Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董成淵zh_TW
dc.contributor.advisorChen-Yuan Dongen
dc.contributor.author鄭愷修zh_TW
dc.contributor.authorKai-Hsiu Chengen
dc.date.accessioned2025-07-16T16:04:30Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citation1. Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009;1793(5):911–920.
2. Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2010;123(20):3061–3073.
3. Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 2007;59(13):1299–1305.
4. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–1143.
5. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
6. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–1677.
7. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728–742.
8. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–122.
9. De Belly H, Paluch EK, Salbreux G. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol. 2022;23(7):465–480.
10. Fernandez-Sanchez ME, Barbier S, White D, et al. Mechanotransduction's impact on animal development, evolution, and tumorigenesis. Annu Rev Cell Dev Biol. 2015;31:373–397.
11. Gudipaty SA, Lindblom J, Loftus PD, et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 2017;543(7643):118–121.
12. Chan KY, Xu D, Deng Q, et al. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature. 2022;605(7908):119–125.
13. Solis AG, Bielecki P, Steach HR, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573(7772):69–74.
14. Venturini V, Pezzano F, Castro FC, et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science. 2020;370(6514): eaba2644.
15. Thermo Fisher Scientific. Click-iT® EdU Imaging Kits Protocol. [Internet]. Available from: https://www.thermofisher.com
16. Ormerod MG, editor. Flow Cytometry: A Practical Approach. 2nd ed. Oxford: Oxford University Press; 1992.
17. Bostock CJ, Prescott DM, Kirkpatrick JB. An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp Cell Res. 1971;68(1):163–168.
18. Montiel-Duarte C, Waugh DJJ. Optimizing cell synchronization using nocodazole or double thymidine block. In: Pagano M, editor. Cell Cycle Synchronization: Methods and Protocols. New York: Springer; 2021. p. 89–96.
19. Sakaue-Sawano A, Kurokawa H, Morimura T, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132(3):487–498.
20. De Leon MP, Wen FL, Paylaga GJ, et al. Mechanical waves identify the amputation position during wound healing in the amputated zebrafish tailfin. Nat Phys. 2023;19:1362–1370.
21. Lee Y, Grill SM, Sanchez A, et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development. 2005;132(23):5173–5183.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97728-
dc.description.abstract在2022年,中央研究院細胞生物研究所陳振輝教授實驗室於斑馬魚幼魚的表皮細胞中發現了一種特殊的細胞分裂現象,稱為無合成分裂 (asynthetic fission)。這一現象不同於傳統的有絲分裂,因為細胞在分裂過程中不經過 DNA 合成 (S期),而是直接進入分裂階段。研究人員提出,這種現象可能與斑馬魚幼魚在其生長階段中,皮膚細胞所承受的巨大張力有關,這樣的張力可能促使細胞發生非典型的分裂過程。本研究旨在探討是否可以在哺乳類表皮細胞中觀察到類似的無合成分裂現象。我們選擇了表現 H2B-mCherry的MDCK (Madin-Darby Canine Kidney)細胞株並利用自製的拉伸器(Fig. 1a)來模擬張力。該拉伸器通過夾緊PDMS薄膜兩端並控制插銷寬度來施加拉伸,拉伸程度大約為30-40%。我們通過共軛焦顯微鏡,使用10倍物鏡,每10分鐘拍攝一次1024x1024像素的影像,每組實驗時間為兩小時。雖然在實驗中觀察到了多次分裂事件,但目前尚未能夠確定 MDCK 細胞發生無合成分裂。依賴拉伸配合EdU staining來推測細胞所處的分裂週期階段也尚未找到MDCK無合成分裂的證據,且在拉伸條件的環境設置下如何清晰地觀察細胞分裂也是一大挑戰。未來可以探索更多細胞週期相關的 MDCK cell line 進行更細緻的實驗。此外,拉伸儀器的精度和薄膜的拉伸速度也將成為未來優化實驗設計的重點,以便更精確地模擬細胞在自然條件下的反應。zh_TW
dc.description.abstractIn 2022, a research team led by Professor Chen Chen-Hui at the Institute of Cellular and Organismic Biology, Academia Sinica, reported a novel mode of cell division termed “asynthetic fission” in the epidermal cells of zebrafish larvae. Unlike conventional mitosis, this type of division bypasses the DNA synthesis (S) phase and proceeds directly to the mitotic stage. The researchers proposed that this process may be driven by the substantial mechanical tension experienced by epidermal cells during the larval growth phase, which may induce such non-typical divisions. The aim of our study