請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政安 | zh_TW |
| dc.contributor.advisor | Chen-An Tsai | en |
| dc.contributor.author | 鄧欣渝 | zh_TW |
| dc.contributor.author | Xin Yee Tang | en |
| dc.date.accessioned | 2025-07-16T16:11:32Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | Basdeki, E. D., Kollias, A., Mitrou, P., Tsirimiagkou, C., Georgakis, M. K., Chatzigeorgiou, A., Argyris, A., Karatzi, K., Manios, Y., & Sfikakis, P. P. (2021). Does sodium intake induce systemic inflammatory response? A systematic review and meta-analysis of randomized studies in humans. Nutrients, 13(8), 2632.
Bordoni, A., Danesi, F., Dardevet, D., Dupont, D., Fernandez, A. S., Gille, D., Nunes dos Santos, C., Pinto, P., Re, R., & Rémond, D. (2017). Dairy products and inflammation: A review of the clinical evidence. Critical reviews in food science and nutrition, 57(12), 2497-2525. Bowman, S., Clemens, J., Friday, J., & Moshfegh, A. (2020). Food patterns equivalents database 2017–2018: methodology and user guide. Food Surveys Research Group: Beltsville, MD. Calder, P. C. (2010). Omega-3 fatty acids and inflammatory processes. Nutrients, 2(3), 355-374. Centers for Disease Control and Prevention, National Center for Health Statistics, & U.S. Department of Health and Human Services. (2019). National Health and Nutrition Examination Survey Data, 2017–2018 (https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2017 Chumanevich, A. A., Hébert, J. R., Spicer, M., & Hofseth, L. J. (2022). Diet, inflammation, and cancer. In Diet, Inflammation, and Health (pp. 473-529). Elsevier. Collins, A. (2025). Chronic Inflammation: The Link Between a High Added Sugar Diet and Disease. Deng, F. E., Shivappa, N., Tang, Y., Mann, J. R., & Hebert, J. R. (2017). Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: findings from NHANES III. European journal of nutrition, 56, 1085-1093. Fogarty, A. W., Lewis, S. A., McKeever, T. M., & Britton, J. R. (2009). Is higher sodium intake associated with elevated systemic inflammation? A population-based study. The American Journal of Clinical Nutrition, 89(6), 1901-1904. Ghalem, M., Murtaza, B., Belarbi, M., Akhtar Khan, N., & Hichami, A. (2018). Antiinflammatory and antioxidant activities of a polyphenol‐rich extract from Zizyphus lotus L fruit pulp play a protective role against obesity. Journal of Food Biochemistry, 42(6), e12689. González-Sierra, M., Quevedo-Rodríguez, A., Romo-Cordero, A., González-Chretien, G., Quevedo-Abeledo, J. C., de Vera-González, A., González-Delgado, A., Martín-González, C., González-Gay, M. Á., & Ferraz-Amaro, I. (2023). Relationship of blood inflammatory composite markers with cardiovascular risk factors and subclinical atherosclerosis in patients with rheumatoid arthritis. Life, 13(7), 1469. Gou, W., Fu, Y., Yue, L., Chen, G.-D., Cai, X., Shuai, M., Xu, F., Yi, X., Chen, H., & Zhu, Y. (2021). Gut microbiota, inflammation, and molecular signatures of host response to infection. Journal of Genetics and Genomics, 48(9), 792-802. Kantari, C., Pederzoli-Ribeil, M., & Witko-Sarsat, V. (2008). The role of neutrophils and monocytes in innate immunity. Contributions to microbiology, 15(R), 118. Koyasu, S., & Moro, K. (2012). Role of innate lymphocytes in infection and inflammation. Frontiers in immunology, 3, 101. Krebs-Smith, S. M., Pannucci, T. E., Subar, A. F., Kirkpatrick, S. I., Lerman, J. L., Tooze, J. A., Wilson, M. M., & Reedy, J. (2018). Update of the healthy eating index: HEI-2015. Journal of the Academy of Nutrition and Dietetics, 118(9), 1591-1602. Li, Y., Xiong, B., Zhu, M., Ren, Y., Lan, Y., Hu, T., Wang, Y., Yang, H., Liao, Z., & Xiao, K. (2023). Associations of starchy and non-starchy vegetables with risk of metabolic syndrome: evidence from the NHANES 1999–2018. Nutrition & Metabolism, 20(1), 36. Liang, Z., Feng, Y., Shivappa, N., Hebert, J. R., & Xu, X. (2022). Dietary inflammatory index and mortality from all causes, cardiovascular disease, and cancer: a prospective study. Cancers, 14(19), 4609. Majdan, M., & Bobrowska-Korczak, B. (2022). Active compounds in fruits and inflammation in the body. Nutrients, 14(12), 2496. Montville, J. B., Ahuja, J. K., Martin, C. L., Heendeniya, K. Y., Omolewa-Tomobi, G., Steinfeldt, L. C., Anand, J., Adler, M. E., LaComb, R. P., & Moshfegh, A. (2013). USDA food and nutrient database for dietary studies (FNDDS), 5.0. Procedia Food Science, 2, 99-112. National Cancer Institute. (2019). Usual dietary intakes: Food intakes, U.S. population, 2007–2010. https://epi.grants.cancer.gov/diet/usualintakes/national-data-usual-dietary-intakes-2007-to-2010.pdf Nibali, L., Henderson, B., Tariq Sadiq, S., & Donos, N. (2014). Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. Journal of oral microbiology, 6(1), 22962. Oksanen, J., Simpson, G., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S.,…Borman, T. (2025). vegan: Community Ecology Package. In R package version 2.6-10. https://CRAN.R-project.org/package=vegan Qi, Q., Zhuang, L., Shen, Y., Geng, Y., Yu, S., Chen, H., Liu, L., Meng, Z., Wang, P., & Chen, Z. (2016). A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer, 122(14), 2158-2167. Qi, X., Li, Y., Fang, C., Jia, Y., Chen, M., Chen, X., & Jia, J. (2023). The associations between dietary fibers intake and systemic immune and inflammatory biomarkers, a multi-cycle study of NHANES 2015–2020. Frontiers in nutrition, 10, 1216445. Ricker, M. A., & Haas, W. C. (2017). Anti‐inflammatory diet in clinical practice: a review. Nutrition in Clinical Practice, 32(3), 318-325. Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31-55. Ruiz-Núñez, B., Dijck-Brouwer, D. J., & Muskiet, F. A. (2016). The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. The Journal of Nutritional Biochemistry, 36, 1-20. Sklan, D., & Dariel, I. (1993). Diet planning for humans using mixed-integer linear programming. British Journal of Nutrition, 70(1), 27-35. Targoński, R., Sadowski, J., Price, S., & Targoński, R. (2020). Sodium-induced inflammation—an invisible player in resistant hypertension. Hypertension Research, 43(7), 629-633. Vanegas, S. M., Meydani, M., Barnett, J. B., Goldin, B., Kane, A., Rasmussen, H., Brown, C., Vangay, P., Knights, D., & Jonnalagadda, S. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. The American Journal of Clinical Nutrition, 105(3), 635-650. Vasiloglou, M. F., Elortegui Pascual, P., Scuccimarra, E. A., Plestina, R., Mainardi, F., Mak, T.-N., Ronga, F., & Drewnowski, A. (2023). Assessing the quality of simulated food patterns with reduced animal protein using meal data from NHANES 2017–2018. Nutrients, 15(11), 2572. Wunderle, C., Martin, E., Wittig, A., Tribolet, P., Lutz, T. A., Köster-Hegmann, C., Stanga, Z., Mueller, B., & Schuetz, P. (2025). Comparison of the inflammatory biomarkers IL-6, TNF-α, and CRP to predict the effect of nutritional therapy on mortality in medical patients at risk of malnutrition: A secondary analysis of the randomized clinical trial EFFORT. Journal of Inflammation, 22(1), 16. Zahorec, R. (2001). Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratislavske lekarske listy, 102(1), 5-14. Zhan, J. J., Hodge, R. A., Dunlop, A. L., Lee, M. M., Bui, L., Liang, D., & Ferranti, E. P. (2024). Dietaryindex: a user-friendly and versatile R package for standardizing dietary pattern analysis in epidemiological and clinical studies. The American Journal of Clinical Nutrition, 120(5), 1165-1174. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97764 | - |
| dc.description.abstract | 系統性發炎是心血管疾病、代謝性疾病以及自體免疫疾病等多種慢性病的重要誘因,其發展過程往往沒有明顯症狀,因此早期的預防與控制格外關鍵。在眾多引發發炎的因素中,飲食為最容易調整的日常習慣之一,其影響越來越受到關注。然而,多數現有研究仍集中在探討單一飲食成分對發炎的影響,較少深入分析多種營養成分之間的交互作用。
因此,本研究旨在模擬六種不同飲食型態下的七日膳食計畫,探討膳食成分間的顯著交互作用,並結合模擬資料分析發炎標記,識別有效的抗發炎飲食型態。資料來源為美國國家健康與營養調查(NHANES),透過混合整數線性規劃(MILP)產生六種飲食模式:葷食、三種程度的彈性素食(75%、50%、25%)、海鲜素食與全素食,其飲食模式不同在於透過以植物性蛋白替代動物性蛋白。另外,飲食品質則以2015年健康飲食指數(HEI-2015)進行評估。 統計結果顯示五組具有顯著交互效應的膳食成分組合:高水果與低鈉、高蔬菜與高深綠蔬菜豆類、中等乳品與高水果、高全穀類、以及低鈉攝取。這些組合具有協同作用,可顯著降低發炎指標SIRI與NLR。進一步分析模擬資料發現,植物性飲食(全素食與海鲜素食)較其他飲食模式更常出現上述有利組合,且擁有較高的HEI總分。研究結果指出,植物性飲食營養較為均衡且豐富,可能作為有效的抗發炎飲食建議依據。 | zh_TW |
| dc.description.abstract | Inflammation is a key risk factor for chronic diseases, such as cardiovascular, metabolic, and autoimmune conditions. As it often develops silently, early prevention is essential. Diet is a modifiable factor influencing inflammation, but few studies have focused on the interaction between dietary components.
Therefore, the objective of this study is to simulate 7-day meal plans for six distinct food patterns, explore significant pairwise interactions between dietary components, and integrate these interactions into simulated data to identify effective dietary patterns for reducing inflammation. The data from the National Health and Nutrition Examination Survey (NHANES) are used in this study. Meal plans were generated using mixed-integer linear programming (MILP) for six food patterns: omnivore, three levels of flexitarian (75%, 50%, 25%), pescatarian, and vegetarian, which replaced animal protein with plant-based protein. The Healthy Eating Index 2015 (HEI-2015) was used to assess diet quality. Five significant interaction combinations were revealed: high total fruits and low sodium intake, high vegetables and high greens and beans intake, medium dairy with high total fruits, high whole grains, and low sodium intake. These components act synergistically to reduce inflammation, as shown by decreased SIRI and NLR. In the simulated data, plant-based diets (vegetarian and pescatarian) showed the highest occurrence of these favorable combinations and had higher HEI scores across patterns. These findings suggest that plant-based diets, particularly vegetarian and pescatarian, are balanced, nutrient-rich, and may serve as effective anti-inflammatory patterns. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:11:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:11:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives 3 Chapter 2 Literature Review 4 Chapter 3 Materials and Methods 8 3.1 Dataset 8 3.2 Simulation of 7-Day Meal Plans 9 3.2.1 Meal Tagging 10 3.2.2 Meal Classification 11 3.2.3 Meal Optimization using Mixed-Integer Linear Programming (MILP) 12 3.3 Health Eating Index (HEI) 15 3.4 Statistical Analysis 18 3.4.1 Statistical Analysis of Simulated Data 18 3.4.2 Statistical Analysis of Diet–Biomarker Associations Using Original NHANES Data 18 3.4.3 Statistical Analysis for Integrating Significant Interaction Effects into Simulated Meal Plans 19 Chapter 4 Results 20 4.1 Results of 7-Day Meal Plans 20 4.2 Validation and Analysis of Simulated Meal Plans 22 4.2.1 Canonical Correlation Analysis (CCA) Results 22 4.2.2 Contribution of food component servings among simulated groups 25 4.3 HEI-2015 Score of Simulated Meal Plans 29 4.4 Relationship Between Biomarkers and HEI-2015 Scores in the Original NHANES Dataset 32 4.4.1 Main effects of HEI components on biomarkers 32 4.4.2 Significant interaction effects of HEI components on biomarkers 35 4.5 Integrating Dietary Interactions into Simulated Data 40 Chapter 5 Discussions 42 5.1 Discussions of Key Findings 42 5.2 Limitations and Future Directions 46 Chapter 6 Conclusions 48 REFERENCE 50 APPENDIX 53 | - |
| dc.language.iso | en | - |
| dc.subject | SIRI | zh_TW |
| dc.subject | 抗發炎飲食 | zh_TW |
| dc.subject | 健康飲食指數(HEI) | zh_TW |
| dc.subject | 混合整數線性規劃 (MILP) | zh_TW |
| dc.subject | NLR | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | MILP | en |
| dc.subject | NLR | en |
| dc.subject | SIRI | en |
| dc.subject | Inflammation | en |
| dc.subject | anti-inflammatory diet | en |
| dc.subject | HEI | en |
| dc.title | 以NHANES資料模擬飲食模式探討健康飲食指數交互作用與發炎生物標記之關聯 | zh_TW |
| dc.title | Simulating Dietary Patterns Linked to Inflammation: HEI Interactions and Biomarker Evidence from NHANES data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳琬萍;薛慧敏 | zh_TW |
| dc.contributor.oralexamcommittee | Wan-Ping Chen;Huey-Miin Hsueh | en |
| dc.subject.keyword | 發炎,SIRI,NLR,混合整數線性規劃 (MILP),健康飲食指數(HEI),抗發炎飲食, | zh_TW |
| dc.subject.keyword | Inflammation,SIRI,NLR,MILP,HEI,anti-inflammatory diet, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202501575 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2030-07-07 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
