請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐永豐 | zh_TW |
| dc.contributor.advisor | Yung-Fong Hsu | en |
| dc.contributor.author | 張瑋宸 | zh_TW |
| dc.contributor.author | Wei-Chen Chang | en |
| dc.date.accessioned | 2025-07-16T16:17:44Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46(11), 1497–1512. https://doi.org/10.1287/mnsc.46.11.1497.12080
Abdellaoui, M., Bleichrodt, H., L’Haridon, O., & van Dolder, D. (2016). Measuring loss aversion under ambiguity: A method to make prospect theory completely observable. Journal of Risk and Uncertainty, 52(1), 1–20. https://doi.org/10.1007/s11166-016-9234-y Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53(10), 1659–1674. https://doi.org/10.1287/mnsc.1070.0711 Alós-Ferrer, C., Fehr, E., & Netzer, N. (2021). Time will tell: Recovering preferences when choices are noisy. Journal of Political Economy, 129(6), 1828–1877. https://doi.org/10.1086/713732 Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2006). Elicitation using multiple price list formats. Experimental Economics, 9(4), 383–405. https://doi.org/10.1007/s10683-006-7055-6 Anderson, A. J., & Johnson, C. A. (2006). Comparison of the ASA, MOBS, and ZEST threshold methods. Vision Research, 46(15), 2403–2411. https://doi.org/10.1016/j.visres.2006.01.018 Bleichrodt, H., & L’Haridon, O. (2023). Prospect theory’s loss aversion is robust to stake size. Judgment and Decision Making, 18, e14. https://doi.org/10.1017/jdm.2023.2 Bostic, R., Herrnstein, R., & Luce, R. D. (1990). The effect on the preference-reversal phenomenon of using choice indifferences. Journal of Economic Behavior & Organization, 13(2), 193–212. https://doi.org/10.1016/0167-2681(90)90086-S Csermely, T., & Rabas, A. (2016). How to reveal people’s preferences: Comparing time consistency and predictive power of multiple price list risk elicitation methods. Journal of Risk and Uncertainty, 53(2), 107–136. https://doi.org/10.1007/s11166016-9247-6 Fox, C. R., & Poldrack, R. A. (2014). Prospect theory and the brain. In P. W. Glimcher & E. Fehr (Eds.), Neuroeconomics (2nd ed., pp. 533–567). Academic Press. https://doi.org/10.1016/B978-0-12-416008-8.00042-5 Glöckner, A., & Pachur, T. (2012). Cognitive models of risky choice: Parameter stability and predictive accuracy of prospect theory. Cognition, 123(1), 21–32. https://doi.org/10.1016/j.cognition.2011.12.002 Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92(5). Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2). Kesten, H. (1958). Accelerated stochastic approximation. The Annals of Mathematical Statistics, 29(1), 41–59. Köbberling, V., & Wakker, P. P. (2005). An index of loss aversion. Journal of Economic Theory, 122(1), 119–131. https://doi.org/10.1016/j.jet.2004.03.009 Luce, R. D. (2000). Utility of gains and losses: Measurement-theoretical, and experimental approaches. Lawrence Erlbaum Associates Publishers. Mosteller, F., & Nogee, P. (1951). An experimental measurement of utility. Journal of Political Economy, 59(5), 371–404. Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical bayesian parameter estimation for cumulative prospect theory. Journal of Mathematical Psychology, 55(1), 84–93. https://doi.org/10.1016/j.jmp.2010.08.006 Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586 Scheibehenne, B., & Pachur, T. (2015). Using bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice. Psychonomic Bulletin & Review, 22(2), 391–407. https://doi.org/10.3758/s13423-014-0684-4 Stott, H. P. (2006). Cumulative prospect theory’s functional menagerie. Journal of Risk and Uncertainty, 32(2), 101–130. https://doi.org/10.1007/s11166-006-8289-6 Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. The Journal of the Acoustical Society of America, 41(4A), 782–787. https://doi.org/10.1121/1.1910407 Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503–2522. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323. Tversky, A., Sattath, S., & Slovic, P. (1988). Contingent weighting in judgment and choice. Psychological Review, 95(3), 371–384. https://doi.org/10.1037/0033-295X.95.3.371 Tversky, A., Slovic, P., & Kahneman, D. (1990). The causes of preference reversal. The American Economic Review, 80(1), 204–217. https://doi.org/10.1017/CBO9780511618031.009 Tyrrell, R. A., & Owens, D. A. (1988). A rapid technique to assess the resting states of the eyes and other threshold phenomena: The modified binary search (MOBS). Behavior Research Methods, Instruments, & Computers, 20(2), 137–141. https://doi.org/10.3758/BF03203817 van de Kuilen, G., & Wakker, P. P. (2011). The midweight method to measure attitudes toward risk and ambiguity. Management Science, 57(3), 582–598. https://doi.org/10.1287/mnsc.1100.1282 Wakker, P. (2010). Prospect theory: For risk and ambiguity. Cambridge University Press. Wakker, P., & Deneffe, D. (1996). Eliciting von Neumann–Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42(8), 1131–1150. Yang, H.-H., & Hsu, Y.-F. (2024). The generalized Robbins–Monro process and its application to psychophysical experiments for threshold estimation. Journal of Mathematical Psychology, 120–121, 102855. https://doi.org/10.1016/j.jmp.2024.102855 Yu, C. W., Zhang, Y. J., & Zuo, S. X. (2021). Multiple switching and data quality in the multiple price list. The Review of Economics and Statistics, 103(1), 136–150. https://doi.org/10.1162/rest_a_00895 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97797 | - |
| dc.description.abstract | 二分法(the bisection method)被應用於所謂的權衡法(trade-off paradigm, Abdellaoui, 2000; Wakker and Deneffe, 1996),以測量決策理論中評估效用的無異點。然而其精確度可能受到兩項因素的影響:一是參與者選擇反應中的隨機性,二是二分演算法本身的邊界設定規則。本研究旨在檢驗二分法(包含其簡化版本 SimpBisection)之有效性,並探討其他適測性心理物理學方法,如 ASA、PEST 與 MOBS,作為估計無異點的可能替代方法。
本研究進行了兩項模擬實驗,採用 Abdellaoui et al. (2016) 中用以測量價值函數的實驗設計,比較各種無異點估計方法的表現。模擬結果顯示,在相同終止準則下,所有方法的估計大致不偏。然而,若邊界設定不當,二分法可能會產生有偏估計。在測試的方法中,ASA 有最高的效率性,但通常需要較多次的迭代數。當迭代次數有限(但非極少)時,對選擇行為較為確定的參與者而言,採用固定初始邊界的二分法與 SimpBisection 均能展現良好的效率性。相對地,對於選擇行為較隨機性的參與者,ASA 與 SimpBisection 則為較佳的選擇。鑑於實際實驗常見參與者異質性及限制迭代次數的情況,SimpBisection 可視為各方法間的良好折衷方案。 | zh_TW |
| dc.description.abstract | The bisection method has been implemented within the so-called trade-off paradigm (Abdellaoui, 2000; Wakker and Deneffe, 1996) to elicit indifference points for utility assessment in decision theory. However, its precision may be affected by two factors: response randomness in participants' choices and the boundary determination rules inherent in the bisection algorithm. This study aims to evaluate the validity of the bisection method --- including a simplified version, SimpBisection --- and to explore adaptive psychophysical methods such as ASA, PEST, and MOBS as potential alternatives for eliciting indifference points. Two simulation studies were conducted to compare the performance of these elicitation methods under the experimental design of Abdellaoui et al. (2016) for measuring the value function. The simulation results show that, under the same stopping criterion, all methods are largely unbiased. However, the bisection method can produce biased estimates if the boundary settings are poorly chosen. Among the tested methods, ASA demonstrates the highest efficiency, although it typically requires more iterations to complete the procedure. When the number of iterations is limited (but not too small), both the bisection method (with fixed initial boundaries) and SimpBisection perform efficiently for participants exhibiting more deterministic choice behavior. For participants with greater choice randomness, ASA and SimpBisection offer better alternatives. Given the prevalence of participant heterogeneity and practical constraints on iteration counts in real experiments, SimpBisection appears to be a reasonable compromise. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:17:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:17:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgements .................................................... i 摘要 ............................................................... iii Abstract ............................................................ v Table of Contents .................................................. vii List of Figures ..................................................... ix List of Tables ...................................................... xi Chapter 1 Introduction ............................................. 1 Chapter 2 Prospect Theory .......................................... 5 2.1 Review of Prospect Theory ........................................ 5 2.2 Measuring Prospect Theory ........................................ 6 2.3 Existing Data .................................................... 10 Chapter 3 Methods for Eliciting Indifference Points ............... 13 3.1 The Bisection Method ............................................ 13 3.2 Adaptive Psychophysical Methods .................................. 16 Chapter 4 Simulations ............................................. 21 4.1 Ideal Agent ..................................................... 21 4.2 Elicitation Methods ............................................. 23 Chapter 5 Study 1 .................................................. 27 Chapter 6 Study 2 .................................................. 33 Chapter 7 Discussion .............................................. 41 References ......................................................... 45 Appendix A — Supplemental Results in Study 2 ....................... 49 A.1 Analysis of Bleichrodt and L’Haridon (2023) consistency check data ....................... 49 | - |
| dc.language.iso | en | - |
| dc.subject | 無異點 | zh_TW |
| dc.subject | 損失趨避 | zh_TW |
| dc.subject | 展望理論 | zh_TW |
| dc.subject | 模擬研究 | zh_TW |
| dc.subject | 隨機逼近法 | zh_TW |
| dc.subject | 價值函數 | zh_TW |
| dc.subject | 二分法 | zh_TW |
| dc.subject | value function | en |
| dc.subject | bisection | en |
| dc.subject | indifference point | en |
| dc.subject | loss aversion | en |
| dc.subject | prospect theory | en |
| dc.subject | simulation | en |
| dc.subject | stochastic approximation | en |
| dc.title | 二分法與適測性心理物理方法於偏好研究中無異點估計之比較 | zh_TW |
| dc.title | Comparison of Bisection-Based and Adaptive Psychophysical Methods for Eliciting Indifference Points in Preference Research | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳暐;林逸軒 | zh_TW |
| dc.contributor.oralexamcommittee | Wei James Chen;Yi-Hsuan Lin | en |
| dc.subject.keyword | 二分法,無異點,損失趨避,展望理論,模擬研究,隨機逼近法,價值函數, | zh_TW |
| dc.subject.keyword | bisection,indifference point,loss aversion,prospect theory,simulation,stochastic approximation,value function, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202501601 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 心理學系 | - |
| dc.date.embargo-lift | 2025-07-17 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
