 33
3.2 Effect of celebrex on the cell viability of PC-3 cells 34
3.3 Inhibitory effect of celebrex on PC-3 cell growth. 35
3.4 Celebrex inhibited the motility and invasion of PC-3 cells. 35
3.5 Celebrex reduced matriptase and HAI-1 shedding and protein expression in PC-3 cells. 36
3.6 Celebrex down-regulated gene expression of matriptase and HAI-1 in PC-3 cells. 37
3.7 Celebrex decreased MMPs activity in PC-3 cells. 38
3.8 Prostaglandin E2 (PGE2) increased the motility and invasion of PC-3 cells. 38
3.9 PGE2 induced the levels of matriptase activation and HAI-1 but reduced the shedding of matriptase and HAI-1 in PC-3 cells. 39
3. 10 Effect of EP antagonists on matriptase shedding and protein expression. 40
3.11 Celebrex down-regulated matriptase expression and activation partly via COX-2-independent pathway in PC-3 cells. 40
3.12 Effect of celebrex on the cytotoxicity of non-COX-2 expressed prostate cancer cells, DU-145 and LNCaP cells. 41
3.13 Inhibitory effects of celebrex on cell motility and invasion in DU-145 cells via down-regulating matriptase. 42
3.14 Inhibitory effects of celebrex on LNCaP cell migration and invasion via suppressing the total and activated levels of matriptase. 43
3.15 Effect of celebrex and other NSAIDs on matriptase expression and activation in LNCaP cells. 44
3.16 Role of matriptase on PC-3 cell migration and invasion. 44
3.17 Inhibitory effect of celebrex on matriptase-overexpressing PC-3 cell migration, invasion and matriptase activation. 45
Chapter 4. Discussion 46
Chapter 5. Figures 52
Figure 1. Establishment of prostate cancer PC-3 cell progression model and analysis of inflammation biomarkers and matriptase expression in these cells. 54
Figure 2. Effect of celebrex on the cell viability of PC-3 cells. 55
Figure 3. Effect of celebrex on PC-3 cell growth, migration and invasion. 57
Figure 4. Effect of celebrex on matriptase and HAI-1 expression and shedding in PC-3 cells. 60
Figure 5. Analysis of the celebrex effect on MMPs activity by gelatin zymography. 62
Figure 6. Effect of PGE2 on PC-3 cell migration and invasion. 64
Figure 7. Effect of PGE2 on matriptase and HAI-1 expression and shedding in PC-3 cells. 66
Figure 9. Analysis of the of PGE2 and celebrex effect on matriptase in PC-3 cells. 70
Figure 10. Examination of COX-2 expression in PC-3, DU-145 andLNCaP cells and the effect of celebrex on the cell viability of DU-145 and LNCaP cells. 72
Figure 11. Effect of celebrex on DU-145 cell migration, invasion and on the expression of matriptase and HAI-1. 74
Figure 12. Effect of celebrex on LNCaP cell migration, invasion and on the expression and shedding of matriptase and HIA-1. 76
Figure 13. Effect of different NSAIDs on matriptase expression and activation in LNCaP cells. 78
Figure 14. Establishment of MTX-overexpressing PC-3 cells and the effect of celebrex on MTX-overexpressing PC-3 cell migration, invasion and matriptase activation. 80
Chapter 6. References 82
dc.language.isoen
dc.title探討希樂葆在攝護腺癌細胞移動、侵襲以及間質蛋白酶活化的影響zh_TW
dc.titleSuppression of prostate cancer cell migration and invasion by celebrex through down-regulating matriptase activityen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee符文美(Wen-Mei Fu),呂紹俊(Shao-Chun Lu),鄧述諄(Shu-Chun Teng)
dc.subject.keyword希樂葆,間質蛋白&#37238,攝護腺癌,zh_TW
dc.subject.keywordcelebrex,matriptase,prostate cancer,en
dc.relation.page91
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf8.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved