Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰昌zh_TW
dc.contributor.advisorTaychang Wangen
dc.contributor.author余彥霆zh_TW
dc.contributor.authorYen-Ting Yuen
dc.date.accessioned2025-07-16T16:14:09Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-06-25-
dc.identifier.citationAcemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. American Economic Review, 105(2), 564–608. https://doi.org/10.1257/aer.20130456
Adrian, T., & Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106(7), 1705–1741. https://doi.org/10.1257/aer.20120555
Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1–33. https://doi.org/10.1086/262109
Allen, F., & Gale, D. (2007). Understanding financial crises. Oxford University Press. https://doi.org/10.1093/oso/9780199251414.003.0003
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2325398
Altman, E. I. (1983). Corporate financial distress: A complete guide to predicting, avoiding, and dealing with bankruptcy. John Wiley & Sons. https://doi.org/10.1002/9781118267806.ch4
Altman, E. I. (2000). Predicting financial distress of companies: Revisiting the Z-score and ZETA® models. Stern School of Business, New York University. https://doi.org/10.4337/9780857936097.00027
Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETA analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29–54. https://doi.org/10.1016/0378-4266(77)90017-6
Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z-score model. Journal of International Financial Management & Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053
Altman, E. I., & Sabato, G. (2007). Modelling credit risk for SMEs: Evidence from the US market. Abacus, 43(3), 332–357. https://doi.org/10.1111/j.1467-6281.2007.00234.x
Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3), 312–329. https://doi.org/10.1287/mnsc.49.3.312.12741
Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171
Beaver, W. H., McNichols, M. F., & Rhie, J. W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93–122. https://doi.org/10.1007/s11142-004-5861-1
Biddle, G. C., Ma, M. L., & Song, F. M. (2020). Accounting conservatism and bankruptcy risk. Journal of Accounting, Auditing & Finance, 35(4), 681–715. https://doi.org/10.1177/0148558X18771970
Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010
Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), 1–25. https://doi.org/10.2307/2490525
Borio, C., & Lowe, P. (2002). Asset prices, financial and monetary stability: Exploring the nexus (BIS Working Papers No. 114). Bank for International Settlements. https://doi.org/10.2139/ssrn.846305
Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing values. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Computer Vision—ECCV 2002 (pp. 707–720). Springer. https://doi.org/10.1007/3-540-47977-5_48
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brunnermeier, M. K., Crockett, A., Goodhart, C., Persaud, A. D., & Shin, H. S. (2009). The fundamental principles of financial regulation (Geneva Reports on the World Economy No. 11). International Center for Monetary and Banking Studies. https://doi.org/10.1007/978-1-4302-4558-2_13
Calomiris, C. W., & Gorton, G. (1991). The origins of banking panics: Models, facts, and bank regulation. In R. G. Hubbard (Ed.), Financial markets and financial crises (pp. 109–173). University of Chicago Press. https://doi.org/10.7208/chicago/9780226355884.003.0004
Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899–2939. https://doi.org/10.1111/j.1540-6261.2008.01416.x
Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323. https://doi.org/10.1016/j.iref.2018.03.008
Chang, S. J., & Hong, J. (2000). Economic performance of group-affiliated companies in Korea: Intragroup resource sharing and internal business transactions. Academy of Management Journal, 43(3), 429–448. https://doi.org/10.5465/1556403
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537–569. https://doi.org/10.1023/B:EUFI.0000040430.07339.b9
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785
Chung, F. R. K. (1997). Spectral graph theory. American Mathematical Society. https://doi.org/10.1090/cbms/092
Claessens, S., & Kose, M. A. (2013). Financial crises: Explanations, types, and implications (IMF Working Paper No. WP/13/28). International Monetary Fund. https://doi.org/10.5089/9781475561005.001
Cohen, L., & Frazzini, A. (2008). Economic links and predictable returns. The Journal of Finance, 63(4), 1977–2011. https://doi.org/10.1111/j.1540-6261.2008.01380.x
Cole, R. A., & Gunther, J. W. (1998). Predicting bank failures: A comparison of on- and off-site monitoring systems. Journal of Financial Services Research, 13(2), 103–117. https://doi.org/10.1023/A:1007983812474
Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. https://doi.org/10.2307/2490225
Diamond, D. W., & Dybvig, P. H. (1983). Bank runs, deposit insurance, and liquidity. Journal of Political Economy, 91(3), 401– 419. https://doi.org/10.1086/261155
Diem, C., Pichler, A., & Thurner, S. (2020). What is the minimal systemic risk in financial exposure networks? Journal of Economic Dynamics and Control, 116, 103900. https://doi.org/10.1016/j.jedc.2020.103900
Duffie, D., & Singleton, K. J. (2003). Credit risk: Pricing, measurement, and management. Princeton University Press. https://doi.org/10.1007/s00712-003-0038-6
Du Jardin, P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing, 73(10–12), 2047–2060. https://doi.org/10.1016/j.neucom.2009.11.034
Eichengreen, B., & Portes, R. (1987). The anatomy of financial crises. In M. P. Dooley & P. Isard (Eds.), Capital controls, exchange rates and monetary policy in the world economy (pp. 193–228). Cambridge University Press.
Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115–3153. https://doi.org/10.1257/aer.104.10.3115
Fazzari, S. M., Hubbard, R. G., & Petersen, B. C. (1987). Financing constraints and corporate investment. Brookings Papers on Economic Activity, 1987(1), 141–206. https://doi.org/10.2307/2534426
Ferris, S. P., Kim, K. A., & Kitsabunnarat, P. (2003). The costs (and benefits?) of diversified business groups: The case of Korean chaebols. Journal of Banking & Finance, 27(2), 251–273. https://doi.org/10.1016/S0378-4266(02)00201-9
Frydman, H., Altman, E. I., & Kao, D. (1985). Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance, 40(1), 269–291. https://doi.org/10.1111/j.1540-6261.1985.tb03576.x
Gai, P., & Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120), 2401–2423. https://doi.org/10.1098/rspa.2009.0410
Gopalan, R., Nanda, V., & Seru, A. (2007). Affiliated firms and financial support: Evidence from Indian business groups. Journal of Financial Economics, 86(3), 759–795. https://doi.org/10.1016/j.jfineco.2006.07.012
Granovetter, M. (1995). Coase revisited: Business groups in the modern economy. Industrial and Corporate Change, 4(1), 93–130. https://doi.org/10.1093/icc/4.1.93
Greenwald, B. C., & Stiglitz, J. E. (1993). Financial market imperfections and business cycles. The Quarterly Journal of Economics, 108(1), 77–114. https://doi.org/10.2307/2118406
Grice, J. S., & Ingram, R. W. (2001). Tests of the generalizability of Altman's bankruptcy prediction model. Journal of Business Research, 54(1), 53–61. https://doi.org/10.1016/S0148-2963(99)00054-0
Guillén, M. F. (2000). Business groups in emerging economies: A resource-based view. Academy of Management Journal, 43(3), 362–380. https://doi.org/10.2307/1556406
Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355. https://doi.org/10.1038/nature09659
Härdle, W., Lee, Y. J., Schäfer, D., & Yeh, Y. R. (2009). Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies. Journal of Forecasting, 28(6), 512–534. https://doi.org/10.1002/for.1127
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. https://doi.org/10.2307/1912352
Hertzel, M. G., Li, Z., Officer, M. S., & Rodgers, K. J. (2008). Inter-firm linkages and the wealth effects of financial distress along the supply chain. Journal of Financial Economics, 87(2), 374–398. https://doi.org/10.1016/j.jfineco.2007.02.006
Hoshi, T., Kashyap, A., & Scharfstein, D. (1990). The role of banks in reducing the costs of financial distress in Japan. Journal of Financial Economics, 27(1), 67–88. https://doi.org/10.1016/0304-405X(90)90022-Z
Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. The Accounting Review, 79(4), 1011–1038. https://doi.org/10.2308/accr.2004.79.4.1011
Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance & Accounting, 44(1–2), 3–34. https://doi.org/10.1111/jbfa.12155
Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-1904-8_7
Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: The causes of banking and balance-of-payments problems. American Economic Review, 89(3), 473–500. https://doi.org/10.1257/aer.89.3.473
Kaufman, G. G. (1999). Banking and currency crises and systemic risk. Research in Financial Services: Banking, Financial Markets and Systemic Risk, 10, 1–30. https://doi.org/10.1111/1468-0416.00036
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (pp. 3146–3154). https://doi.org/10.5555/3294771.3294950
Keynes, J. M. (1936). The general theory of employment, interest and money. Macmillan. https://doi.org/10.2307/2549064
Khanna, T., & Rivkin, J. W. (2001). Estimating the performance effects of business groups in emerging markets. Strategic Management Journal, 22(1), 45–74. https://doi.org/10.1002/smj.177
Khanna, T., & Yafeh, Y. (2005). Business groups and risk sharing around the world. The Journal of Business, 78(1), 301–340. https://doi.org/10.1086/426139
Kim, M. J., & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373–3379. https://doi.org/10.1016/j.eswa.2009.09.031
King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137–163. https://doi.org/10.1093/oxfordjournals.pan.a003168
Kritzman, M., Li, Y., Page, S., & Rigobon, R. (2011). Principal components as a measure of systemic risk. Journal of Portfolio Management, 37(4), 112–126. https://doi.org/10.3905/jpm.2011.37.4.112
Laeven, L., & Valencia, F. (2013). Systemic banking crises database. IMF Economic Review, 61(2), 225–270. https://doi.org/10.1057/imfer.2013.12
La Porta, R., Lopez‐de‐Silanes, F., & Shleifer, A. (1999). Corporate ownership around the world. The Journal of Finance, 54(2), 471–517. https://doi.org/10.1111/0022-1082.00167
Lau, A. H. L. (1987). A five‐state financial distress prediction model. Journal of Accounting Research, 25(1), 127–138. https://doi.org/10.2307/2491218
Leff, N. H. (1978). Industrial organization and entrepreneurship in the developing countries: The economic groups. Economic Development and Cultural Change, 26(4), 661–675. https://doi.org/10.2307/1791779
Lincoln, J. R., Gerlach, M. L., & Ahmadjian, C. L. (1996). Keiretsu networks and corporate performance in Japan. American Sociological Review, 61(1), 67–88. https://doi.org/10.2307/2657346
Lo, A. W. (1986). Logit versus discriminant analysis: A specification test and application to corporate bankruptcies. Journal of Econometrics, 31(2), 151–178. https://doi.org/10.1016/0169-7161(86)90017-2
Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614. https://doi.org/10.1016/j.eswa.2004.08.024
Mishkin, F. S. (1992). Anatomy of a financial crisis. Journal of Evolutionary Economics, 2(2), 115–130. https://doi.org/10.1007/BF01206990
Mishkin, F. S. (1999). Global financial instability: Framework, events, issues. Journal of Economic Perspectives, 13(4), 3–20. https://doi.org/10.1257/jep.13.4.3
Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187–221. https://doi.org/10.1016/0304-405X(84)90023-5
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In 1990 IJCNN International Joint Conference on Neural Networks (pp. 163–168). IEEE. https://doi.org/10.1109/IJCNN.1990.118941
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395
Peek, J., & Rosengren, E. S. (2003). Unnatural selection: Perverse incentives and the misallocation of credit in Japan. American Economic Review, 95(4), 1144–1166. https://doi.org/10.1257/000282803769921901
Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22(1), 435–480. https://doi.org/10.1093/rfs/hhm099
Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184–199. https://doi.org/10.1007/BF02755985
Reinhart, C. M., & Rogoff, K. S. (2009). This time is different: Eight centuries of financial folly. Princeton University Press. https://doi.org/10.4000/histoiremesure.3997
Schwartz, A. J. (1986). Real and pseudo-financial crises. In F. Capie & G. E. Wood (Eds.), Financial crises and the world banking system (pp. 11–31). Macmillan.
Shin, H. H., & Stulz, R. M. (1998). Are internal capital markets efficient? The Quarterly Journal of Economics, 113(2), 531–552. https://doi.org/10.1162/003355398555637
Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127–135. https://doi.org/10.1016/j.eswa.2004.08.009
Shleifer, A., & Vishny, R. W. (1992). Liquidation values and debt capacity: A market equilibrium approach. The Journal of Finance, 47(4), 1343–1366. https://doi.org/10.1111/j.1540-6261.1992.tb04661.x
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101–124. https://doi.org/10.1086/209665
Stone, M., & Rasp, J. (1991). Tradeoffs in the choice between Logit and OLS for accounting choice studies. The Accounting Review, 66(1), 170–187. https://www.jstor.org/stable/247712
Strachan, H. W. (1976). Family and other business groups in economic development: The case of Nicaragua. Praeger.
Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications, 34(4), 2639–2649. https://doi.org/10.1016/j.eswa.2007.05.019
Wang, G. J., Xie, C., & Chen, S. (2013). Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation analysis. Physica A: Statistical Mechanics and Its Applications, 392(23), 5985–5995. https://doi.org/10.1016/j.physa.2013.07.066
Weinstein, D. E., & Yafeh, Y. (1998). On the costs of a bank-centered financial system: Evidence from the changing main bank relations in Japan. The Journal of Finance, 53(2), 635–672. https://doi.org/10.1111/0022-1082.235796
Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23(2), 123–132. https://doi.org/10.1007/BF02745946
Yiu, D., Bruton, G. D., & Lu, Y. (2005). Understanding business group performance in an emerging economy: Acquiring resources and capabilities in order to prosper. Journal of Management Studies, 42(1), 183–206. https://doi.org/10.1111/j.1467-6486.2005.00494.x
Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1), 19–45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. https://doi.org/10.2307/2490717
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97778-
dc.description.abstract本研究探討企業集團關聯性指標與財務危機預測之關聯,以臺灣經濟新報(TEJ)資料庫中2011至2021年的企業資料為樣本,運用特徵值分解(Eigenvalue decomposition)方法,透過企業集團內部各公司營業毛利率的相關係數矩陣提取最大特徵值作為集團關聯程度的量化指標。實證結果顯示,集團關聯程度與財務危機發生機率呈顯著負相關,即集團關聯程度越高,企業發生財務危機的可能性反而越低。此發現與Khanna and Yafeh (2005)關於台灣企業集團具風險分攤特性的觀察相符,支持Myers and Majluf (1984)與Fazzari et al. (1987)提出的內部資本市場理論。本研究進一步透過敏感性分析證實此結果對不同窗期長度與標準化方法的穩健性,並採用產業固定效果檢測與集群標準誤等方法驗證其一致性。研究發現拓展了Billio et al. (2012)的系統風險理論至非金融企業集團,為投資者、債權人和監管機構提供更全面的風險評估工具,同時為企業集團風險管理策略的制定提供理論支持。zh_TW
dc.description.abstractThis study investigates the relationship between intra-group financial correlation and financial distress prediction by analyzing a sample of companies from the Taiwan Economic Journal (TEJ) database spanning from 2011 to 2021. Using eigenvalue decomposition methodology, the study extracts the maximum eigenvalue from the correlation matrix of gross profit margins across group companies as a quantitative indicator of intra-group correlation. Empirical results demonstrate a significant negative relationship between group correlation and the probability of financial distress, indicating that higher group correlation is associated with lower likelihood of financial crisis. This finding aligns with Khanna and Yafeh's (2005) observations on the risk-sharing characteristics of Taiwanese business groups and supports the internal capital market theory proposed by Myers and Majluf (1984) and Fazzari et al. (1987). Through sensitivity analyses, the study confirms the robustness of these results across different time windows and standardization methods, and verifies their consistency using Heckman selection models, industry fixed effects, and clustered standard errors. The findings extend Billio et al.'s (2012) systemic risk theory to non-financial business groups, providing investors, creditors, and regulatory authorities with more comprehensive risk assessment tools while offering theoretical support for business group risk management strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:14:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:14:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
表次 v
第一章 緒論 1
第二章 文獻回顧 3
第一節 財務危機之定義 3
第二節 營業毛利率 6
第三節 特徵值(Eigenvalue) 7
第四節 財團間的風險傳遞 9
第五節 集團定義 10
第六節 財務危機預測模型 12
一、傳統統計方法(Z-Score、Logit、Probit和MDA) 12
二、機器學習方法(決策樹與隨機森林、SVM、ANN和XGBoost) 15
第三章 研究設計 19
第一節 假說 19
第二節 資料來源及樣本選取 20
第三節 變數介紹 23
一、應變數 23
二、自變數 24
三、控制變數 24
第四節 研究方法及模型建構 25
一、集團關聯性指標衡量 25
二、Logit 模型 26
第四章 實證結果分析 30
第一節 敘述性統計分析 30
第二節 模型結果 34
第三節 敏感性分析與模型穩健性檢驗 37
一、集團關聯指標標準化方法比較 37
二、窗期長度敏感性分析 41
三、White異質變異數和共線性測試 44
四、樣本相關性檢測 46
五、產業固定效果之檢測 49
六、穩定性測試以及敏感性分析總結 50
第五章 結論與建議 52
第一節 研究結論 52
第二節 研究貢獻 53
第三節 研究限制 54
第四節 未來研究建議 55
參考文獻 57
-
dc.language.isozh_TW-
dc.subject風險傳導zh_TW
dc.subject集團效應zh_TW
dc.subject特徵值分解zh_TW
dc.subject集團關聯性指標zh_TW
dc.subject財務危機預警zh_TW
dc.subjectGroup Effecten
dc.subjectFinancial Distress Predictionen
dc.subjectIntra-Group Correlationen
dc.subjectEigenvalue Decompositionen
dc.subjectRisk Transmissionen
dc.title企業財務危機預警模型— 集團關聯性指標對於財務危機之影響zh_TW
dc.titleFinancial Early Warning Model — The Effect of Intra-Group Financial Correlation on the Occurrence of Financial Crisesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林瑞青;曾怡潔zh_TW
dc.contributor.oralexamcommitteeRuey-Ching Lin;Yi-Jie Tsengen
dc.subject.keyword財務危機預警,集團關聯性指標,特徵值分解,風險傳導,集團效應,zh_TW
dc.subject.keywordFinancial Distress Prediction,Intra-Group Correlation,Eigenvalue Decomposition,Risk Transmission,Group Effect,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202501269-
dc.rights.note未授權-
dc.date.accepted2025-06-25-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-liftN/A-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved