Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97754
標題: 大型語言模型於專家標記任務之局限性
Strong Large Language Models are Weak Expert Annotators
作者: 曾郁珉
Yu-Min Tseng
指導教授: 陳信希
Hsin-Hsi Chen
共同指導教授: 王釧茹
Chuan-Ju Wang
關鍵字: 大型語言模型,大型語言模型擔任資料標記者,語言智能體,
Large Language Models,LLMs as Annotators,Language Agents,
出版年 : 2024
學位: 碩士
摘要: 資料標記旨在對資料進行相關訊息的標記或標籤化,大量研究報告的結果顯示利用大型語言模型作為人類標記者的正向潛在能力。然而,現有研究主要聚焦在經典的自然語言處理任務上,尚未充分探索大型語言模型在需要專家知識領域中作為標記者的表現。在本論文中,我們系統性的評估其在金融、生物醫學及法律三個高度專業化領域的專家級標記者的表現,研究辦法包括單一語言模型以及多語言模型合作在內的綜合方法,以評估其性能和可靠性。實驗結果表明,儘管大型語言模型作為標記者表現出一定的前景,但其在不同領域和任務中的表現有顯著的差異。從成本效益的角度來看,我們的分析表明大型語言模型在使用 vanilla 或 CoT 方法時,能夠有效節約成本並保持中庸的表現。然而,儘管其擁有這些優勢,大型語言模型在高度專業化的任務中尚不能完全替代人類專家。據我們所知,本論文為首篇系統性地評估大型語言模型作為專家級標記者表現的研究,提供在專業領域中的實證結果和初步見解。
Data annotation refers to the labeling or tagging of textual data with relevant information. A large body of work has reported positive results on leveraging large language models as an alternative to human annotators. However, existing studies focus on classic NLP tasks, and the extent to which LLMs as data annotators perform in domains requiring expert knowledge remains underexplored. In this work, we present a systematic evaluation of LLMs as expert-level data annotators across three highly specialized domains: finance, biomedicine, and law. We investigate comprehensive approaches, including single LLMs and multi-agent LLM frameworks, to assess their performance and reliability. Our experimental results reveal that while LLMs show promise as cost-effective alternatives to human annotators, their performance varies significantly across different domains and tasks. From a cost-effectiveness perspective, our analysis indicates that LLMs, particularly when using the vanilla or CoT methods, offer substantial savings compared to traditional human annotation processes. Despite these advantages, LLMs are not yet a direct substitute for human experts in highly specialized tasks. To the best of our knowledge, we present the first systematic evaluation of LLMs as expert-level data annotators, providing empirical results and pilot insights in specialized domains.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97754
DOI: 10.6342/NTU202501476
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-07-17
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.87 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved