請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | |
| dc.contributor.author | Han-Yu Shih | en |
| dc.contributor.author | 施函宇 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:40:33Z | - |
| dc.date.available | 2008-07-26 | |
| dc.date.available | 2021-05-20T20:40:33Z | - |
| dc.date.copyright | 2008-07-26 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | Chapter 1
1. Visakhapatnam, Indian craftsmen, artisans used nanotech 2000 years ago, DECCAN HERALD. 2. Gribbin John, Richard Feynman: A Life in Science, Dutton, 1997. 3. Martin Meyer, WHAT DO WE KNOW ABOUT INNOVATION IN NANOTECHNOLOGY, Helsinki University of Technology, 2006. 4. Abdelwahed W, Degobert G, Stainmesse S, and Fessi H, Advanced Drug Delivery Reviews. 58 (15): 1688-1713 (2006). Chpater 2 1. Gerald B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (2nd ed.), Academic Press (1999) (ISBN 0-12-673842-4). 2. R.S. Wagner and W.C. Ellis, Applied Physics Letters 4, 89 (1964). 3. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice Hall (2000). 4. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors, published by Hilger (1990). 5. S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy, published by Academic Press (1993). 6. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Inc. (1971). 7. G. D. Gilliland, Mater. Sci. Eng. R18, 99 (1997) 8. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, published by Springer (2001). 9. C. V. Raman, Nature 121, 619 (1928). 10. Alberts Bruce, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters, Molecular Biology of the Cell, Fourth Edition. New York and London, Garland Science. (2002).ISBN 0-8153-3218-1. 11. Butler and John M, Forensic DNA Typing, Elsevier. (2001).ISBN 978-0-12-147951-0. 12. Mandelkern M, Elias J, Eden D, and Crothers D. 'The dimensions of DNA in solution'. J Mol Biol 152 (1): 153–61(1981). 13. Gregory S, et al.. 'The DNA sequence and biological annotation of human chromosome 1'. Nature 441 (7091), 315–21(2006). 14. Watson J, Crick F. 'Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid'. Nature 171 (4356): 737–8(1953). 15. Berg J., Tymoczko J. and Stryer L., Biochemistry, W. H. Freeman and Company (2002), ISBN 0-7167-4955-6. 16. G. P. Moss, Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents, IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Accessed 03 Jan 2006 17. Ghosh A, Bansal M. 'A glossary of DNA structures from A to Z', Acta Crystallogr D Biol Crystallogr 59 (Pt 4), 620-6(2003). 18. Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson R. 'Crystal structure analysis of a complete turn of B-DNA'. Nature 287 (5784): 755–8 (1980). 19. Pabo C, Sauer R. 'Protein-DNA recognition'. Annu Rev Biochem 53: 293–321 (1984). 20. Ponnuswamy P, Gromiha M. 'On the conformational stability of oligonucleotide duplexes and tRNA molecules'. J Theor Biol 169 (4): 419–32 (1994). 21. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub H. 'Mechanical stability of single DNA molecules'. Biophys J 78 (4): 1997–2007 (2000). 22. Chalikian T, Völker J, Plum G, Breslauer K. 'A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques'. Proc Natl Acad Sci USA 96 (14): 7853–8 (1999). 23. deHaseth P, Helmann J. 'Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA'. Mol Microbiol 16 (5): 817–24 (1995). 24. Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J. 'Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern'. Biochemistry 43 (51): 15996–6010 (2004). 25. C. Kittel, Introduction to Solid State Physics (Seventh Edition). 26. B. V. Zeghbroeck, Principles of Semiconductor Devices (boulder, 1997). 27. J. R. Lakowicz, Principles of Flurescence Spectroscopy (Academic, New York 1999). Chapter 3 1. K. Skogerboe, Anal. Chem. 65, 416R (1993). 2. T. Rajh, Z. Saponjic, J. Liu, N. M. Dimitrijevic, N. F. Scherer, M. Vega-Arroyo, P. Zapol, L. A. Curtiss, and M. C. Thurnauer, Nano Lett. 4, 1017 (2004). 3. I. J. Ticono, J. Phys. Chem. 100, 13311 (1996). 4. R. Drmanac, S. Drmanac, B. Koop, L. Hood, and R. Crkvenjakov, Science 260, 1649 (1993). 5. K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, and M. J. Tarlov, J. Am. Chem. Soc. 119, 3401 (1997). 6. J. J. Storhoff and C. A. Mirkin, Chem. Rev. (Washington, D.C.) 99, 1849 (1999). 7. B. S. Kang, F. Ren, L. Wang, C. Lofton, Weihong W. Tan, S. J. Pearton, A. Dabiran, A. Osinky, and P. P. Chow, Appl. Phys. Lett. 87, 023508 (2005). 8. G. Xuan, J. Kolodzey, V. Lapoor, and G. Gonye, Appl. Phys. Lett. 87, 103903 (2005). 9. D.-S. Kim, H-J. Park, H.-M. Jung, J.-K. Shin, P. Choi, J.-H. Lee, and G. Lim, Jpn. J. Appl. Phys., Part 1 43, 3855 (2004). 10. B. S. Kang, S. J. Pearton, J. J. Chen, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, Appl. Phys. Lett. 89, 122102 (2006). 11. Hiromasa Tokudome, Yoko Yamada, Shuji Sonezaki, Hiroshi Ishikawa, Makoto Bekki, Koki Kanehira, and Masahiro Miyauchi, Appl. Phys. Lett. 87, 213901 (2005). 12. T. Y. Lin, Appl. Phys. Lett. 82, 880 (2003). 13. C. H. Chen, W. H. Chen, Y. F. Chen, and T.Y. Lin, Appl. Phys. Lett. 83, 1770 (2003). 14. H. Siegle, G. Kaczmarczyk, L. Fillippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997). 15. J. Wagner, A. Ramakrishnan, H. Obloh, and M. Maier, Appl. Phys. Lett. 74, 3863 (1999) 16. C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995). 17. F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang, and C. C. Yang, Semicond. Sci. Technol. 22, 896 (2007). 18. A.G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Phys. Rev. B, 72, 155336 (2005) Chpater 4 1. Ozgur U , Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S-J and Morkoc H (2005), J. Appl. Phys. 98 041301. 2. White H and Ryu Y (2006), Compound Semicond. 12 16. 3. P. M. Petroff, A. C. Gossard, and W. Wiegmann (1984), Appl. Phys. Lett.45, 620. 4. D. Gershoni, H. Temkin, D. J. Dolan, J. Dunsmuir, S. N. G. Chu,and M. B. Panish (1988), Appl. Phys. Lett. 53, 995. 5. M. Yazawa, M. Koguchi, and K. Hiruma(1991), Appl. Phys. Lett. 58,1080. 6. C. M. Lieber (2001), Sci. Am. 285 (3), 58. 7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E.Weber, R. Russo, and P (2001). Yang, Science 292, 1897. 8. Kind H, Yan H, Messer B, Law M and Yang P (2002), Adv. Mater. 14 158. 9. Liu C, Zapien J A, Yao Y, Meng X, Lee C S, Fan S S, Lifshitz Y and Lee S T (2003), Adv. Mater. 15 838. 10. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R and Choi H-J (2002), Adv. Funct. Mater. 12 323. 11. Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P andLin C L (2004), Appl. Phys. Lett. 84 3654. 12. T T Chen, C L Cheng, S-P Fu and Y F Chen (2007), Nanotechnology 18 225705. 13. Nye J F 1972 Physical Properties of Crystals (London: Oxford University Press). 14. Dal Corso A, Posternak M, Resta R and Baldereschi A (1994), Phys. Rev. B 50 10715. 15. Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E (1996), J. Appl. Phys. 79 7983. 16. Li Q H, Gao T, Wang Y G and Wang T H (2005), Appl. Phys. Lett. 86 123117. 17. Lin J M, Lin H Y, Cheng C L and Chen Y F (2006), Nanotechnology 17 4391. 18. Lin M-Z, Su C-T, Yan H-C and Chern M-Y (2005), Japan. J. Appl. Phys. 44 L995. 19. Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti (2004), PHYSICAL REVIEW B 69, 245401. 20. Hayes W and Loudon R (1978), Scattering of Light in Crystals (New York: Wiley). 21. Zhang Y, Jia H,Wang R, Chen C, Luo X, Yu D and Lee C (2003), Appl. Phys. Lett. 83 4631. 22. Calleja J M and Cardona M (1977), Phys. Rev. B 16 3753. 23. Wagner J-M and Bechstedt F (2000), Appl. Phys. Lett. 77 346. 24. Azuhata T et al (2003), J. Appl. Phys. 94 968. 25. Gruber Th, Prinz G M, Kirchner C, Kling R, Reuss F, Limmer W and Waag A (2004), J. Appl. Phys. 96 289. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9774 | - |
| dc.description.abstract | 奈米科技帶給人們極大的便利性與前瞻性,而半導體材料更廣泛地被製作成奈米結構,其展現出與塊材相異甚大的電性、磁性以及光學性質。本論文探討兩種半導體奈米結構的光學特性:氮化銦鎵/氮化鎵多層量子井、氧化鋅奈米柱,並且發現了頗為新奇且有趣之現象。
烏采結構之氮化物通常具備有不錯的壓電效應,因此氮化銦鎵/氮化鎵多層量子井內存在著強烈的內建電場,此特性可被我們應用成為生物感測器。當去氧核醣核酸(DNA)在感測器的表面發生雜合反應,其電偶極改變了氮化銦鎵/氮化鎵多層量子井內的電場,因為量子侷限史塔克效應的關係,量子井的光致螢光光譜、拉曼散射光譜以及我們估算出的氮化銦鎵晶格應變量也會有所變化,此結果代表氮化銦鎵/氮化鎵多層量子井可被開發成為DNA定序晶片之廣大可能性。 另一方面,本團隊已經在去年發現氧化鋅奈米柱內存在著光彈性效應,而我們更預測在越細的氧化鋅奈米柱內,其光彈性效應越明顯。此論文內探測了粗、中、細三種不同直徑的氧化鋅奈米柱之光致螢光光譜、拉曼散射光譜以及估算的晶格應變量隨著激發光源強度的不同,而有所變化。其中以細的氧化鋅奈米柱變化量最為可觀,不但驗證了我們的論點,並貢獻了新穎的資訊給光電元件開發者。 | zh_TW |
| dc.description.abstract | Nanotechnology gives people a great future and conveniences. Semiconductor materials are widely made into nanostructures, and they show rather different electrical, magnetic, and optical properties from bulk materials. In this thesis, we investigated two semiconductor nanostructures, InGaN/GaN multiple quantum wells (MQWs) and ZnO nanorods, and found some novel phenomena.
There usually exists a good piezoelectric effect in nitride wurtzite structure, such that InGaN/GaN MQWs have obvious build-in electric field in them, and this property could be used to construct a biosensor. As the hybridization process of deoxyribonucleic acid (DNA) occurs on InGaN/GaN MQWs, the electric field in MQWs would be altered by the polarity of DNA molecules, and the photoluminescence (PL) spectra, Raman spectra, and the calculated strain of InGaN lattice could also be changed due to the quantum confined Stark effect. As a result, InGaN/GaN MQWs have a great opportunity in the development of DNA-sequence identification. On the other hand, our group had found a phenomenon called photoelastic effect in ZnO nanorods last year, and we further expected that the thinner nanorods, the mightier photoelastic effect exists in them. In this thesis, three diameters of thick, mid-thick, and thin ZnO nanorods are studied. It was observed that the PL spectra, Raman spectra, and the calculated strain would be changed with different excitation Laser power. Besides, the amounts of change are greater in thinner nanorods. This result gives a good evidence to proof our expectation, and provides much novel information to optoelectric device developers. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:40:33Z (GMT). No. of bitstreams: 1 ntu-97-R95222063-1.pdf: 8351955 bytes, checksum: 52e2cc1d1b5e375b0981b5f516ece151 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………I
摘要………………………………………………………………II Abstract…………………………………………………………III Contents…………………………………………………………V Figure Caption…………………………………………………VII 1. Introduction………………………………………1 2. Theoretical Background…………………………6 2.1 Growth Methods of Samples…………7 2.1.1 Metal-organic Vapor Phase Epitaxy…………………………………………………………7 2.1.2 Vapor-Liquid-Solid Growth…………………………………………………………10 2.1.3 DC Sputter Deposition……………………………………………………13 2.2 Fermi Energy…………………………………………………………14 2.2.1 Fermi Energy for Semiconductor…………………………………………………15 2.2.2 Work Function and Fermi Energy for Metal………………………………………………………17 2.3 Photoluminescence…………………………………18 2.4 Raman Scattering………………………………………………………23 2.5 Properties of Deoxyribonucleic Acid (DNA)……………………………………………………………………29 2.6 Scanning Electron Microscopy………………………………………………………35 3. Optical Detection of Deoxyribonucleic Acid Hybridization with InGaN/GaN Multiple Quantum Wells………………………………………………………………43 3.1 Introduction…………………………………………44 3.2 Experiment……………………………………………46 3.3 Results and Discussion………………48 3.4 Conclusion……………………………………………55 4. Size-dependent Photoelastic Effect in ZnO Nanorods……………………………………………………………58 4.1 Introduction……………………………………………59 4.2 Experiment………………………………………………60 4.3 Results and Discussion…………………61 4.4 Conclusion………………………………………………71 5. Summary……………………………………………………75 | |
| dc.language.iso | en | |
| dc.title | 半導體奈米結構光學性質之研究與應用:氮化銦鎵/氮化鎵多層量子井與氧化鋅奈米柱 | zh_TW |
| dc.title | Studies and Applications of Optical Properties in Semiconductor Nanostructures: InGaN/GaN multiple quantum wells and ZnO nanorods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳,林泰源 | |
| dc.subject.keyword | 奈米科技,去氧核醣核酸雜合,量子井,氧化鋅奈米柱,光彈性效應, | zh_TW |
| dc.subject.keyword | nanotechnology,DNA hybridization,quantum well,ZnO nanorod,photoelastic effect, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 8.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
