Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97713
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬zh_TW
dc.contributor.advisorYu-Pin Linen
dc.contributor.author許家銓zh_TW
dc.contributor.authorChia-Chuan Hsuen
dc.date.accessioned2025-07-11T16:18:24Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-06-27-
dc.identifier.citation1. 台灣自來水公司,2020年,台灣自來水事業統計年報-民國108年。
2. 童慶斌、劉子明、李明旭,2006年,應用季節性氣候預報於水庫蓄水量預測,農業工程學報,52(2),51-66。https://doi.org/10.29974/JTAE.200606.0006.
3. 黃文政、周家慶,2008年,桃園地區農業休耕時機之探討,農業工程學報,54(2),21-34。https://doi.org/10.29974/JTAE.200806.0003.
4. 黃群展、李明旭、童慶斌、許少瑜,2017年,利用跨尺度天氣預報決定解除限水時間—以民國100年石門水庫為例。農業工程學報,63(3),60-73。https://doi.org/10.29974/JTAE.201709_63(3).0005.
5. 經濟部水利署(Water Resource Agency, WRA),2009年,台灣地區蓄水設施水量營運統計報告-民國98年。
6. 經濟部水利署(Water Resource Agency, WRA),2018年,水利公開資料,摘錄自https://data.gov.tw/dataset/32726.
7. 經濟部水利署(Water Resource Agency, WRA),2020年,石門水庫運用要點,https://law.moea.gov.tw/LawContent.aspx?id=FL021687.
8. 經濟部水利署(Water Resource Agency, WRA),2021年,水情資訊,摘錄自https://fhy.wra.gov.tw/fhy/Monitor/Reservoir.
9. 經濟部水利署水利規劃分署(Water Resources Planning Institute, WRPI),2020年,多元水源智慧調控-3.巨量資料分析及動態調控模式。
10. 農業部農田水利署,2021年,作物與資源最適化灌溉規劃與策略–以桃三灌區為例。
11. 寶藏、劉雅慈、楊道昌、郭振民、曾宏偉、游保杉,2020年,結合現況與未來乾旱指標建立水庫乾旱預警模式-以石門水庫為應用案例。農業工程學報,66(3),1-12。https://doi.org/10.29974/JTAE.202009_66(3).0001.
12. Amorocho-Daza, H., van der Zaag, P., Sušnik, J., 2023. Access to water-related services strongly modulates human development. Earth's Future 11. https://doi.org/10.1029/2022EF003364.
13. Anaraki, M.V., Achite, M., Farzin, S., Elshaboury, N., Al-Ansari, N., Elkhrachy, I., 2023. Modeling of Monthly Rainfall–Runoff Using Various Machine Learning Techniques in Wadi Ouahrane Basin, Algeria. Water 15(20), 3576. https://doi.org/10.3390/w15203576.
14. Apel, H., Abdykerimova, Z., Agalhanova, M., Baimaganbetov, A., Gavrilenko, N., Gerlitz, L., Kalashnikova, O., Unger-Shayesteh, K., Vorogushyn, S., Gafurov, A., 2018. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management. Hydrol. Earth Syst. Sci. 22, 2225–2254. https://doi.org/10.5194/hess-22-2225-2018.
15. Bergstrand, M., Asp, S.-S., Lindström, G., 2014. Nationwide hydrological statistics for Sweden with high resolution using the hydrological model S-HYPE. Hydrology Research 45(3), 349–356.
16. Bureau of Meteorology, Australian Government, retrieved from http://www.bom.gov.au/water/ssf/index.shtml
17. Central Weather Bureau, ROC, 2018, 2017- Annual report.
18. Chang, T.H., Tseng, C.H., Chang, J.C., 1995. The ensemble forecast system of the Central Weather Bureau. Meteorological Bulletin 43(4).
19. Chang, H.-H., Boisvert, R.N., Blandford, D., 2005. Achieving Environmental Objectives Under Reduced Domestic Agricultural Support and Trade Liberalization: An Empirical Application to Taiwan. Agric Resour Econ Rev 34, 16–31. https://doi.org/10.1017/S1068280500001544.
20. Chemura, A., Gleixner, S., Gornott, C., 2024. Dataset of the suitability of major food crops in Africa under climate change. Sci Data 11. https://doi.org/10.1038/s41597-024-03118-1.
21. Choi, D.Y., Kim, S.W., Choi, M.A., Geem, Z.W., 2016. Adaptive Kalman filter based on adjustable sampling interval in burst detection for water distribution system. Water 8(4), 142. https://doi.org/10.3390/w8040142.
22. Coello, C.A., 2002. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11–12), 1245–1287. https://doi.org/10.1016/S0045-7825(01)00340-6.
23. De Robertson, Q.J., Wang, Q.J., 2012. A Bayesian approach to predictor selection for seasonal streamflow forecasting. Journal of Hydrometeorology 13(1), 155–171. https://doi.org/10.1175/JHM-D-11-0090.1.
24. Deb, K., Jain, H., 2014. An evolutionary many-objective optimization algorithm using reference‐point‐based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601. https://doi.org/10.1109/TEVC.2013.2280820.
25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197. https://doi.org/10.1109/4235.996017.
26. Department of Household Registration, MOI, ROC, 2018, retrieved from https://www.ris.gov.tw/app/portal/346
27. Devak, M., Dhanya, C.T., Gosain, A.K., 2015. Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology 525, 286–301. https://doi.org/10.1016/j.jhydrol.2015.03.051.
28. Dion, P., Martel, J.L., Arsenault, R., 2021. Hydrological ensemble forecasting using a multi-model framework. Journal of Hydrology 600, 126537. https://doi.org/10.1016/j.jhydrol.2021.126537.
29. Ezell, B., Lynch, C.J., Hester, P.T., 2021. Methods for weighting decisions to assist modelers and decision analysists: a review of ratio assignment and approximate techniques. Applied Sciences (Switzerland). https://doi.org/10.3390/app112110397.
30. Fernández de Bulnes, D.R., Maldonado, Y., 2018. Comparación de algoritmos evolutivos multi-objetivo para síntesis de alto nivel en dispositivos FPGA. Computacion y Sistemas 22(2), 425–437. https://doi.org/10.13053/cys-22-2-2946.
31. Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and Drainage Paper 56.
32. Food and Agriculture Organization of the United Nations (FAO), Martin Smith, 1992. CROPWAT: A computer program for irrigation planning and management.
33. Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., Hochreiter, S., 2021. Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network. Hydrology and Earth System Sciences 25, 2045–2062. https://doi.org/10.5194/hess-25-2045-2021.
34. Ghile, Y.B., Schulze, R.E., 2009. Use of an ensemble re-ordering method for disaggregation of seasonal categorical rainfall forecasts into conditioned ensembles of daily rainfall for hydrological forecasting. Journal of Hydrology 371, 85–97. https://doi.org/10.1016/j.jhydrol.2009.03.019.
35. Gong, G., Wang, L., Condon, L., Shearman, A., Lall, U., 2010. A simple framework for incorporating seasonal streamflow forecasts into existing water resource management practices. Journal of the American Water Resources Association 31, 3465–3489.
36. Grey, D., Sadoff, C.W., 2007. Sink or swim? Water security for growth and development. Water Policy 9(6), 545–571. https://doi.org/10.2166/wp.2007.021.
37. Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
38. Hsu, C.C., Lin, Y.P., 2024. Incorporating long-term numerical weather forecasts to quantify dynamic vulnerability of irrigation supply system: A case study of Shihmen Reservoir in Taiwan, Agricultural Water Management, Vol. 306. 109178, https://doi.org/10.1016/j.agwat.2024.109178.
39. Jackson-Blake, L.A., Clayer, F., de Eyto, E., French, A.S., Frías, M.D., Mercado-Bettín, D., Moore, T., Puértolas, L., Poole, R., Rinke, K., Shikhani, M., van der Linden, L., Marcé, R., 2022. Opportunities for seasonal forecasting to support water management outside the tropics. Hydrology and Earth System Sciences 26, 1389–1406. https://doi.org/10.5194/hess-26-1389-2022.
40. Jahangir, M.H., Yarahmadi, Y., 2020. Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI): case study, Lorestan, Iran. Arabian Journal of Geosciences 13, 110.
41. Kaune, A., Chowdhury, F., Werner, M., Bennett, J., 2020. The benefit of using an ensemble of seasonal streamflow forecasts in water allocation decisions. Hydrology and Earth System Sciences 24, 3851–3870. https://doi.org/10.5194/hess-24-3851-2020.
42. Khateeb, I., Kim, S., Tachikawa, Y., 2025. Assessing the effectiveness of ANN model in spatial downscaling of d4PDF hourly precipitation data: a case study in Japan. Journal of Disaster Science and Management 1, Article 3. https://doi.org/10.1007/s44367-025-00003-5.
43. Knoema, 2020. WORLD DATA ATLAS. https://knoema.com/atlas/Japan/topics/Water/Dam-Capacity/Dam-capacity-per-capita.
44. Knowles, J., Corne, D., 2000. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172.
45. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M., 2018. Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences 22, 6005–6022. https://doi.org/10.5194/hess-22-6005-2018.
46. Le, X.-H., Ho, H., Lee, G., Jung, S., 2019. Application of Long Short-Term Memory (LSTM) neural network for flood forecasting. Water 11, 1387. https://doi.org/10.3390/w11071387.
47. Li, C., Zhu, L., He, Z., Gao, H., Yang, Y., Yao, D., Qu, X., 2019. Runoff prediction method based on adaptive Elman neural network. Water 11(6), 1113. https://doi.org/10.3390/w11061113.
48. Li, J., Wen, Y., Jiang, J., Tan, W., Zhang, T., 2023. A multi-dimensional comprehensive assessment (MDCA) method for the prioritization of water pollution treatment technologies in China. Water (Switzerland) 15. https://doi.org/10.3390/w15040751.
49. Li, M., Xu, W.C., Rosegrant, M.W., 2016. Irrigation, risk aversion, and water right priority under water supply uncertainty. Water Resources Research 53, 7885–7903. https://doi.org/10.1002/2016WR019779.
50. Li, R., Guo, P., Li, J., 2018. Regional water use structure optimization under multiple uncertainties based on water resources vulnerability analysis. Water Resources Management 32, 1827–1847. https://doi.org/10.1007/s11269-018-1906-8.
51. Lin, G.F., Chang, M.J., Wang, C.F., 2017. A novel spatiotemporal statistical downscaling method for hourly rainfall. Water Resources Management 31, 3465–3489. https://doi.org/10.1007/s11269-017-1679-5.
52. Lin, Y.-P., Hsu, C.-C., Wuryandani, S., Yang, F.-A., 2024. A decision-making framework based on rain fed crop suitability, water scarcity, and economic benefits for determining multiple crop rotation strategy. Agricultural Water Management 306, 109200. https://doi.org/10.1016/j.agwat.2024.109200.
53. Liu, Y., Song, W., Deng, X., 2017. Spatiotemporal patterns of crop irrigation water requirements in the Heihe River Basin, China. Water 9(8), 616. https://doi.org/10.3390/w9080616.
54. Manners, R., Vandamme, E., Adewopo, J., Thornton, P., Friedmann, M., Carpentier, S., Ezui, K.S., Thiele, G., 2021. Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates. Agric Syst 193, 103246. https://doi.org/https://doi.org/10.1016/j.agsy.2021.103246.
55. Marko, O., 2019. Optimisation of crop configuration using NSGA-III with categorical genetic operators. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 201–202. https://doi.org/10.1145/3319619.3321912.
56. Maxwell, D.H., Jackson, B.M., McGregor, J., 2018. Constraining the ensemble Kalman filter for improved streamflow forecasting. Journal of Hydrology 560, 127–140. https://doi.org/10.1016/j.jhydrol.2018.03.015.
57. Mengistie, G.K., Wondimagegnehu, K.D., Walker, D.W., Haile, A.T., 2024. Value of quality controlled citizen science data for rainfall-runoff characterization in a rapidly urbanizing catchment. Journal of Hydrology 629, 130639. https://doi.org/10.1016/j.jhydrol.2024.130639.
58. Moghadam, N.T., Malekmohammadi, B., Schirmer, M., 2024. Vulnerability assessment of hydrological ecosystem services under future climate and land use change dynamics. Ecological Indicators 160, 111905. https://doi.org/10.1016/j.ecolind.2024.111905.
59. Nam, W.H., Choi, J.Y., 2014. Development of an irrigation vulnerability assessment model in agricultural reservoirs utilizing probability theory and reliability analysis. Agricultural Water Management 142, 115–126. https://doi.org/10.1016/j.agwat.2014.05.009.
60. Nguyen, T.T., Ngo, H.H., Guo, W., Nguyen, H.Q., Luu, C., Dang, K.B., Liu, Y., Zhang, X., 2020. New approach of water quantity vulnerability assessment using satellite images and GIS-based model: an application to a case study in Vietnam. Science of the Total Environment 737, 139784. https://doi.org/10.1016/j.scitotenv.2020.139784.
61. Niknam, A., Zare, H.K., Hosseininasab, H., Mostafaeipour, A., Herrera, M., 2022. A critical review of short-term water demand forecasting tools—what method should I use? Sustainability 14(9), 5412. https://doi.org/10.3390/su14095412.
62. Northern Region Water Resources Branch (WRANB), WRA, MOEA, ROC, 2020. https://law.moea.gov.tw/LawContent.aspx?id=FL021687.
63. Ouma, Y.O., Cheruyot, R., Wachera, A.N., 2021. Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin. Complex & Intelligent Systems 2021.
64. Paik, K., Kim, J.H., Kim, H.S., Lee, D.R., 2005. A conceptual rainfall-runoff model considering seasonal variation. Hydrological Processes 19, 3837–3850. https://doi.org/10.1002/hyp.5984.
65. Panahi, D.M., Blauhut, V., Raziei, T., Zahabiyoun, B., 2023. Drought vulnerability range assessment: a dynamic and impact-driven method for multiple vulnerable systems. International Journal of Disaster Risk Reduction 91, 103701. https://doi.org/10.1016/j.ijdrr.2023.103701.
66. Patle, G.T., Panggeng, T., 2024. Assessment of crop water requirement and irrigation scheduling for selected crops in the Kohima district, Nagaland, India. Water Practice and Technology 19(3), 812–823. https://doi.org/10.2166/wpt.2024.047.
67. Peñuela, A., Hutton, C., Pianosi, F., 2020. Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK. Hydrology and Earth System Sciences 24, 6059–6073. https://doi.org/10.5194/hess-24-6059-2020.
68. Ramirez-Villegas, J., Jarvis, A., Läderach, P., 2013. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agric For Meteorol 170, 67–78. https://doi.org/https://doi.org/10.1016/j.agrformet.2011.09.005.
69. Rio, M., Rey, D., Prudhomme, C., Holman, I.P., 2018. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agricultural Water Management 206, 200–208. https://doi.org/10.1016/j.agwat.2018.05.005.
70. Romanowicz, R., 2010. An application of a log-transformed low-flow (LTLF) model to baseflow separation. Hydrological Sciences Journal 55(6), 952–964. https://doi.org/10.1080/02626667.2010.505172.
71. Şen, B., 2023. Determining the changing irrigation demands of maize production in the Cukurova Plain under climate change scenarios with the CROPWAT model. Water 15(24), 4215. https://doi.org/10.3390/w15244215.
72. Shamir, E., Lee, B.J., Bae, D.H., Georgakakos, K.P., 2010. Flood forecasting in regulated basins using the ensemble extended Kalman filter with the storage function method. Journal of Hydrologic Engineering 15(12), 1030–1044. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000282.
73. Shooman, M.L., 1968. Probabilistic reliability: an engineering approach. McGraw-Hill.
74. Smith, J., Wang, L., Johnson, M., 2020. A multi-objective optimization approach for crop planning under uncertain water availability. Agricultural Water Management 241, 106357. https://doi.org/10.1016/j.agwat.2020.106357.
75. Stańczyk, J., Kajewska-Szkudlarek, J., Lipiński, P., Rychlikowski, P., 2022. Improving short-term water demand forecasting using evolutionary algorithms. Scientific Reports 12(1), 13522. https://doi.org/10.1038/s41598-022-17177-0.
76. Tornyeviadzi, H.M., Owusu-Ansah, E., Mohammed, H., Seidu, R., 2022. A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks. Reliab. Eng. Syst. Saf. 219, 108217. https://doi.org/10.1016/j.ress.2021.108217.
77. Tucci, C.E.M., Clarke, R.T., Collischonn, W., Dias, P.L.S., Sampaio, G., 2003. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research 39(7), SWC3–1–3–11. https://doi.org/10.1029/2003WR002074.
78. Turner, S.W.D., Bennett, J.C., Robertson, D.E., Galelli, S., 2017. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations. Hydrology and Earth System Sciences 21, 4841–4859. https://doi.org/10.5194/hess-21-4841-2017.
79. Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V., 2003. Towards reduced uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis. Hydrological Processes 17(2), 455–476. https://doi.org/10.1002/hyp.1135.
80. Wang, E.L., Zhang, Y.Q., Luo, J.M., Chiew, F.H.S., Wang, Q.J., 2011. Monthly and seasonal streamflow forecasts using rainfall‐runoff modeling and historical weather data. Water Resources Research 47(5), W05516. https://doi.org/10.1029/2010WR010401.
81. World Bank, 2005. Pakistan - Country water resources assistance strategy: water economy running dry, Report No. 34081-PK.
82. World Meteorological Organization (WMO) - WMO, 1987. Technical report to the Commission for Hydrology, 23. Real-time intercomparison of hydrological models: report of the workshop held in Vancouver, Canada from 30 July to 8 August 1987, WMO/TD-No. 255.
83. World Meteorological Organization (WMO), Colombani J., 1986. Technical report to the Commission for Hydrology, 21. Conceptual models used in hydrological studies, WMO/TD-No. 120.
84. World Meteorological Organization (WMO), Serban P., 1990. Operational hydrology report (OHR), 34. Hydrological models for water-resources system design and operation, WMO-No. 740.
85. Wu, T.Y., Juang, H.M.H., Chen, Y.L., Liu, P.Y., Lin, S.I., Chen, J.H., Lu, M.M., 2019. CWB CFS 1-Tier hindcast analysis and forecast verification. Climate Prediction S&T Digest, 172.
86. Wu, W., Liu, Y., Ge, M., Rostkier-Edelstein, D., Descombes, G., Kunin, P., Warner, T., Swerdlin, S., Givati, A., Hopson, T., Yates, D., 2012. Statistical downscaling of climate forecast system seasonal predictions for the Southeastern Mediterranean. Atmospheric Research 118, 346–356. https://doi.org/10.1016/j.atmosres.2012.02.007.
87. Xu, Y.H., Hu, C.H., Wu, Q., Jian, S.Q., Li, Z.C., Chen, Y.Q., Zhang, G.D., Zhang, Z.X., Wang, S.L., 2022. Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. Journal of Hydrology 608, 127553. https://doi.org/10.1016/j.jhydrol.2022.127553.
88. Yang, T.-C., Yu, P.-S., Chen, C.-C., 2005. Long-term runoff forecasting by combining hydrological models and meteorological records. Hydrological Processes 19(10), 1967–1981. https://doi.org/10.1002/hyp.5658.
89. Yang, W.F., 2010. Current status and future development issues of water resources utilization in Taiwan. In: Forum on Water Rationalization and NEWater Source Development, CNTIC, Taipei City.
90. Yu, T., Mahe, L., Li, Y., Wei, X., Deng, X., Zhang, D., 2022. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy 12(2), 436. https://doi.org/10.3390/agronomy12020436.
91. Zhang, A., Hao, S., Xie, X., Liu, Y.L., Yu, H.S., 2023. Inspection and maintenance optimization for heterogeneity units in redundant structure with Non-dominated Sorting Genetic Algorithm III. ISA Transactions 135, 299–308. https://doi.org/10.1016/j.isatra.2022.09.029.
92. Zhang, H., 2023. Effects of soybean–corn rotation on crop yield, economic benefits, and water productivity in the Corn Belt of Northeast China. Sustainability 15(14), 11362. https://doi.org/10.3390/su151411362.
93. Zhang, H., Li, Y., Zhao, Q., 2018. Multi-objective optimization of irrigation scheduling using NSGA-III. Irrigation Science 36(3), 159–173. https://doi.org/10.1007/s00271-018-0575-9.
94. Zhu, J., Fernando, N., Yang, Y., Higgins, C., Abel, A., 2016. Application of seasonal rainfall forecasts to inform the implementation of drought contingency triggers in selected water supply reservoirs in Texas. In: Science and Technology Infusion Climate Bulletin NOAA’s National Weather Service 41st NOAA Annual Climate Diagnostics and Prediction Workshop, Orono, ME, 3–6 October 2016.
95. Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103(2001), 1–15.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97713-
dc.description.abstract有效的水資源管理關鍵在於全面掌握供需關係,並進行精準的平衡與調配然而,隨著氣候變遷日益加劇,水資源短缺問題愈發嚴峻,特別是在農業領域,由於灌溉用水需求龐大且具高度時效性,因此對水資源調配的挑戰尤為突出。本研究提出一套綜合性框架,用於水資源之動態脆弱度分析,並結合長達6個月的長期氣象預報,以提升水資源管理之前瞻性與調適能力。分析上採用 K-近鄰演算法(K-nearest neighbors, KNN)方法進行空間降尺度,利用長短期記憶法(Long Short-Term Memory, LSTM)模擬降雨逕流,並應用蒙地卡羅模擬(Monte Calro Simulation, MCS)分析水資源系統之脆弱度。透過模型動態更新,並納入歷史水文與氣象資料中的不確定性因素,得以針對未來6個月的水資源供應系統之失效機率進行時序性分析與評估。
本研究以臺灣北部桃園地區之石門水庫供水區為研究區域,並針對歷史氣候條件與作物輪作情境進行分析。歷史條件模擬結果顯示,本模型成功預測 2000 至 2021 年間 7 次由乾旱引發之灌溉停水事件中的6次。透過動態分析,本模型可提供前瞻性之供水系統脆弱度預測,並顯示作物輪作策略能顯著提升灌溉穩定性,即便在乾旱年亦能維持供水系統之韌性。再考量作物適栽性、經濟效益及水資源利用率等3項重要因子,以非支配排序基因演算法(Non-dominated Sorting Genetic Algorithm, NSGA)建立多目標決策機制,提供以工作站為單位之作物種植建議。研究成果可協助管理者與農民更有效地掌握不確定性及脆弱點,並提供調適建議,進而促進水資源之科學化與適應性管理規劃。
zh_TW
dc.description.abstractEffective water resource management is based on the knowledge of water availability and requirement, as well as an interpretation of the balance between supply and demand. In recent years, the changing climate has caused high water supply pressure of many water resources systems, especially for decision-making of cases with high operational risks, such as agricultural irrigation supply, which has large demand, pressured time, and continuous impacts. Therefore, it is necessary to develop a dynamic analysis framework that can accommodate the medium and long-term meteorological ensemble forecast data (of the next 6 months). In this study, a systematic dynamic vulnerability analysis framework is proposed. In the framework, historical data of rainfall and reservoir inflow, operation, and discharge are incorporated with the meteorological long-term forecast data (TCWB1T1), in order to expand the explaining ability of historical datasets. The rainfall data was first downscaled using the method of K-nearest neighbors (KNN), and the rainfall-runoff process was simulated using the machine learning method-Long Short-Term Memory (LSTM). Then, the local reservoir operating rules were incorporated into the calculation of water supply and demand. Finally, the Monte Carlo simulation was applied to generate the dynamic vulnerability of the water supply system. By continuously updating the factors, the uncertainty was incorporated and the failure probability of the water supply system in the next 18 ten-days was analyzed, to shorten the time delay of generating decision-making assistance information. Taking Taoyuan City in northern Taiwan (the water supply area of Shihmen Reservoir) as an example, the results of model validation show that among the 7 drought-caused cessations of irrigation in this area in recent years, 6 of them can be clearly observed or even predicted. Through the ten-day analysis, dynamic vulnerability forecast can be provided at the key decision-making time (1-2 months before cultivation) in terms of the system failure rate. Considering 3 critical factors—crop suitability, economic profitability, and water-use efficiency—a multi-objective decision-making framework was established using the Non-dominated Sorting Genetic Algorithm (NSGA) to generate crop-planting recommendations at the workstation scale. The outcomes of this study assist managers and farmers in effectively identifying uncertainties and vulnerabilities, while providing adaptive strategies that facilitate more scientific and resilient water resource management planning.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:18:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:18:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 研究目的 1
1.2 本文架構 2
第二章 文獻回顧 3
2.1 氣象領域及水利領域之連結 3
2.2 中長期流量預報技術的發展 4
2.3 脆弱度分析方法應用與發展 4
2.4 多目標決策於灌溉管理之應用 5
第三章 研究區域 8
3.1 區域概述 8
3.2 研究資料 9
第四章 研究方法 11
4.1 水源供給量評估 13
4.2 用水需求推估 21
4.3 水庫演算 24
4.4 脆弱度分析 29
4.5 作物種植策略評估 33
第五章 結果 54
5.1 水源供給量評估結果 54
5.2 用水需求推估結果 62
5.3 脆弱度分析結果 67
5.4 作物種植策略演算結果 84
第六章 討論 113
6.1 整合模式優勢 113
6.2 歷史水文條件動態脆弱度討論 115
6.3 模擬灌溉用水情境動態脆弱度討論 116
6.4 作物種植策略結果討論 117
6.5 研究限制與建議 120
第七章 結論與建議 122
7.1 結論 122
7.2 建議 124
參考文獻 125
附錄 136
-
dc.language.isozh_TW-
dc.subject供水系統zh_TW
dc.subject多目標決策zh_TW
dc.subject長期氣象預報zh_TW
dc.subject灌溉用水zh_TW
dc.subject機器學習zh_TW
dc.subject脆弱度分析zh_TW
dc.subjectirrigation wateren
dc.subjectmachine learningen
dc.subjectwater supply systemsen
dc.subjectvulnerability analysisen
dc.subjectmulti-objective decisionen
dc.subjectensemble forecastingen
dc.title整合中長期氣象系集預報進行水庫供水系統動態脆弱度分析zh_TW
dc.titleIncorporating Long-Term Ensemble Weather Forecasts for Dynamic Vulnerability Analysis of Reservoir Water Supply Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳瑞賢;李明旭;廖國偉;江莉琦zh_TW
dc.contributor.oralexamcommitteeRay-Shyan Wu;Ming-Hsu Li;Kuo-Wei Liao;Li-Chi Chiangen
dc.subject.keyword脆弱度分析,供水系統,機器學習,灌溉用水,長期氣象預報,多目標決策,zh_TW
dc.subject.keywordvulnerability analysis,water supply systems,machine learning,irrigation water,ensemble forecasting,multi-objective decision,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202501308-
dc.rights.note未授權-
dc.date.accepted2025-06-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved