請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王泰昌 | zh_TW |
| dc.contributor.advisor | Taychang Wang | en |
| dc.contributor.author | 余彥霆 | zh_TW |
| dc.contributor.author | Yen-Ting Yu | en |
| dc.date.accessioned | 2025-07-16T16:14:09Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-25 | - |
| dc.identifier.citation | Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. American Economic Review, 105(2), 564–608. https://doi.org/10.1257/aer.20130456
Adrian, T., & Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106(7), 1705–1741. https://doi.org/10.1257/aer.20120555 Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1–33. https://doi.org/10.1086/262109 Allen, F., & Gale, D. (2007). Understanding financial crises. Oxford University Press. https://doi.org/10.1093/oso/9780199251414.003.0003 Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2325398 Altman, E. I. (1983). Corporate financial distress: A complete guide to predicting, avoiding, and dealing with bankruptcy. John Wiley & Sons. https://doi.org/10.1002/9781118267806.ch4 Altman, E. I. (2000). Predicting financial distress of companies: Revisiting the Z-score and ZETA® models. Stern School of Business, New York University. https://doi.org/10.4337/9780857936097.00027 Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETA analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29–54. https://doi.org/10.1016/0378-4266(77)90017-6 Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z-score model. Journal of International Financial Management & Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053 Altman, E. I., & Sabato, G. (2007). Modelling credit risk for SMEs: Evidence from the US market. Abacus, 43(3), 332–357. https://doi.org/10.1111/j.1467-6281.2007.00234.x Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3), 312–329. https://doi.org/10.1287/mnsc.49.3.312.12741 Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006 Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171 Beaver, W. H., McNichols, M. F., & Rhie, J. W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93–122. https://doi.org/10.1007/s11142-004-5861-1 Biddle, G. C., Ma, M. L., & Song, F. M. (2020). Accounting conservatism and bankruptcy risk. Journal of Accounting, Auditing & Finance, 35(4), 681–715. https://doi.org/10.1177/0148558X18771970 Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010 Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), 1–25. https://doi.org/10.2307/2490525 Borio, C., & Lowe, P. (2002). Asset prices, financial and monetary stability: Exploring the nexus (BIS Working Papers No. 114). Bank for International Settlements. https://doi.org/10.2139/ssrn.846305 Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing values. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Computer Vision—ECCV 2002 (pp. 707–720). Springer. https://doi.org/10.1007/3-540-47977-5_48 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 Brunnermeier, M. K., Crockett, A., Goodhart, C., Persaud, A. D., & Shin, H. S. (2009). The fundamental principles of financial regulation (Geneva Reports on the World Economy No. 11). International Center for Monetary and Banking Studies. https://doi.org/10.1007/978-1-4302-4558-2_13 Calomiris, C. W., & Gorton, G. (1991). The origins of banking panics: Models, facts, and bank regulation. In R. G. Hubbard (Ed.), Financial markets and financial crises (pp. 109–173). University of Chicago Press. https://doi.org/10.7208/chicago/9780226355884.003.0004 Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899–2939. https://doi.org/10.1111/j.1540-6261.2008.01416.x Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323. https://doi.org/10.1016/j.iref.2018.03.008 Chang, S. J., & Hong, J. (2000). Economic performance of group-affiliated companies in Korea: Intragroup resource sharing and internal business transactions. Academy of Management Journal, 43(3), 429–448. https://doi.org/10.5465/1556403 Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537–569. https://doi.org/10.1023/B:EUFI.0000040430.07339.b9 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785 Chung, F. R. K. (1997). Spectral graph theory. American Mathematical Society. https://doi.org/10.1090/cbms/092 Claessens, S., & Kose, M. A. (2013). Financial crises: Explanations, types, and implications (IMF Working Paper No. WP/13/28). International Monetary Fund. https://doi.org/10.5089/9781475561005.001 Cohen, L., & Frazzini, A. (2008). Economic links and predictable returns. The Journal of Finance, 63(4), 1977–2011. https://doi.org/10.1111/j.1540-6261.2008.01380.x Cole, R. A., & Gunther, J. W. (1998). Predicting bank failures: A comparison of on- and off-site monitoring systems. Journal of Financial Services Research, 13(2), 103–117. https://doi.org/10.1023/A:1007983812474 Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. https://doi.org/10.2307/2490225 Diamond, D. W., & Dybvig, P. H. (1983). Bank runs, deposit insurance, and liquidity. Journal of Political Economy, 91(3), 401– 419. https://doi.org/10.1086/261155 Diem, C., Pichler, A., & Thurner, S. (2020). What is the minimal systemic risk in financial exposure networks? Journal of Economic Dynamics and Control, 116, 103900. https://doi.org/10.1016/j.jedc.2020.103900 Duffie, D., & Singleton, K. J. (2003). Credit risk: Pricing, measurement, and management. Princeton University Press. https://doi.org/10.1007/s00712-003-0038-6 Du Jardin, P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing, 73(10–12), 2047–2060. https://doi.org/10.1016/j.neucom.2009.11.034 Eichengreen, B., & Portes, R. (1987). The anatomy of financial crises. In M. P. Dooley & P. Isard (Eds.), Capital controls, exchange rates and monetary policy in the world economy (pp. 193–228). Cambridge University Press. Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115–3153. https://doi.org/10.1257/aer.104.10.3115 Fazzari, S. M., Hubbard, R. G., & Petersen, B. C. (1987). Financing constraints and corporate investment. Brookings Papers on Economic Activity, 1987(1), 141–206. https://doi.org/10.2307/2534426 Ferris, S. P., Kim, K. A., & Kitsabunnarat, P. (2003). The costs (and benefits?) of diversified business groups: The case of Korean chaebols. Journal of Banking & Finance, 27(2), 251–273. https://doi.org/10.1016/S0378-4266(02)00201-9 Frydman, H., Altman, E. I., & Kao, D. (1985). Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance, 40(1), 269–291. https://doi.org/10.1111/j.1540-6261.1985.tb03576.x Gai, P., & Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120), 2401–2423. https://doi.org/10.1098/rspa.2009.0410 Gopalan, R., Nanda, V., & Seru, A. (2007). Affiliated firms and financial support: Evidence from Indian business groups. Journal of Financial Economics, 86(3), 759–795. https://doi.org/10.1016/j.jfineco.2006.07.012 Granovetter, M. (1995). Coase revisited: Business groups in the modern economy. Industrial and Corporate Change, 4(1), 93–130. https://doi.org/10.1093/icc/4.1.93 Greenwald, B. C., & Stiglitz, J. E. (1993). Financial market imperfections and business cycles. The Quarterly Journal of Economics, 108(1), 77–114. https://doi.org/10.2307/2118406 Grice, J. S., & Ingram, R. W. (2001). Tests of the generalizability of Altman's bankruptcy prediction model. Journal of Business Research, 54(1), 53–61. https://doi.org/10.1016/S0148-2963(99)00054-0 Guillén, M. F. (2000). Business groups in emerging economies: A resource-based view. Academy of Management Journal, 43(3), 362–380. https://doi.org/10.2307/1556406 Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355. https://doi.org/10.1038/nature09659 Härdle, W., Lee, Y. J., Schäfer, D., & Yeh, Y. R. (2009). Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies. Journal of Forecasting, 28(6), 512–534. https://doi.org/10.1002/for.1127 Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. https://doi.org/10.2307/1912352 Hertzel, M. G., Li, Z., Officer, M. S., & Rodgers, K. J. (2008). Inter-firm linkages and the wealth effects of financial distress along the supply chain. Journal of Financial Economics, 87(2), 374–398. https://doi.org/10.1016/j.jfineco.2007.02.006 Hoshi, T., Kashyap, A., & Scharfstein, D. (1990). The role of banks in reducing the costs of financial distress in Japan. Journal of Financial Economics, 27(1), 67–88. https://doi.org/10.1016/0304-405X(90)90022-Z Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. The Accounting Review, 79(4), 1011–1038. https://doi.org/10.2308/accr.2004.79.4.1011 Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance & Accounting, 44(1–2), 3–34. https://doi.org/10.1111/jbfa.12155 Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-1904-8_7 Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: The causes of banking and balance-of-payments problems. American Economic Review, 89(3), 473–500. https://doi.org/10.1257/aer.89.3.473 Kaufman, G. G. (1999). Banking and currency crises and systemic risk. Research in Financial Services: Banking, Financial Markets and Systemic Risk, 10, 1–30. https://doi.org/10.1111/1468-0416.00036 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (pp. 3146–3154). https://doi.org/10.5555/3294771.3294950 Keynes, J. M. (1936). The general theory of employment, interest and money. Macmillan. https://doi.org/10.2307/2549064 Khanna, T., & Rivkin, J. W. (2001). Estimating the performance effects of business groups in emerging markets. Strategic Management Journal, 22(1), 45–74. https://doi.org/10.1002/smj.177 Khanna, T., & Yafeh, Y. (2005). Business groups and risk sharing around the world. The Journal of Business, 78(1), 301–340. https://doi.org/10.1086/426139 Kim, M. J., & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373–3379. https://doi.org/10.1016/j.eswa.2009.09.031 King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137–163. https://doi.org/10.1093/oxfordjournals.pan.a003168 Kritzman, M., Li, Y., Page, S., & Rigobon, R. (2011). Principal components as a measure of systemic risk. Journal of Portfolio Management, 37(4), 112–126. https://doi.org/10.3905/jpm.2011.37.4.112 Laeven, L., & Valencia, F. (2013). Systemic banking crises database. IMF Economic Review, 61(2), 225–270. https://doi.org/10.1057/imfer.2013.12 La Porta, R., Lopez‐de‐Silanes, F., & Shleifer, A. (1999). Corporate ownership around the world. The Journal of Finance, 54(2), 471–517. https://doi.org/10.1111/0022-1082.00167 Lau, A. H. L. (1987). A five‐state financial distress prediction model. Journal of Accounting Research, 25(1), 127–138. https://doi.org/10.2307/2491218 Leff, N. H. (1978). Industrial organization and entrepreneurship in the developing countries: The economic groups. Economic Development and Cultural Change, 26(4), 661–675. https://doi.org/10.2307/1791779 Lincoln, J. R., Gerlach, M. L., & Ahmadjian, C. L. (1996). Keiretsu networks and corporate performance in Japan. American Sociological Review, 61(1), 67–88. https://doi.org/10.2307/2657346 Lo, A. W. (1986). Logit versus discriminant analysis: A specification test and application to corporate bankruptcies. Journal of Econometrics, 31(2), 151–178. https://doi.org/10.1016/0169-7161(86)90017-2 Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614. https://doi.org/10.1016/j.eswa.2004.08.024 Mishkin, F. S. (1992). Anatomy of a financial crisis. Journal of Evolutionary Economics, 2(2), 115–130. https://doi.org/10.1007/BF01206990 Mishkin, F. S. (1999). Global financial instability: Framework, events, issues. Journal of Economic Perspectives, 13(4), 3–20. https://doi.org/10.1257/jep.13.4.3 Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187–221. https://doi.org/10.1016/0304-405X(84)90023-5 Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In 1990 IJCNN International Joint Conference on Neural Networks (pp. 163–168). IEEE. https://doi.org/10.1109/IJCNN.1990.118941 Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395 Peek, J., & Rosengren, E. S. (2003). Unnatural selection: Perverse incentives and the misallocation of credit in Japan. American Economic Review, 95(4), 1144–1166. https://doi.org/10.1257/000282803769921901 Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22(1), 435–480. https://doi.org/10.1093/rfs/hhm099 Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184–199. https://doi.org/10.1007/BF02755985 Reinhart, C. M., & Rogoff, K. S. (2009). This time is different: Eight centuries of financial folly. Princeton University Press. https://doi.org/10.4000/histoiremesure.3997 Schwartz, A. J. (1986). Real and pseudo-financial crises. In F. Capie & G. E. Wood (Eds.), Financial crises and the world banking system (pp. 11–31). Macmillan. Shin, H. H., & Stulz, R. M. (1998). Are internal capital markets efficient? The Quarterly Journal of Economics, 113(2), 531–552. https://doi.org/10.1162/003355398555637 Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127–135. https://doi.org/10.1016/j.eswa.2004.08.009 Shleifer, A., & Vishny, R. W. (1992). Liquidation values and debt capacity: A market equilibrium approach. The Journal of Finance, 47(4), 1343–1366. https://doi.org/10.1111/j.1540-6261.1992.tb04661.x Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101–124. https://doi.org/10.1086/209665 Stone, M., & Rasp, J. (1991). Tradeoffs in the choice between Logit and OLS for accounting choice studies. The Accounting Review, 66(1), 170–187. https://www.jstor.org/stable/247712 Strachan, H. W. (1976). Family and other business groups in economic development: The case of Nicaragua. Praeger. Tsai, C. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications, 34(4), 2639–2649. https://doi.org/10.1016/j.eswa.2007.05.019 Wang, G. J., Xie, C., & Chen, S. (2013). Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation analysis. Physica A: Statistical Mechanics and Its Applications, 392(23), 5985–5995. https://doi.org/10.1016/j.physa.2013.07.066 Weinstein, D. E., & Yafeh, Y. (1998). On the costs of a bank-centered financial system: Evidence from the changing main bank relations in Japan. The Journal of Finance, 53(2), 635–672. https://doi.org/10.1111/0022-1082.235796 Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23(2), 123–132. https://doi.org/10.1007/BF02745946 Yiu, D., Bruton, G. D., & Lu, Y. (2005). Understanding business group performance in an emerging economy: Acquiring resources and capabilities in order to prosper. Journal of Management Studies, 42(1), 183–206. https://doi.org/10.1111/j.1467-6486.2005.00494.x Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1), 19–45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. https://doi.org/10.2307/2490717 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97778 | - |
| dc.description.abstract | 本研究探討企業集團關聯性指標與財務危機預測之關聯,以臺灣經濟新報(TEJ)資料庫中2011至2021年的企業資料為樣本,運用特徵值分解(Eigenvalue decomposition)方法,透過企業集團內部各公司營業毛利率的相關係數矩陣提取最大特徵值作為集團關聯程度的量化指標。實證結果顯示,集團關聯程度與財務危機發生機率呈顯著負相關,即集團關聯程度越高,企業發生財務危機的可能性反而越低。此發現與Khanna and Yafeh (2005)關於台灣企業集團具風險分攤特性的觀察相符,支持Myers and Majluf (1984)與Fazzari et al. (1987)提出的內部資本市場理論。本研究進一步透過敏感性分析證實此結果對不同窗期長度與標準化方法的穩健性,並採用產業固定效果檢測與集群標準誤等方法驗證其一致性。研究發現拓展了Billio et al. (2012)的系統風險理論至非金融企業集團,為投資者、債權人和監管機構提供更全面的風險評估工具,同時為企業集團風險管理策略的制定提供理論支持。 | zh_TW |
| dc.description.abstract | This study investigates the relationship between intra-group financial correlation and financial distress prediction by analyzing a sample of companies from the Taiwan Economic Journal (TEJ) database spanning from 2011 to 2021. Using eigenvalue decomposition methodology, the study extracts the maximum eigenvalue from the correlation matrix of gross profit margins across group companies as a quantitative indicator of intra-group correlation. Empirical results demonstrate a significant negative relationship between group correlation and the probability of financial distress, indicating that higher group correlation is associated with lower likelihood of financial crisis. This finding aligns with Khanna and Yafeh's (2005) observations on the risk-sharing characteristics of Taiwanese business groups and supports the internal capital market theory proposed by Myers and Majluf (1984) and Fazzari et al. (1987). Through sensitivity analyses, the study confirms the robustness of these results across different time windows and standardization methods, and verifies their consistency using Heckman selection models, industry fixed effects, and clustered standard errors. The findings extend Billio et al.'s (2012) systemic risk theory to non-financial business groups, providing investors, creditors, and regulatory authorities with more comprehensive risk assessment tools while offering theoretical support for business group risk management strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:14:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:14:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 表次 v 第一章 緒論 1 第二章 文獻回顧 3 第一節 財務危機之定義 3 第二節 營業毛利率 6 第三節 特徵值(Eigenvalue) 7 第四節 財團間的風險傳遞 9 第五節 集團定義 10 第六節 財務危機預測模型 12 一、傳統統計方法(Z-Score、Logit、Probit和MDA) 12 二、機器學習方法(決策樹與隨機森林、SVM、ANN和XGBoost) 15 第三章 研究設計 19 第一節 假說 19 第二節 資料來源及樣本選取 20 第三節 變數介紹 23 一、應變數 23 二、自變數 24 三、控制變數 24 第四節 研究方法及模型建構 25 一、集團關聯性指標衡量 25 二、Logit 模型 26 第四章 實證結果分析 30 第一節 敘述性統計分析 30 第二節 模型結果 34 第三節 敏感性分析與模型穩健性檢驗 37 一、集團關聯指標標準化方法比較 37 二、窗期長度敏感性分析 41 三、White異質變異數和共線性測試 44 四、樣本相關性檢測 46 五、產業固定效果之檢測 49 六、穩定性測試以及敏感性分析總結 50 第五章 結論與建議 52 第一節 研究結論 52 第二節 研究貢獻 53 第三節 研究限制 54 第四節 未來研究建議 55 參考文獻 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 風險傳導 | zh_TW |
| dc.subject | 集團效應 | zh_TW |
| dc.subject | 特徵值分解 | zh_TW |
| dc.subject | 集團關聯性指標 | zh_TW |
| dc.subject | 財務危機預警 | zh_TW |
| dc.subject | Group Effect | en |
| dc.subject | Financial Distress Prediction | en |
| dc.subject | Intra-Group Correlation | en |
| dc.subject | Eigenvalue Decomposition | en |
| dc.subject | Risk Transmission | en |
| dc.title | 企業財務危機預警模型— 集團關聯性指標對於財務危機之影響 | zh_TW |
| dc.title | Financial Early Warning Model — The Effect of Intra-Group Financial Correlation on the Occurrence of Financial Crises | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林瑞青;曾怡潔 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Ching Lin;Yi-Jie Tseng | en |
| dc.subject.keyword | 財務危機預警,集團關聯性指標,特徵值分解,風險傳導,集團效應, | zh_TW |
| dc.subject.keyword | Financial Distress Prediction,Intra-Group Correlation,Eigenvalue Decomposition,Risk Transmission,Group Effect, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202501269 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-25 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 會計學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