is to investigate whether a similar asynthetic fission phenomenon can be observed in mammalian epithelial cells. We utilized a H2B-mCherry-expressing MDCK (Madin-Darby Canine Kidney) cell line and applied mechanical tension using a custom-built stretching device (Fig. 1a). This device operates by clamping a PDMS membrane at both ends and varying the plug distance to induce stretching, achieving an estimated strain of approximately 30–40%. Imaging was performed using a confocal microscope with a 10× objective lens, acquiring 1024×1024 pixels images every 10 minutes over a two-hour observation period. Although multiple cell division events were observed under these conditions, no definitive evidence of asynthetic fission has been identified in MDCK cells. Attempts to infer the cell cycle phase based on EdU staining following mechanical stretching remain inconclusive. Moreover, clearly visualizing cell division events under stretching conditions continues to pose significant technical challenges. Future studies may benefit from the use of MDCK cell lines with fluorescently labeled cell cycle markers to enable more precise analysis. Additionally, improving the mechanical resolution of the stretching device and optimizing the membrane extension rate will be essential for better mimicking physiological mechanical stimuli and enhancing experimental reproducibility.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:04:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:04:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures viii
Chapter 1 Introduction - 1 -
1.1 Research Background - 1 -
1.2 Research Motivation - 2 -
1.3 Research Aims - 2 -
Literature Review - 4 -
Chapter 2 Materials and Methods - 7 -
2.1 MDCK cell culture - 7 -
2.2 Polydimethylsiloxane (PDMS) thin film fabrication - 7 -
2.3 Seed MDCK cells to PDMS - 8 -
2.4 Stretch PDMS by self-made stretching device - 8 -
2.5 Live cell imaging - 9 -
2.6 MDCK Cell Serum Starvation for Synchronization - 10 -
2.7 EDU staining - 10 -
2.8 Cell Cycle Analysis by Flow Cytometry - 11 -
Chapter 3 Results - 13 -
3.1 Control vs stretching - 13 -
3.2 Serum starvation 24hr control vs stretching - 13 -
3.3 EdU staining results (stain marked PDMS) - 14 -
3.4 Flow cytometry results - 16 -
Chapter 4 Discussions - 17 -
How Mechanical Stretching Influences Cell Division - 17 -
Limitations of Serum Starvation-Based Synchronization - 18 -
Challenges of EdU Labeling - 18 -
Insights from Flow Cytometry Analysis - 19 -
Comparison with Previous Observations of Asynthetic Fission - 20 -
Stretching Attempts on the Adult Zebrafish Tg(krt19:H2A-mCherry & krt4:H2A-EGFP) Epidermis - 22 -
Chapter 5 Conclusion - 24 -
Chapter 6 Future Work - 25 -
1. A More Efficient Synchronization Strategy - 25 -
2. Optimization of Stretching Parameters - 25 -
3. Use of Alternative Cell Lines - 26 -
4. Revisiting the Zebrafish Epidermis Model - 26 -
Chapter 7 Supplementary & Figures - 27 -
Reference - 36 -
-
dc.language.isoen-
dc.subject上皮細胞zh_TW
dc.subject細胞週期調控zh_TW
dc.subject活細胞即時影像zh_TW
dc.subject機械張力zh_TW
dc.subject無合成分裂zh_TW
dc.subjectCell cycle regulationen
dc.subjectAsynthetic fissionen
dc.subjectMechanical stretchingen
dc.subjectLive-cell imagingen
dc.subjectEpithelial cellsen
dc.title探索機械拉伸對上皮細胞分裂的調控潛力:以 MDCK 細胞為模型zh_TW
dc.titleExploring the Regulatory Potential of Mechanical Stretching on Epithelial Cell Division: A Study Using MDCK Cellsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林耿慧;陳振輝zh_TW
dc.contributor.oralexamcommitteeKeng-Hui Lin;Chen-Hui Chenen
dc.subject.keyword無合成分裂,機械張力,活細胞即時影像,上皮細胞,細胞週期調控,zh_TW
dc.subject.keywordAsynthetic fission,Mechanical stretching,Live-cell imaging,Epithelial cells,Cell cycle regulation,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU202501545-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2025-07-17-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved