請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97731完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康敦彥 | zh_TW |
| dc.contributor.advisor | Dun-Yen Kang | en |
| dc.contributor.author | 吳政軒 | zh_TW |
| dc.contributor.author | Zheng-Xuan Wu | en |
| dc.date.accessioned | 2025-07-16T16:05:15Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | 1. Leung, D.Y., G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable and sustainable energy reviews, 2014. 39: p. 426-443.
2. Dong, K., et al., Driving forces and mitigation potential of global CO2 emissions from 1980 through 2030: Evidence from countries with different income levels. Science of the Total Environment, 2019. 649: p. 335-343. 3. Osman, A.I., et al., Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 2021. 19(2): p. 797-849. 4. Karimi, M., et al., Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023. 21(4): p. 2041-2084. 5. Madejski, P., et al., Methods and techniques for CO2 capture: review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. Control Simulation and Monitoring of Thermal Processes in Power Plants, 2022: p. 133. 6. Younas, M., et al., Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020. 80: p. 100849. 7. Clausse, M., J. Merel, and F. Meunier, Numerical parametric study on CO2 capture by indirect thermal swing adsorption. International Journal of Greenhouse Gas Control, 2011. 5(5): p. 1206-1213. 8. Karimi, M., et al., Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. Journal of CO2 Utilization, 2022. 57: p. 101890. 9. A Research Agenda for Transforming Separation Science. 2019, National Academy of Sciences, Washington, DC (United States): United States. p. Medium: ED; Size: 115 p. 10. Strathmann, H., Membrane separation processes. Journal of membrane science, 1981. 9(1-2): p. 121-189. 11. Bernardo, P., E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 2009. 48(10): p. 4638-4663. 12. Elhenawy, S., et al., Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams. Molecules, 2020. 25(18): p. 4274. 13. Galizia, M., et al., 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 2017. 50(20): p. 7809-7843. 14. Qian, Q., et al., MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020. 120(16): p. 8161-8266. 15. Tanh Jeazet, H.B., C. Staudt, and C. Janiak, Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 2012. 41(46): p. 14003-14027. 16. Haldoupis, E., S. Nair, and D.S. Sholl, Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. Journal of the American Chemical Society, 2010. 132(21): p. 7528-7539. 17. Gangu, K.K., et al., A review on contemporary Metal–Organic Framework materials. Inorganica Chimica Acta, 2016. 446: p. 61-74. 18. Moosavi, S.M., et al., Understanding the diversity of the metal-organic framework ecosystem. Nature communications, 2020. 11(1): p. 4068. 19. Millward, A.R. and O.M. Yaghi, Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005. 127(51): p. 17998-17999. 20. Boutin, A., et al., The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption. The Journal of Physical Chemistry C, 2010. 114(50): p. 22237-22244. 21. Trung, T.K., et al., Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53 (Al, Cr). Journal of the American Chemical Society, 2008. 130(50): p. 16926-16932. 22. Furukawa, H., et al., The chemistry and applications of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444. 23. Heo, D.Y., et al., Metal-Organic Framework Materials for Perovskite Solar Cells. Polymers, 2020. 12(9): p. 2061. 24. Chang, C.-K., et al., Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation. Journal of Membrane Science Letters, 2021. 1(1): p. 100005. 25. Zhang, C., et al., Unexpected molecular sieving properties of zeolitic imidazolate framework-8. The journal of physical chemistry letters, 2012. 3(16): p. 2130-2134. 26. Goetjen, T.A., et al., Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020. 56(72): p. 10409-10418. 27. Konnerth, H., et al., Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 2020. 416: p. 213319. 28. Liu, M., J. Wu, and H. Hou, Metal–Organic Framework (MOF)‐based materials as heterogeneous catalysts for C− H bond activation. Chemistry–A European Journal, 2019. 25(12): p. 2935-2948. 29. Gascon, J., et al., Metal organic framework catalysis: Quo vadis? Acs Catalysis, 2014. 4(2): p. 361-378. 30. Wei, Y.-S., et al., Metal–organic framework-based catalysts with single metal sites. Chemical reviews, 2020. 120(21): p. 12089-12174. 31. Zornoza, B., et al., Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous and Mesoporous Materials, 2013. 166: p. 67-78. 32. Collins, D.J. and H.-C. Zhou, Hydrogen storage in metal–organic frameworks. Journal of materials chemistry, 2007. 17(30): p. 3154-3160. 33. Wang, Q. and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical reviews, 2019. 120(2): p. 1438-1511. 34. Xiang, S., et al., Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 2012. 3(1): p. 954. 35. Rowsell, J.L. and O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angewandte Chemie International Edition, 2005. 44(30): p. 4670-4679. 36. Ciccotti, G., et al., Molecular simulations: past, present, and future (a Topical Issue in EPJB). The European Physical Journal B, 2022. 95(1): p. 3. 37. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press. 38. Sinehbaghizadeh, S., et al., A comprehensive review on molecular dynamics simulation studies of phenomena and characteristics associated with clathrate hydrates. Fuel, 2023. 338: p. 127201. 39. Daglar, H., et al., Computational simulations of metal–organic frameworks to enhance adsorption applications. Advanced Materials, 2024: p. 2405532. 40. Formalik, F., et al., Exploring the Structural, Dynamic, and Functional Properties of Metal‐Organic Frameworks through Molecular Modeling. Advanced Functional Materials, 2024. 34(43): p. 2308130. 41. Skoulidas, A.I. and D.S. Sholl, Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 2005. 109(33): p. 15760-15768. 42. Keskin, S., Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks. The Journal of Physical Chemistry C, 2011. 115(3): p. 800-807. 43. Parkes, M.V., et al., Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8. Microporous and Mesoporous Materials, 2014. 194: p. 190-199. 44. García-Pérez, E., et al., Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 2014. 16(30): p. 16060-16066. 45. Fathieh, F., et al., Practical water production from desert air. Science Advances, 2018. 4(6): p. eaat3198. 46. Li, Z., et al., Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Separation and Purification Technology, 2023. 307: p. 122725. 47. Głowniak, S., et al., Mechanochemical Synthesis of MOF-303 and Its CO2 Adsorption at Ambient Conditions. Molecules, 2024. 29(11): p. 2698. 48. Altintas, C., et al., Database for CO2 separation performances of MOFs based on computational materials screening. ACS applied materials & interfaces, 2018. 10(20): p. 17257-17268. 49. Zhai, M., et al., Facile orientation control of MOF-303 hollow fiber membranes by a dual-source seeding method. Nature Communications, 2024. 15(1): p. 10264. 50. Groom, C.R., et al., The Cambridge structural database. Structural Science, 2016. 72(2): p. 171-179. 51. Allen, F.H., The Cambridge Structural Database: a quarter of a million crystal structures and rising. Structural Science, 2002. 58(3): p. 380-388. 52. Mayo, S.L., B.D. Olafson, and W.A. Goddard, DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry, 1990. 94(26): p. 8897-8909. 53. Dubbeldam, D., et al., RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 2016. 42(2): p. 81-101. 54. Potoff, J.J. and J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE journal, 2001. 47(7): p. 1676-1682. 55. Steinhauser, M.O. and S. Hiermaier, A review of computational methods in materials science: examples from shock-wave and polymer physics. International journal of molecular sciences, 2009. 10(12): p. 5135-5216. 56. Verlet, L., Computer" experiments" on classical fluids. II. Equilibrium correlation functions. Physical Review, 1968. 165(1): p. 201. 57. Drazer, G., et al., Adsorption phenomena in the transport of a colloidal particle through a nanochannel containing a partially wetting fluid. Physical review letters, 2002. 89(24): p. 244501. 58. Bitsanis, I., et al., Molecular dynamics of flow in micropores. The Journal of chemical physics, 1987. 87(3): p. 1733-1750. 59. Travis, K.P. and K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids in narrow slit pores. The Journal of chemical physics, 2000. 112(4): p. 1984-1994. 60. Zou, C., et al., Efficient and accurate charge assignments via a multilayer connectivity-based atom contribution (m-CBAC) approach. The Journal of Physical Chemistry C, 2020. 124(21): p. 11428-11437. 61. Cauchy, A., Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris, 1847. 25(1847): p. 536-538. 62. Hestenes, M.R. and E. Stiefel, Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards, 1952. 49(6): p. 409-436. 63. Newton, I., De analysi per aequationes numero terminorum infinitas. 1711. 64. Raphson, J., Analysis aequationum universalis. 1702: Typis TB prostant venales apud A. and I. Churchill. 65. Ortega, J.M. and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables. 2000: SIAM. 66. Dennis Jr, J.E. and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations. 1996: SIAM. 67. Nocedal, J. and S.J. Wright, Numerical optimization. 1999: Springer. 68. Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of computational chemistry, 1983. 4(2): p. 187-217. 69. Cornell, W.D., et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995. 117(19): p. 5179-5197. 70. Biovia, D.S., Materials studio. R2 (Dassault Systèmes BIOVIA, San Diego, 2017. 71. Metropolis, N., et al., Equation of state calculations by fast computing machines. The journal of chemical physics, 1953. 21(6): p. 1087-1092. 72. Panagiotopoulos, A.Z., Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Molecular Physics, 1987. 61(4): p. 813-826. 73. !!! INVALID CITATION !!! . 74. Barrer, R., J. Barrie, and J. Slater, Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber. Journal of polymer science, 1958. 27(115): p. 177-197. 75. Liu, Y., et al., A review on the morphology and material properties of the gas separation membrane: molecular simulation. Membranes, 2022. 12(12): p. 1274. 76. Ewald, P.P., Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der physik, 1921. 369(3): p. 253-287. 77. Darden, T., et al., New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 1999. 7(3): p. R55-R60. 78. Van Hove, L., Correlations in space and time and Born approximation scattering in systems of interacting particles. Physical Review, 1954. 95(1): p. 249. 79. Chitra, R. and S. Yashonath, Estimation of error in the diffusion coefficient from molecular dynamics simulations. The Journal of Physical Chemistry B, 1997. 101(27): p. 5437-5445. 80. Coutu, R.A., et al. Micro-switches with sputtered Au, AuPd, Au-on-AuPt, and AuPtCu alloy electric contacts. in Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004. 2004. IEEE. 81. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. 2023: Elsevier. 82. Cullity, B.D. and R. Smoluchowski, Elements of X‐ray Diffraction. Physics Today, 1957. 10(3): p. 50-50. 83. Giacovazzo, C., Fundamentals of crystallography. Vol. 7. 2002: Oxford university press, USA. 84. Willems, T.F., et al., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials, 2012. 149(1): p. 134-141. 85. Chung, Y.G., et al., Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous crystals. Chemistry of Materials, 2014. 26(21): p. 6185-6192. 86. Choudhuri, I. and D.G. Truhlar, Improved predictive tools for structural properties of metal–organic frameworks. Molecules, 2020. 25(7): p. 1552. 87. Guo, S., et al., Interpretable machine‐learning and big data mining to predict gas diffusivity in metal‐organic frameworks. Advanced Science, 2023. 10(21): p. 2301461. 88. Pinheiro, M., et al., Characterization and comparison of pore landscapes in crystalline porous materials. Journal of Molecular Graphics and Modelling, 2013. 44: p. 208-219. 89. Hanikel, N., et al., Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science, 2021. 374(6566): p. 454-459. 90. Guo, L., et al., Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks. Communications Chemistry, 2023. 6(1): p. 55. 91. Zheng, Z., et al., High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nature Protocols, 2023. 18(1): p. 136-156. 92. Lee, T.B., et al., Molecular dynamics simulation study on the hydrogen adsorption and diffusion in non-interpenetrating and interpenetrating IRMOFs. Catalysis Today, 2009. 146(1-2): p. 216-222. 93. Dokur, D. and S. Keskin, Effects of force field selection on the computational ranking of MOFs for CO2 separations. Industrial & engineering chemistry research, 2018. 57(6): p. 2298-2309. 94. Oliveira, F.L., et al., CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Scientific Data, 2023. 10(1): p. 230. 95. Sturluson, A., et al., The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular simulation, 2019. 45(14-15): p. 1082-1121. 96. Leimkuhler, B., E. Noorizadeh, and O. Penrose, Comparing the efficiencies of stochastic isothermal molecular dynamics methods. Journal of Statistical Physics, 2011. 143: p. 921-942. 97. Lai, J.-Y., et al., Highly-selective MOF-303 membrane for alcohol dehydration. Journal of Membrane Science, 2022. 661: p. 120879. 98. EL-Maaty, A.E.A., et al., Kinetics of Water Adsorption in Metal-Organic Framework (MOF-303) for Adsorption Cooling Application. Energy Conversion and Management: X, 2024. 24: p. 100694. 99. Yuan, J., et al., Novel MOF-303 integrated polymer membrane for efficient separation of azeotropic methanol-MTBE mixtures. Separation and Purification Technology, 2024. 339: p. 126623. 100. The XRD experimental data of MOF-303 and MIL-160 used in this study were measured and provided with the assistance of Mr. Li-Tang Chi from Professor Dun-Yen Kang’s laboratory. 101. Hu, F.-H., et al., Mixed-linker MOF-303 membranes for pervaporation. Journal of Membrane Science Letters, 2023. 3(2): p. 100053. 102. Yang, W., et al., Computational screening of metal–organic framework membranes for the separation of 15 gas mixtures. Nanomaterials, 2019. 9(3): p. 467. 103. Liu, Z.-Y., et al., A stable Al-MOF based on pore size control strategy for efficient SF6/N2 separation. Microporous and Mesoporous Materials, 2025. 391: p. 113622. 104. Kim, H., et al., High D2/H2 selectivity performance in MOF-303 under ambient pressure for potential industrial applications. Separation and Purification Technology, 2023. 325: p. 124660. 105. Li, M., et al., Cu-loaded MOF-303 for iodine adsorption: The roles of Cu species and pyrazole ligands. Applied Surface Science, 2023. 619: p. 156819. 106. Li, H., et al., Regulating positively charged MOF-303 membranes for enhanced ion selectivity. Chemical Engineering Journal, 2025: p. 164373. 107. Damasceno Borges, D., et al., Gas adsorption and separation by the Al-based metal–organic framework MIL-160. The Journal of Physical Chemistry C, 2017. 121(48): p. 26822-26832. 108. Zheng, B., et al., Simulating CO2 diffusivity in rigid and flexible Mg-MOF-74 with machine-learning force fields. APL Machine Learning, 2024. 2(2). 109. Atci, E., I. Erucar, and S. Keskin, Adsorption and transport of CH4, CO2, H2 mixtures in a bio-MOF material from molecular simulations. The Journal of Physical Chemistry C, 2011. 115(14): p. 6833-6840. 110. Cai, S., et al., Microscopic insights on CO2/N2 separation in functionalized MOFs from molecular dynamics simulations and density functional theory calculation. Chemical Engineering Science, 2025. 310: p. 121539. 111. Liu, W., et al., Interactions between absorbed components of various CO2/N2 mixtures over MOF-5: Molecular dynamics simulation and density functional theory calculation. Separation and Purification Technology, 2025. 361: p. 131646. 112. Ren, E. and F.-X. Coudert, Prediction of the diffusion coefficient through machine learning based on transition-state theory descriptors. The Journal of Physical Chemistry C, 2024. 128(16): p. 6917-6926. 113. Kim, S. and J.-H. Lee, Data-driven discovery of novel metal organic frameworks with superior ammonia adsorption capacity. Materials Today Advances, 2024. 23: p. 100510. 114. Wijmans, J.G. and R.W. Baker, The solution-diffusion model: a review. Journal of membrane science, 1995. 107(1-2): p. 1-21. 115. Liu, X., et al., Molecular dynamics simulation of CO2 permeation and separation in Zr-MOF membranes. Fluid Phase Equilibria, 2024. 581: p. 114073. 116. Robeson, L.M., Correlation of separation factor versus permeability for polymeric membranes. Journal of membrane science, 1991. 62(2): p. 165-185. 117. Khalil, I.E., et al., Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coordination Chemistry Reviews, 2023. 481: p. 215043. 118. Cong, S., et al., Highly water-permeable metal–organic framework MOF-303 membranes for desalination. Journal of the American Chemical Society, 2021. 143(48): p. 20055-20058. 119. Daglar, H. and S. Keskin, Computational screening of metal–organic frameworks for membrane-based CO2/N2/H2O separations: Best materials for flue gas separation. The Journal of Physical Chemistry C, 2018. 122(30): p. 17347-17357. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97731 | - |
| dc.description.abstract | 本研究以MOF-303及其混合配體改質之衍生結構為核心探討對象,結合蒙地卡羅(Monte Carlo, MC)與分子動力學(Molecular Dynamics, MD)模擬技術,系統性研究二氧化碳(CO2)與氮氣(N2)在金屬有機骨架材料(Metal-Organic Frameworks, MOFs)中的吸附與擴散行為,並預測其在氣體分離應用中的潛力。研究中選用2,5-呋喃二甲酸(FDC)與2,5-噻吩二甲酸(TDC)取代原始3,5-吡唑二甲酸(PDC)配體,建構FDCx與TDCx (x代表改質配體比例)系列混合配體之MOF-303結構模型,並分別利用Materials Studio與RASPA執行吸附模擬,結合Zeo++進行孔徑分析,包含孔徑限制直徑(PLD, pore limiting diameter)、最大空腔直徑(large cavity diameter, LCD)和孔徑分布(pore size distribution)的計算,再進一步以分子動力學探討其在不同氣體載量下的擴散特性,包含以方均根位移(mean square displacement, MSD)計算擴散係數,及擴散係數與PLD和LCD之間的關聯。模擬結果顯示,配體改質可顯著調控MOF孔徑幾何與表面特性,進而影響CO2與N2的吸附容量與擴散速率。此外,分析結果亦顯示吸附後結構能的絕對值與吸附量呈正相關,代表能量較低之構型存在較佳的氣體吸附能力;而在擴散行為方面,氣體載量之變化也會明顯影響擴散係數之趨勢。最後,本研究亦針對MOF-303及其改質衍生物的CO2及N2滲透率和滲透、吸附及擴散選擇率,與文獻結果進行深入比較和討論。在特定FDC與TDC比例下,材料展現出優異的CO2/N2吸附與擴散選擇率,尤以FDC0.250和TDC0.500能維持接近MOF-303的二氧化碳滲透率,且其CO2/N2分離效能達1.5~2倍。整體而言,本研究成功模擬混合配體的MOF-303,並驗證了它們在二氧化碳捕捉效能的潛力,未來可進一步應用於碳捕捉與其他分離膜材料的模擬甚至實驗開發。 | zh_TW |
| dc.description.abstract | This study centers on MOF-303 and its mixed-linker derivatives, employing a combination of Monte Carlo (MC) and Molecular Dynamics (MD) simulation techniques to systematically investigate the adsorption and diffusion behaviors of carbon dioxide (CO2) and nitrogen (N2) within metal–organic frameworks (MOFs), with the aim of evaluating their potential for gas separation applications. In this work, 2,5-furandicarboxylic acid (FDC) and 2,5-thiophenedicarboxylic acid (TDC) were introduced as partial replacements for the original 3,5-pyrazoledicarboxylic acid (PDC) linker to construct a series of mixed-linker MOF-303 models (denoted as FDCx and TDCx, where x represents the molar fraction of the modified linker). Gas adsorption simulations were performed using both Materials Studio and RASPA, while pore structure characteristics—including pore limiting diameter (PLD), largest cavity diameter (LCD), and pore size distribution—were analyzed with Zeo++. Subsequently, gas diffusion properties under varying loading conditions were evaluated via MD simulations by calculating diffusion coefficients based on the mean square displacement (MSD), and the relationships between diffusion coefficients and geometric parameters such as PLD and LCD were further examined. Simulation results reveal that linker modification significantly alters the pore geometry and surface characteristics of the MOFs, thereby affecting the adsorption capacities and diffusion rates of CO2 and N2. Furthermore, the analysis indicates a positive correlation between the magnitude of adsorption structural energy and the amount adsorbed, suggesting that configurations with lower post-adsorption structural energy are more favorable for gas uptake. On the diffusion side, variations in gas loading were found to have a pronounced influence on the diffusion coefficient trends. In addition, this study includes a detailed comparison between the simulated permeation, adsorption, and diffusion selectivity of MOF-303 derivatives and relevant literature data. At specific FDC and TDC substitution ratios, the materials exhibited excellent CO2/N2 selectivity in both adsorption and diffusion. Notably, FDC0.250 and TDC0.500 maintained CO2 permeability comparable to that of pristine MOF-303, while achieving 1.5- to 2-fold enhancement in overall CO2/N2 separation performance. In summary, this work successfully models a set of mixed-linker MOF-303 structures and demonstrates their promising capability for carbon dioxide capture. The findings provide a valuable theoretical basis for the future development of simulation-guided or experimentally verified MOF-based materials for carbon capture and membrane separation applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:05:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:05:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目次 VI 圖次 IX 表次 XIII 第一章 緒論與文獻回顧 1 1.1 碳捕捉 1 1.2 薄膜氣體分離 5 1.3 金屬有機骨架簡介 9 1.4 金屬有機骨架的分子模擬 12 1.5 本論文之研究架構 16 第二章 分子模擬原理 18 2.1 本研究模擬結構之資料庫 18 2.2 本研究選擇之力場 19 2.2.1 DREIDING 19 2.2.2 GenericMOFs 20 2.2.3 TraPPE 22 2.3 模型建構方法 23 2.3.1 週期性邊界條件 23 2.3.2 指派電荷 26 2.3.3 幾何最適演算化 26 2.3.3.1 最陡下降法 27 2.3.3.2 共軛梯度法 27 2.3.3.3 牛頓-拉弗森法 27 2.3.3.4 SMART演算法 29 2.4 吸附模擬原理 30 2.4.1 以蒙地卡羅法進行吸附模擬 30 2.4.2 艾瓦爾德求和法 33 2.5 擴散模擬原理 35 2.5.1 以分子動力學進行擴散模擬 35 2.5.2 系綜 39 2.6 結構分析方法 40 2.6.1 XRD分析 40 2.6.2 孔徑分析 41 第三章 模擬步驟與參數設定 44 3.1 MOF材料與配體介紹 44 3.2 力場參數化 48 3.3 模型建構 49 3.4 吸附模擬 53 3.5 擴散模擬 55 3.6 結構分析模擬 57 3.6.1 XRD 57 3.6.2 孔徑分析 57 第四章 結果與討論 59 4.1 模擬結構驗證和分析 59 4.1.1 結構能量分析 59 4.1.2 XRD分析 60 4.1.3 孔洞特性分析 61 4.2 吸附 63 4.2.1 吸附等溫線 63 4.2.2 二氧化碳和氮氣吸附 64 4.2.3 吸附後之結構能量 66 4.3 擴散 68 4.3.1 擴散模擬穩定性 68 4.3.2 不同氣體載量之擴散 69 4.4 薄膜氣體分離效能 73 4.4.1 滲透率 73 4.4.2 氣體分離選擇率 75 4.4.3 本研究之滲透率和選擇率與文獻結果比較 79 5 第五章 結論與未來展望 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 薄膜氣體分離 | zh_TW |
| dc.subject | 二氧化碳分離 | zh_TW |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | 蒙地卡羅模擬 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | Carbon Dioxide Separation | en |
| dc.subject | Metal–Organic Frameworks (MOFs) | en |
| dc.subject | Monte Carlo Simulation | en |
| dc.subject | Molecular Dynamics Simulation | en |
| dc.subject | Membrane Gas Separation | en |
| dc.title | 以分子模擬探討氣體在金屬有機骨架內之吸附與擴散性質 | zh_TW |
| dc.title | Molecular Simulations for Investigating Gas Adsorption and Diffusion in Metal-Organic Frameworks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游琇伃;李奕霈;羅世強 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiu-Yu Yu;Yi-Pei Li;Shyh-Chyang Luo | en |
| dc.subject.keyword | 金屬有機骨架,蒙地卡羅模擬,分子動力學模擬,薄膜氣體分離,二氧化碳分離, | zh_TW |
| dc.subject.keyword | Metal–Organic Frameworks (MOFs),Monte Carlo Simulation,Molecular Dynamics Simulation,Membrane Gas Separation,Carbon Dioxide Separation, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202501355 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-17 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
