請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣 | zh_TW |
| dc.contributor.advisor | Jiashing Yu | en |
| dc.contributor.author | 曲丹尼 | zh_TW |
| dc.contributor.author | Edgar Daniel Quiñones Pardo | en |
| dc.date.accessioned | 2025-07-17T16:05:38Z | - |
| dc.date.available | 2025-07-18 | - |
| dc.date.copyright | 2025-07-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-14 | - |
| dc.identifier.citation | (1) Ross, A. M.; Lahann, J. Current Trends and Challenges in Biointerfaces Science and Engineering. Annual Review of Chemical and Biomolecular Engineering 2015, 6 (Volume 6, 2015), 161-186. DOI: https://doi.org/10.1146/annurev-chembioeng-060713-040042.
(2) Hori, K.; Yoshimoto, S.; Yoshino, T.; Zako, T.; Hirao, G.; Fujita, S.; Nakamura, C.; Yamagishi, A.; Kamiya, N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. Journal of Bioscience and Bioengineering 2022, 133 (3), 195-207. DOI: https://doi.org/10.1016/j.jbiosc.2021.12.004. (3) Sun, T.; Qing, G.; Su, B.; Jiang, L. Functional biointerface materials inspired from nature. Chemical Society Reviews 2011, 40 (5), 2909. DOI: 10.1039/c0cs00124d. (4) Finbloom, J. A.; Sousa, F.; Stevens, M. M.; Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced Drug Delivery Reviews 2020, 167, 89-108. DOI: https://doi.org/10.1016/j.addr.2020.06.007. (5) Griffin, M. F.; Szarko, M.; Seifailan, A.; Butler, P. E. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration. Open Orthop J 2016, 10, 824-835. DOI: 10.2174/1874325001610010824 From NLM. (6) Lu, X.; Wu, Z.; Xu, K.; Wang, X.; Wang, S.; Qiu, H.; Li, X.; Chen, J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021, 9, 783816. DOI: 10.3389/fbioe.2021.783816 From NLM. (7) Bril, M.; Fredrich, S.; Kurniawan, N. A. Stimuli-responsive materials: A smart way to study dynamic cell responses. Smart Materials in Medicine 2022, 3, 257-273. DOI: https://doi.org/10.1016/j.smaim.2022.01.010. (8) Yao, S.; Yan, H.; Tian, S.; Luo, R.; Zhao, Y.; Wang, J. Anti-fouling coatings for blood-contacting devices. Smart Materials in Medicine 2024, 5 (1), 166-180. DOI: https://doi.org/10.1016/j.smaim.2023.10.001. (9) Lee, C.-Y.; Hu, S.-M.; Christy, J.; Chou, F.-Y.; Ramli, T. C.; Chen, H.-Y. Biointerface Coatings With Structural and Biochemical Properties Modifications of Biomaterials. Advanced Materials Interfaces 2023, 10 (10), 2202286. DOI: https://doi.org/10.1002/admi.202202286. (10) Chan, B. P.; Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008, 17 Suppl 4 (Suppl 4), 467-479. DOI: 10.1007/s00586-008-0745-3 From NLM. (11) Mao, Z.; Fan, B.; Wang, X.; Huang, X.; Guan, J.; Sun, Z.; Xu, B.; Yang, M.; Chen, Z.; Jiang, D.; et al. A Systematic Review of Tissue Engineering Scaffold in Tendon Bone Healing in vivo. Front Bioeng Biotechnol 2021, 9, 621483. DOI: 10.3389/fbioe.2021.621483 From NLM. (12) Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012, 30 (10), 546-554. DOI: 10.1016/j.tibtech.2012.07.005 From NLM. (13) Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci 2022, 23 (17). DOI: 10.3390/ijms23179721 From NLM. (14) Shahverdi, M.; Seifi, S.; Akbari, A.; Mohammadi, K.; Shamloo, A.; Movahhedy, M. R. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Scientific Reports 2022, 12 (1), 19935. DOI: 10.1038/s41598-022-24275-6. (15) Shimojo, A. A. M.; Rodrigues, I. C. P.; Perez, A. G. M.; Souto, E. M. B.; Gabriel, L. P.; Webster, T. Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization. In Racing for the Surface: Antimicrobial and Interface Tissue Engineering, Li, B., Moriarty, T. F., Webster, T., Xing, M. Eds.; Springer International Publishing, 2020; pp 647-676. (16) Han, S.; Nie, K.; Li, J.; Sun, Q.; Wang, X.; Li, X.; Li, Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells International 2021, 2021 (1), 8790143. DOI: https://doi.org/10.1155/2021/8790143. (17) Do, A. V.; Khorsand, B.; Geary, S. M.; Salem, A. K. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater 2015, 4 (12), 1742-1762. DOI: 10.1002/adhm.201500168 From NLM. (18) Guo, B.; Ma, P. X. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19 (6), 1764-1782. DOI: 10.1021/acs.biomac.8b00276. (19) Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T. J.; Marei, H. E. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 2018, 13, 5637-5655. DOI: 10.2147/ijn.S153758 From NLM. (20) Lee, J.; Cuddihy, M. J.; Kotov, N. A. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Engineering Part B: Reviews 2008, 14 (1), 61-86. DOI: 10.1089/teb.2007.0150. (21) Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nature Reviews Materials 2018, 3 (2), 17086. DOI: 10.1038/natrevmats.2017.86. (22) Strakosas, X.; Bongo, M.; Owens, R. M. The organic electrochemical transistor for biological applications. Journal of Applied Polymer Science 2015, 132 (15). DOI: https://doi.org/10.1002/app.41735. (23) Hanein, Y.; Pan, Y. V.; Ratner, B. D.; Denton, D. D.; Böhringer, K. F. Micromachining of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B: Chemical 2001, 81 (1), 49-54. DOI: https://doi.org/10.1016/S0925-4005(01)00925-X. (24) Wilson, K.; Molnar, P.; Hickman, J. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation. Lab on a Chip 2007, 7 (7), 920-922, 10.1039/B617939H. DOI: 10.1039/B617939H. (25) Spampinato, S. F.; Caruso, G. I.; De Pasquale, R.; Sortino, M. A.; Merlo, S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel) 2020, 13 (4). DOI: 10.3390/ph13040060 From NLM. (26) Guo, S.; Dipietro, L. A. Factors affecting wound healing. J Dent Res 2010, 89 (3), 219-229. DOI: 10.1177/0022034509359125 From NLM. (27) Gonzalez, A. C.; Costa, T. F.; Andrade, Z. A.; Medrado, A. R. Wound healing - A literature review. An Bras Dermatol 2016, 91 (5), 614-620. DOI: 10.1590/abd1806-4841.20164741 From NLM. (28) Frykberg, R. G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2015, 4 (9), 560-582. DOI: 10.1089/wound.2015.0635 From NLM. (29) Okonkwo, U. A.; DiPietro, L. A. Diabetes and Wound Angiogenesis. Int J Mol Sci 2017, 18 (7). DOI: 10.3390/ijms18071419 From NLM. (30) Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. International Journal of Molecular Sciences 2016, 17 (12), 2085. (31) Zeng, N.; Chen, H.; Wu, Y.; Liu, Z. Adipose Stem Cell-Based Treatments for Wound Healing. Front Cell Dev Biol 2021, 9, 821652. DOI: 10.3389/fcell.2021.821652 From NLM. (32) Lu, S.; Lu, L.; Liu, Y.; Li, Z.; Fang, Y.; Chen, Z.; Zhou, J. Native and engineered extracellular vesicles for wound healing. Frontiers in Bioengineering and Biotechnology 2022, 10, 1053217. DOI: 10.3389/fbioe.2022.1053217. (33) Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 2014, 6 (265), 265sr266. DOI: 10.1126/scitranslmed.3009337 From NLM. (34) Sen, C. K. Wound healing essentials: let there be oxygen. Wound Repair Regen 2009, 17 (1), 1-18. DOI: 10.1111/j.1524-475X.2008.00436.x From NLM. (35) Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453 (7193), 314-321. DOI: 10.1038/nature07039 From NLM. (36) Harding, K. G.; Morris, H. L.; Patel, G. K. Science, medicine and the future: healing chronic wounds. Bmj 2002, 324 (7330), 160-163. DOI: 10.1136/bmj.324.7330.160 From NLM. (37) Berlanga-Acosta, J. Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 2011, 8 (6), 612-620. DOI: 10.1111/j.1742-481X.2011.00840.x From NLM. (38) Frykberg, R. G.; Banks, J. Management of Diabetic Foot Ulcers: A Review. Fed Pract 2016, 33 (2), 16-23. From NLM. (39) Schofield, C. J.; Libby, G.; Brennan, G. M.; MacAlpine, R. R.; Morris, A. D.; Leese, G. P. Mortality and hospitalization in patients after amputation: a comparison between patients with and without diabetes. Diabetes Care 2006, 29 (10), 2252-2256. DOI: 10.2337/dc06-0926 From NLM. (40) Moxey, P. W.; Gogalniceanu, P.; Hinchliffe, R. J.; Loftus, I. M.; Jones, K. J.; Thompson, M. M.; Holt, P. J. Lower extremity amputations--a review of global variability in incidence. Diabet Med 2011, 28 (10), 1144-1153. DOI: 10.1111/j.1464-5491.2011.03279.x From NLM. (41) Qin, J.; Chen, F.; Wu, P.; Sun, G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol 2022, 10, 841583. DOI: 10.3389/fbioe.2022.841583 From NLM. (42) Shi, X.; Fu, N.; Zhang, H.; Brown-Borg, H. M.; Wang, S.; Zhao, R. C. Bioengineering strategies for augmenting wound-healing efficacy of mesenchymal stem cell-derived extracellular vesicles. Sci Bull (Beijing) 2024. DOI: 10.1016/j.scib.2024.10.024 From NLM. (43) Maxson, S.; Lopez, E. A.; Yoo, D.; Danilkovitch-Miagkova, A.; Leroux, M. A. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 2012, 1 (2), 142-149. DOI: 10.5966/sctm.2011-0018 From NLM. (44) Le Blanc, K. Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy 2006, 8 (6), 559-561. DOI: 10.1080/14653240601045399 From NLM. (45) Kim, W. S.; Park, B. S.; Sung, J. H.; Yang, J. M.; Park, S. B.; Kwak, S. J.; Park, J. S. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007, 48 (1), 15-24. DOI: 10.1016/j.jdermsci.2007.05.018 From NLM. (46) Wang, Z.-g.; He, Z.-y.; Liang, S.; Yang, Q.; Cheng, P.; Chen, A.-m. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy 2020, 11 (1), 511. DOI: 10.1186/s13287-020-02032-8. (47) Henderson, M. C.; Azorsa, D. O. The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol 2012, 2, 38. DOI: 10.3389/fonc.2012.00038 From NLM. (48) Jiang, H.; Zhao, H.; Zhang, M.; He, Y.; Li, X.; Xu, Y.; Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022, 13, 824188. DOI: 10.3389/fimmu.2022.824188 From NLM. (49) Zhu, J.; Lu, K.; Zhang, N.; Zhao, Y.; Ma, Q.; Shen, J.; Lin, Y.; Xiang, P.; Tang, Y.; Hu, X.; et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol 2018, 46 (8), 1659-1670. DOI: 10.1080/21691401.2017.1388249 From NLM. (50) Nakase, I.; Ueno, N.; Matsuzawa, M.; Noguchi, K.; Hirano, M.; Omura, M.; Takenaka, T.; Sugiyama, A.; Bailey Kobayashi, N.; Hashimoto, T.; et al. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio 2021, 11 (3), 753-767. DOI: 10.1002/2211-5463.13107 From NLM. (51) Guo, S.; Debbi, L.; Zohar, B.; Samuel, R.; Arzi, R. S.; Fried, A. I.; Carmon, T.; Shevach, D.; Redenski, I.; Schlachet, I.; et al. Stimulating Extracellular Vesicles Production from Engineered Tissues by Mechanical Forces. Nano Lett 2021, 21 (6), 2497-2504. DOI: 10.1021/acs.nanolett.0c04834 From NLM. (52) Salomon, C.; Ryan, J.; Sobrevia, L.; Kobayashi, M.; Ashman, K.; Mitchell, M.; Rice, G. E. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 2013, 8 (7), e68451. DOI: 10.1371/journal.pone.0068451 From NLM. (53) Guo, L.; Ge, J.; Zhou, Y.; Wang, S.; Zhao, R. C.; Wu, Y. Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev 2014, 23 (9), 978-989. DOI: 10.1089/scd.2013.0338 From NLM. (54) Santos, J. M.; Camões, S. P.; Filipe, E.; Cipriano, M.; Barcia, R. N.; Filipe, M.; Teixeira, M.; Simões, S.; Gaspar, M.; Mosqueira, D.; et al. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 2015, 6 (1), 90. DOI: 10.1186/s13287-015-0082-5 From NLM. (55) Bartosh, T. J.; Ylöstalo, J. H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R. H.; Choi, H.; Prockop, D. J. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 2010, 107 (31), 13724-13729. DOI: 10.1073/pnas.1008117107 From NLM. (56) Savina, A.; Fader, C. M.; Damiani, M. T.; Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 2005, 6 (2), 131-143. DOI: 10.1111/j.1600-0854.2004.00257.x From NLM. (57) Savina, A.; Furlán, M.; Vidal, M.; Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 2003, 278 (22), 20083-20090. DOI: 10.1074/jbc.M301642200 From NLM. (58) Shao, H.; Im, H.; Castro, C. M.; Breakefield, X.; Weissleder, R.; Lee, H. New Technologies for Analysis of Extracellular Vesicles. Chemical Reviews 2018, 118 (4), 1917-1950. DOI: 10.1021/acs.chemrev.7b00534. (59) Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014, 30, 255-289. DOI: 10.1146/annurev-cellbio-101512-122326 From NLM. (60) van Niel, G.; D'Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology 2018, 19 (4), 213-228. DOI: 10.1038/nrm.2017.125. (61) Abels, E. R.; Breakefield, X. O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016, 36 (3), 301-312. DOI: 10.1007/s10571-016-0366-z From NLM. (62) Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013, 200 (4), 373-383. DOI: 10.1083/jcb.201211138 From NLM. (63) Willms, E.; Johansson, H. J.; Mäger, I.; Lee, Y.; Blomberg, K. E. M.; Sadik, M.; Alaarg, A.; Smith, C. I. E.; Lehtiö, J.; El Andaloussi, S.; et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports 2016, 6 (1), 22519. DOI: 10.1038/srep22519. (64) De Sousa, K. P.; Rossi, I.; Abdullahi, M.; Ramirez, M. I.; Stratton, D.; Inal, J. M. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023, 15 (1), e1835. DOI: 10.1002/wnan.1835 From NLM. (65) Zhao, Z.; Wijerathne, H.; Godwin, A. K.; Soper, S. A. Isolation and analysis methods of extracellular vesicles (EVs). Extracell Vesicles Circ Nucl Acids 2021, 2 (1), 80-103. DOI: 10.20517/evcna.2021.07 From NLM. (66) Brennan, K.; Martin, K.; FitzGerald, S. P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M. M. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Scientific Reports 2020, 10 (1), 1039. DOI: 10.1038/s41598-020-57497-7. (67) Murphy, K. C.; Hung, B. P.; Browne-Bourne, S.; Zhou, D.; Yeung, J.; Genetos, D. C.; Leach, J. K. Measurement of oxygen tension within mesenchymal stem cell spheroids. Journal of The Royal Society Interface 2017, 14 (127), 20160851. DOI: doi:10.1098/rsif.2016.0851. (68) Metzger, W.; Rother, S.; Pohlemann, T.; Möller, S.; Schnabelrauch, M.; Hintze, V.; Scharnweber, D. Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. Materials Science and Engineering: C 2017, 73, 310-318. DOI: https://doi.org/10.1016/j.msec.2016.12.087. (69) Yu, J.; Hsu, Y.-C.; Lee, J.-K.; Cheng, N.-C. Enhanced angiogenic potential of adipose-derived stem cell sheets by integration with cell spheroids of the same source. Stem Cell Research & Therapy 2022, 13 (1), 276. DOI: 10.1186/s13287-022-02948-3. (70) Casajuana Ester, M.; Day, R. M. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023, 15 (2), 663. (71) Ng, C. Y.; Kee, L. T.; Al-Masawa, M. E.; Lee, Q. H.; Subramaniam, T.; Kok, D.; Ng, M. H.; Law, J. X. Scalable Production of Extracellular Vesicles and Its Therapeutic Values: A Review. International Journal of Molecular Sciences 2022, 23 (14), 7986. (72) Yan, Y.; Wu, R.; Bo, Y.; Zhang, M.; Chen, Y.; Wang, X.; Huang, M.; Liu, B.; Zhang, L. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Theranostics 2020, 10 (22), 9970-9983. DOI: 10.7150/thno.46639 From NLM. (73) Faruqu, F. N.; Liam-Or, R.; Zhou, S.; Nip, R.; Al-Jamal, K. T. Defined serum-free three-dimensional culture of umbilical cord-derived mesenchymal stem cells yields exosomes that promote fibroblast proliferation and migration in vitro. Faseb j 2021, 35 (1), e21206. DOI: 10.1096/fj.202001768RR From NLM. (74) Wang, X.; Shang, Y.; Dai, S.; Wu, W.; Yi, F.; Cheng, L. MicroRNA-16-5p Aggravates Myocardial Infarction Injury by Targeting the Expression of Insulin Receptor Substrates 1 and Mediating Myocardial Apoptosis and Angiogenesis. Curr Neurovasc Res 2020, 17 (1), 11-17. DOI: 10.2174/1567202617666191223142743 From NLM. (75) Hu, Y.; Rao, S. S.; Wang, Z. X.; Cao, J.; Tan, Y. J.; Luo, J.; Li, H. M.; Zhang, W. S.; Chen, C. Y.; Xie, H. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 2018, 8 (1), 169-184. DOI: 10.7150/thno.21234 From NLM. (76) Huang, C.; Luo, W.; Wang, Q.; Ye, Y.; Fan, J.; Lin, L.; Shi, C.; Wei, W.; Chen, H.; Wu, Y.; et al. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res 2021, 52, 102235. DOI: 10.1016/j.scr.2021.102235 From NLM. (77) Kang, T.; Atukorala, I.; Mathivanan, S. Biogenesis of Extracellular Vesicles. In New Frontiers: Extracellular Vesicles, Mathivanan, S., Fonseka, P., Nedeva, C., Atukorala, I. Eds.; Springer International Publishing, 2021; pp 19-43. (78) Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Frontiers in Immunology 2014, 5, Review. DOI: 10.3389/fimmu.2014.00442. (79) Clément, V.; Roy, V.; Paré, B.; Goulet, C. R.; Deschênes, L. T.; Berthod, F.; Bolduc, S.; Gros-Louis, F. Tridimensional cell culture of dermal fibroblasts promotes exosome-mediated secretion of extracellular matrix proteins. Sci Rep 2022, 12 (1), 19786. DOI: 10.1038/s41598-022-23433-0 From NLM. (80) Wang, Y.; Shen, K.; Sun, Y.; Cao, P.; Zhang, J.; Zhang, W.; Liu, Y.; Zhang, H.; Chen, Y.; Li, S.; et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis. Burns Trauma 2023, 11, tkad034. DOI: 10.1093/burnst/tkad034 From NLM. (81) Bian, X.; Li, B.; Tang, H.; Li, Q.; Hu, W.; Wei, Q.; Ma, K.; Yang, Y.; Li, H.; Fu, X.; et al. Extracellular vesicles derived from fibroblasts induced with or without high glucose exert opposite effects on wound healing and angiogenesis. Front Surg 2022, 9, 1065172. DOI: 10.3389/fsurg.2022.1065172 From NLM. (82) Wu, H.; Yao, Z.; Li, H.; Zhang, L.; Zhao, Y.; Li, Y.; Wu, Y.; Zhang, Z.; Xie, J.; Ding, F.; et al. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. Journal of Nanobiotechnology 2024, 22 (1), 307. DOI: 10.1186/s12951-024-02541-1. (83) Rovere, M.; Reverberi, D.; Arnaldi, P.; Palamà, M. E. F.; Gentili, C. Spheroid size influences cellular senescence and angiogenic potential of mesenchymal stromal cell-derived soluble factors and extracellular vesicles. Front Bioeng Biotechnol 2023, 11, 1297644. DOI: 10.3389/fbioe.2023.1297644 From NLM. (84) Abdik, H.; Kırbaş, O. K.; Bozkurt, B. T.; Avşar Abdik, E.; Hayal, T. B.; Şahin, F.; Taşlı, P. N. Endothelial cell-derived extracellular vesicles induce pro-angiogenic responses in mesenchymal stem cells. FEBS Open Bio 2024, 14 (5), 740-755. DOI: 10.1002/2211-5463.13650 From NLM. (85) Yue, G.; Li, Y.; Liu, Z.; Yu, S.; Cao, Y.; Wang, X. Efficacy of MSC-derived small extracellular vesicles in treating type II diabetic cutaneous wounds: a systematic review and meta-analysis of animal models. Frontiers in Endocrinology 2024, 15, Systematic Review. DOI: 10.3389/fendo.2024.1375632. (86) Yan, Z.; Zhang, T.; Wang, Y.; Xiao, S.; Gao, J. Extracellular vesicle biopotentiated hydrogels for diabetic wound healing: The art of living nanomaterials combined with soft scaffolds. Mater Today Bio 2023, 23, 100810. DOI: 10.1016/j.mtbio.2023.100810 From NLM. (87) Ding, J. Y.; Chen, M. J.; Wu, L. F.; Shu, G. F.; Fang, S. J.; Li, Z. Y.; Chu, X. R.; Li, X. K.; Wang, Z. G.; Ji, J. S. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res 2023, 10 (1), 36. DOI: 10.1186/s40779-023-00472-w From NLM. (88) Al-Masawa, M. E.; Alshawsh, M. A.; Ng, C. Y.; Ng, A. M. H.; Foo, J. B.; Vijakumaran, U.; Subramaniam, R.; Ghani, N. A. A.; Witwer, K. W.; Law, J. X. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics 2022, 12 (15), 6455-6508. DOI: 10.7150/thno.73436 From NLM. (89) Kim, J.; Kim, E. H.; Lee, H.; Sung, J. H.; Bang, O. Y. Clinical-Scale Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Wound Healing. International Journal of Molecular Sciences 2023, 24 (5), 4273. (90) Wang, Y.; Shen, K.; Sun, Y.; Cao, P.; Zhang, J.; Zhang, W.; Liu, Y.; Zhang, H.; Chen, Y.; Li, S.; et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis. Burns & Trauma 2023, 11. DOI: 10.1093/burnst/tkad034 (acccessed 12/25/2024). (91) Garima; Sharma, D.; Kumar, A.; Mostafavi, E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. Mol Ther Nucleic Acids 2023, 32, 822-840. DOI: 10.1016/j.omtn.2023.05.002 From NLM. (92) Chen, P.-J.; Liu, R.-Z.; Hsiao, Y.-S. Self-assembled coronene nanofiber arrays: Toward integrated organic bioelectronics for efficient isolation, detection, and recovery of cancer cells. RSC Adv. 2017, 7, 36765-36776. DOI: 10.1039/C7RA07515D. (93) Takazawa, K.; Inoue, J.; Mitsuishi, K. Self-assembled coronene nanofibers: optical waveguide effect and magnetic alignment. Nanoscale 2014, 6 (8), 4174-4181. DOI: 10.1039/c3nr06760b From NLM. (94) Hu, M.; Hong, L.; He, S.; Huang, G.; Cheng, Y.; Chen, Q. Effects of electrical stimulation on cell activity, cell cycle, cell apoptosis and β‑catenin pathway in the injured dorsal root ganglion cell. Mol Med Rep 2020, 21 (6), 2385-2394. DOI: 10.3892/mmr.2020.11058 From NLM. (95) Chen, C.; Bai, X.; Ding, Y.; Lee, I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomaterials Research 2019, 23 (1), 25. DOI: 10.1186/s40824-019-0176-8. (96) Yağci, Ö.; Özdemir, O. K. Improving the electrical conductivity and electrochemical properties of PEDOT:PSS thin films by Ca and Mg doping. Polymer Bulletin 2022, 79 (12), 11493-11509. DOI: 10.1007/s00289-021-04028-7. (97) Yeh, C.-N.; Wu, C.; Su, H.; Chai, J.-D. Electronic properties of the coronene series from thermally-assisted-occupation density functional theory. RSC Advances 2018, 8 (60), 34350-34358, 10.1039/C8RA01336E. DOI: 10.1039/C8RA01336E. (98) Kim, S.-M.; Kim, C.-H.; Kim, Y.; Kim, N.; Lee, W.-J.; Lee, E.-H.; Kim, D.; Park, S.; Lee, K.; Rivnay, J.; et al. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nature Communications 2018, 9 (1), 3858. DOI: 10.1038/s41467-018-06084-6. (99) Nisha, S.; Senthil Kumar, A. π-Self-Assembly of a Coronene on Carbon Nanomaterial-Modified Electrode and Its Symmetrical Redox and H2O2 Electrocatalytic Reduction Functionalities. ACS Omega 2020, 5 (20), 11817-11828. DOI: 10.1021/acsomega.0c01258. (100) Zhang, H.; Shen, Y.; Kim, I. M.; Liu, Y.; Cai, J.; Berman, A. E.; Nilsson, K. R.; Weintraub, N. L.; Tang, Y. Electrical Stimulation Increases the Secretion of Cardioprotective Extracellular Vesicles from Cardiac Mesenchymal Stem Cells. Cells 2023, 12 (6). DOI: 10.3390/cells12060875 From NLM. (101) Erwin, N.; Serafim, M. F.; He, M. Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications. Pharm Res 2023, 40 (4), 833-853. DOI: 10.1007/s11095-022-03420-w From NLM. (102) Kowkabany, G.; Bao, Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024, 29 (19). DOI: 10.3390/molecules29194672 From NLM. (103) Auger, C.; Brunel, A.; Darbas, T.; Akil, H.; Perraud, A.; Bégaud, G.; Bessette, B.; Christou, N.; Verdier, M. Extracellular Vesicle Measurements with Nanoparticle Tracking Analysis: A Different Appreciation of Up and Down Secretion. Int J Mol Sci 2022, 23 (4). DOI: 10.3390/ijms23042310 From NLM. (104) Kang, S. Y.; Lee, E. J.; Byun, J. W.; Han, D.; Choi, Y.; Hwang, D. W.; Lee, D. S. Extracellular Vesicles Induce an Aggressive Phenotype in Luminal Breast Cancer Cells Via PKM2 Phosphorylation. Front Oncol 2021, 11, 785450. DOI: 10.3389/fonc.2021.785450 From NLM. (105) Hartjes, T. A.; Mytnyk, S.; Jenster, G. W.; van Steijn, V.; van Royen, M. E. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering (Basel) 2019, 6 (1). DOI: 10.3390/bioengineering6010007 From NLM. (106) Chan, S. S. Y.; Go, S. X.; Meivita, M. P.; Lee, D.; Bajalovic, N.; Loke, D. K. Ultra-efficient highly-selective MFC-7 cancer cell therapy enabled by combined electric-pulse carbon 1D-nanomaterials platforms. Materials Advances 2022, 3 (9), 3915-3924, 10.1039/D1MA01118A. DOI: 10.1039/D1MA01118A. (107) Ramli, M. M.; Rosman, A. S.; Mazlan, N. S.; Ahmad, M. F.; Halin, D. S. C.; Mohamed, R.; Osman, N. H.; Reshak, A. H. Cell viability and electrical response of breast cancer cell treated in aqueous graphene oxide solution deposition on interdigitated electrode. Sci Rep 2021, 11 (1), 20702. DOI: 10.1038/s41598-021-00171-3 From NLM. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97808 | - |
| dc.description.abstract | 細胞外囊泡 (EV) 的治療潛力已引起廣泛關注,應用於包括傷口癒合和再生醫學在內的一系列臨床領域。然而,在優化 EV 的產量和治療品質方面仍面臨挑戰。在此背景下,出現了兩種截然不同但又互相補充的策略。第一種策略是透過使用獨特的細胞形態來增強 EV 的產生,例如人類脂肪幹細胞 (hASC) 的細胞球體培養。這些 3D 培養物已被證明能夠顯著增加 EV 的分泌,同時改善所產生 EV 的血管生成特性,這對於傷口癒合至關重要。在糖尿病大鼠模型中的體內研究表明,EV 治療後膠原蛋白生成、上皮再生和血管生成增強,凸顯了該方法的治療前景。第二種策略著重於將生物電子界面 (BEI) 與奈米結構基底結合,以調節細胞行為並增加 EV 的產生。此方法採用基於暈苯的奈米纖維陣列,並以膠原蛋白等生物相容性層進行改質,從而增強細胞黏附和增殖。在這些細胞奈米結構系統中施加持續電刺激,可使永生化骨髓基質細胞 (IBMSC) 的胞外囊泡 (EV) 釋放量顯著增加 300%,且對 EV 大小和細胞活力無不良影響。這些發現凸顯了 BEI 和奈米結構材料在增強 EV 生成的同時保持細胞完整性的潛力。細胞形態和生物電子介面這兩種策略都代表著優化 EV 生成和療效的有希望的途徑。兩者結合,可提供一種強大而多層面的方法來提高 EV 的產量和質量,從而增強其在再生醫學、傷口癒合等領域的應用潛力。 | zh_TW |
| dc.description.abstract | The therapeutic potential of extracellular vesicles (EVs) has garnered significant interest for a range of clinical applications, including wound healing and regenerative medicine. However, challenges persist in optimizing both the yield and therapeutic quality of EVs. In this context, two distinct yet complementary strategies have emerged. The first involves enhancing EV production through the use of unique cellular morphologies, such as cell spheroid cultures of human adipose-derived stem cells (hASCs). These 3D cultures have been shown to significantly increase EV secretion while improving the angiogenic properties of the produced EVs, which are critical for wound healing. In vivo studies in diabetic rat models demonstrated enhanced collagen production, re-epithelization, and angiogenesis following EV treatment, underlining the therapeutic promise of this approach. The second strategy focuses on the integration of bioelectronic interfaces (BEIs) with nanostructured substrates to modulate cell behavior and increase EV production. By employing coronene-based nanofiber arrays and modifying them with biocompatible layers like collagen, this approach promotes stronger cell adhesion and proliferation. The addition of continuous electrical stimulation to these cell-nanostructure systems led to a significant 300% increase in EV release from Immortalized Bone Marrow Stromal Cells (IBMSCs), with no adverse effects on EV size or cell viability.These findings highlight the potential of BEIs and nanostructured materials to enhance EV production while maintaining cell integrity. Both strategies—cellular morphologies and bioelectronic interfaces—represent promising avenues for optimizing EV production and therapeutic efficacy. When combined, they offer a powerful, multifaceted approach to improving the yield and quality of EVs, enhancing their potential for applications in regenerative medicine, wound healing, and beyond. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:05:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-17T16:05:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Certificate of Thesis/Dissertation Approval from the Oral Defense Committee……...…I
Acknowledgement and/or Dedication………………………………..…………………II Abstract & Keywords (Chinese)…………………………………………………...…..III Abstract & Keywords (English)………………………………………………………..V Table of Contents…..………………………………………………………………….VII List of Figures…………..…………………………………………………………......XII Chapter 1Introduction………...………………………………………………………….1 1.1 Biointerface Engineering…………...………………………………………………..1 1.1.1 Overview of Biointerface Engineering ………………………………...………..1 1.1.2 Surface chemistry …………………………………………………...…………...2 1.1.3 Tissue engineering scaffolds……………………………………………..….…...4 1.1.4 Three-dimensional Cell Culturing Methods…………………………….………..6 1.1.5 Organic Electrochemical Transistor………………………………………...……7 1.1.6 Biomedical Microelectromechanical systems……………………………....……8 1.2 Wound Healing………………………………………………………...…………….9 1.2.1 Overview of Wound Healing…………………………………………………...9 1.2.2 Challenges of wound healing………………………………………………….10 1.2.3 Factors Affecting Wound Healing…………………………………………….12 1.2.4 Diabetic Wound Healing…………………………………………………...…14 1.2.5 Bioengineering Approaches for Wound Healing……………………………...15 1.3 Extracellular Vesicles……………………………………………………………..16 1.3.1 Overview of Extracellular vesicles……………………………………………16 1.3.2 Mechanisms of EV Biogenesis………………………………………………..18 1.3.3 EV Isolation and Characterization Methods…………………………………..20 1.3.4 Strategies for Extracellular vesicles production………………………………20 1.4 Motivations and Aims………………………………………………………….…22 Chapter 2 Materials and Methods………………………………………………….…24 2.1 Materials……………………………………………………………………….….24 2.2 Equipment………………………………………………………………………...27 2.3 Methods………………………………………………………………….……..…29 2.3.1 Monolayer cell culture…………………………………………………..…….29 2.3.2 Sheet morphology formation ..……..……………………………………….…29 2.3.3 Spheroid morphology formation ………………………………………….......30 2.3.4 Isolation of EVs from different cell morphologies…………………………....31 2.3.5 Physical characterization of EVs……………………………………………...32 2.3.6 RNA and MicroRNA data analysis…………………………………………....32 2.3.7 Scratch assay………………………………………………………….……….33 2.3.8 Cell proliferation…………………………………………………………........33 2.3.9 Tube formation assay………………………………………………………….34 2.3.10 In vivo Wound Healing Experiments……………………………………..…34 2.3.11 Histology, Immunochemistry and Immunofluorescence Analysis…………..35 2.3.12 Fabrication of ITO/PEDOT:PSS pattern…………………………………….35 2.3.13 CR-based NF arrays and device assembly…………………………………..36 2.3.14 Surface modification of CR-based NF arrays…………………………….…37 2.3.15 Morphological characterization…………………………………………..…37 2.3.16 Electrochemical characterization…………………………………….………38 2.3.17 OECT Cell studies………………………………………………………...…38 2.3.18 OECT Extracellular vesicles enhancement experiments…………………….39 2.3.19 Isolation of EVs from OECT……………………………………………...…39 2.3.20 Physical characterization of EVs from OECT………………………………40 2.3.21 Statistical analysis……………………………………………………………40 Chapter 3 Results and Discussion ……………………………………………………41 3.1 Three dimensional cell morphology experiments………………………………...41 3.1.1 Selection of morphology spheroid and size …………………………………..41 3.1.1.1 Cell morphology (spheroid) diameter measurement……..………………...41 3.1.1.2 Nanoparticle Tracking Analysis of cell morphology (spheroid) EVs.……42 3.1.1.3 Bicinchoninic Acid assay of cell morphology (spheroid) EVs…………...45 3.1.1.4 Cell viability effect of EVs from cell morphology (spheroids)…………...46 3.1.2 hASC characterization……………………………………………………...…48 3.1.2.1 Histological examination………………………………………..…………48 3.1.2.2 Scanning Electronic Microscopy………………………………………..…50 3.1.3 Physical characterization of EVs……………………………………………...52 3.1.3.1 Nanoparticle Tracking Analysis of cell morphologies EVs……………….52 3.1.3.2 Bicinchoninic Acid assay of cell morphologies EVs……………………..54 3.1.3.3 Transmission Electron Microscopy of cell morphologies EVs……………57 3.1.4 MicroRNA data analysis………………………………………………………58 3.1.4.1 Expression of miRNAs……………………………………………………58 3.1.4.2 EV biogenesis……………………………………………………………...59 3.1.5 Scratch assay…………………………………………………………………..61 3.1.5.1 Cell migration assay……………………………………………………….61 3.1.6 Cell proliferation………………………………………………………………65 3.1.6.1 Cell viability in endothelial cells…………………………………………..65 3.1.6.2 Cell viability in fibroblast cells……………………………………………66 3.1.7 Tube formation assay………………………………………………………….68 3.1.7.1 Angiogenic effect of EVs………………………………………………….68 3.1.8 In vivo Wound Healing Experiments …………………………………...……70 3.1.8.1 Wound closure rate………………………………………………………..70 3.1.9 Histology, Immunohistochemistry and immunofluorescence Analysis………75 3.1.9.1 Promoted granulation tissue regeneration…………………………………75 3.1.9.2 Collagen deposition………………………………………………………..77 3.1.9.3 Epidermal thickness……………………………………………………….81 3.1.9.4 CD31antibody staining……………………………………………………83 3.1.9.5 H&E Staining ……………………………………………………………..87 3.2 OECT electrical stimulation experiments………………………………………...88 3.2.1 Characterization of OECT ……………………………………………………88 3.2.1.1 SEM characterization……………………………………………………...88 3.2.1.2 Brightfield characterization before and after ES. …………………………90 3.2.1.3 Cyclic voltammetry analysis………………………………………………95 3.2.1.4 Electrochemical impedance spectroscopy spectral analysis………………..97 3.2.1.5 Extracellular vesicles profile………………………………………………99 3.2.2 Physical characterization of EVs post ES……………………………………..101 3.2.2.1 Nanoparticle Tracking Analysis of EVs post ES in MCF-7……………...101 3.2.2.2 Nanoparticle Tracking Analysis of EVs post ES in IBMSC …………….105 3.2.2.3 Bicinchoninic Acid assay of EVs post ES in MCF-7…………………….108 3.2.2.4 Bicinchoninic Acid assay of EVs post ES in IBMSC……………………110 3.2.3 Cell characterization post ES………………………………………………...112 3.2.3.1 Cell viability post ES in MCF-7………………………………………….112 3.2.3.2 Cell viability post ES in IBMSC…………………………………………113 Chapter 4 Conclusions and Future Works……………………………………………115 References…………………………………………………………………………….117 | - |
| dc.language.iso | en | - |
| dc.subject | 有機電化學電晶體(OECT) | zh_TW |
| dc.subject | 糖尿病傷口癒合 | zh_TW |
| dc.subject | 單層形態 | zh_TW |
| dc.subject | 片狀形態 | zh_TW |
| dc.subject | 球狀形態 | zh_TW |
| dc.subject | 細胞外囊泡(EV) | zh_TW |
| dc.subject | 循環腫瘤細胞(CTC) | zh_TW |
| dc.subject | 暈苯奈米纖維(CR-NF) | zh_TW |
| dc.subject | diabetes wound healing | en |
| dc.subject | Coronene nanofibers (CR-NF) | en |
| dc.subject | organic electrochemical transistor (OECT) | en |
| dc.subject | circulating tumor cell (CTC) | en |
| dc.subject | extracellular vesicles (EV) | en |
| dc.subject | spheroid morphology | en |
| dc.subject | sheet morphology | en |
| dc.subject | monolayer morphology | en |
| dc.title | 優化細胞外囊泡生成和治療潛力的多方面策略 | zh_TW |
| dc.title | Multifaceted Strategies for Optimizing Extracellular Vesicle Production and Therapeutic Potential | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蕭育生;侯詠德;魏暘;楊凱強;林哲緯 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Sheng Hsiao;Yung-Te Hou;Yang Wei;Kai-Chiang Yang;Che Wei Lin | en |
| dc.subject.keyword | 暈苯奈米纖維(CR-NF),有機電化學電晶體(OECT),循環腫瘤細胞(CTC),細胞外囊泡(EV),球狀形態,片狀形態,單層形態,糖尿病傷口癒合, | zh_TW |
| dc.subject.keyword | Coronene nanofibers (CR-NF),organic electrochemical transistor (OECT),circulating tumor cell (CTC),extracellular vesicles (EV),spheroid morphology,sheet morphology,monolayer morphology,diabetes wound healing, | en |
| dc.relation.page | 124 | - |
| dc.identifier.doi | 10.6342/NTU202501701 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 永續化學科技國際研究生博士學位學程 | - |
| dc.date.embargo-lift | 2025-07-18 | - |
| 顯示於系所單位: | 永續化學科技國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 68.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
