請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 林泰穎 | zh_TW |
| dc.contributor.author | Tai-Ying Lin | en |
| dc.date.accessioned | 2025-07-11T16:13:58Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | W. H. HunterWoodward. Broadband Dielectric Spectroscopy-A Pratical Guide. Core R&D, The Dow Chemical Company, Midland, Michigan, United States, 2021.
T. T. Grove. M. F. Masters and R. E. Miers. Determining dielectric constants using a parallel plate capacitor. American Journal of Physics, 73(1):52–56, 2005. E. Tuncer, Y. V. Serdyuk, and S.M. Gubanski. Dielectric mixtures: Electrical properties and modeling. IEEE Transaction on Dielectrics and Electrical Insulation, 9(5):809–828, 2002. Andrew K Jonscher. Dielectric relexation in solids. Journal of Physics D: Applied Physics, pages 57–70, 1999. P. Debye. Polar Molecules. Dover Publications, New York, United States, 1945. Virendrakumar N. Patel, Prahalad D. Chaudhary, Vipin A. Rana, and Deepak H. Gadani. Estimation of dielectric properties of clay loam and silty soil with different salinity levels over low frequency range. Current Science, 120(2):414–422, 2021. G. W. Parker. Electric field outside a parallel plate capacitor. American Journal of Physics, 70(5):502–507, 2002. N. N. Rao. Elements of Engineering Electromagnetics(6th Edition). Prentice Hall, New Jersey, United States, 2004. Huamin Jie, Zhenyu Zhao, Fei Fan, Guangchao Zhao, Zhenning Yang, Yu Zeng, Firman Sasongko, and Kye Yak See. Impedance measurement of three-phase common-mode chokes in power electronic applications. In 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–6, 2023. S. Prabhakaran and C.R. Sullivan. Impedance-analyzer measurements of highfrequency power passives: techniques for high power and low impedance. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), volume 2, pages 1360–1367, 2002. Daniel de Almeida Arantes, Luiz Eduardo Borges da Silva, Carlos Eduardo Teixeira, Mateus Mendes Campos, Germano Lambert-Torres, Erik Leandro Bonaldi, Levy Ely de Lacerda de Oliveira, and Germando Ara´ujo da Costa. Relative permittivity meter using a capacitive sensor and an oscillating current source. In IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages 806–811, 2019. H. A. Aebischer and B. Aebischer. Improved formulae for the inductance of straight wires. Advanced Electromagnetics, 3(1):31–43, 2014. Michael W. Beattie and Lawrence T. Pileggi. Inductance 101: modeling and extraction. In Proceedings of the 38th Annual Design Automation Conference (DAC ’01), page 323–328, 2001. Ltd Advantec Toyo Kaisha. English Advantec Catalogue Ver 10 R2. Advantec Toyo Kaisha, Ltd, Chiyoda-ku, Tokyo, Japan, 2009. Ltd. Good Will Instrument Co. Lcr fixtures. https://www.gwinstek.com/en-global/products/detail/LCR_Fixtures. Ltd. Good Will Instrument Co. Lcr-8200(a) high-frequency lcr meter. https://www.gwinstek.com/en-global/products/detail/LCR-8200. Jens Neu and Charles A. Schmuttenmaer. Tutorial: An introduction to terahertz time domain spectroscopy (thz-tds). Journal of Applied Physics, 124(23):231101, Dec 2018. L. D. Dickson. Characteristics of a propagating gaussian beam. Applied Optics, 9(8):1854–1861, 1970. R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes. Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(11):2358–2368, Nov 2005. B. D. Sahoo and A. Inamdar. Thermal-noise-canceling switched-capacitor circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(7):628–632, Jul 2016. Seth DeVore, Alexandre Gauthier, Jeremy Levy, and Chandralekha Singh. Improving student understanding of lock-in amplifiers. American Journal of Physics, 84(1):52–56, Jan 2016. Roger F. Harrington. Time-Harmonic Electromagnetic Fields. John Wiley & Sons, Inc., New York, United States, 2001. Timothy D. Dorney, Richard G. Baraniuk, and Daniel M. Mittleman. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A, 18:1562–1571, 2001. C. F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., New York, United States, 1983. Yu lin Xu. Electromagnetic scattering by an aggregate of spheres. Applied Optics, 34:4573–4588, 1995. C. M. Sorensen and D. J. Fischbach. Patterns in mie scattering. Optics Communications, 173:145–153, 2000. BATOP GmbH. Home page. https://www.batop.de/index.html. BATOP GmbH. Photo-conductive antenna (1060nm). https://www.batop.de/products/terahertz/photoconductive-antenna/photoconductive-antenna-1060nm.html. Inc. Thorlabs. Off-axis parabolic mirrors, protected gold coating. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5447. Standford Research System. Sr830 lock-in amplifier. https://www.thinksrs.com/products/sr830.html. Newport Corporation. Esp301 motion controller. https://www.newport.com/p/ESP301-3G. Newport Corporation. Lta-hs motorized actuator. https://www.newport.com/p/LTA-HS. David M. Slocum, Elizabeth J. Slingerland, Robert H. Giles, and Thomas M. Goyette. Atmospheric absorption of terahertz radiation and water vapor contimuum effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 127:49–63, 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97697 | - |
| dc.description.abstract | 隨著環境保護逐漸受到重視,空氣汙染由於與公共衛生與健康成為了熱門討論的議題,介電質懸浮微粒排放隨著工業的快速發展成為了一個重點,因應該問題,用於監測懸浮微粒排放的感測器成為了一個需求,大部分狀況下,這些微粒會由過濾器防止排放到空氣中,因此此研究使用有介電質顆粒散佈在表面的濾紙來模擬該裝置,為了減少不必要的過濾裝置拋棄和有效監測排放,需要非接觸、非破壞性與即時監測,介電質品譜因此成為一個解決方案,除此之外,因應嚴格的工業廢棄物質排放標準,監測系統需要高敏感度,相較於訊號的大小或是能量密度,此研究提出兩種基於相位偵測的感測方法,第一種是經修飾的四線式阻抗量測,透過添加一些離散的電路元件到介面夾具上,即使電容大小變化極小仍然能帶來較大的相位轉變,使其能夠感測微小的介電質物質量,第二種是基於太赫茲時域頻譜,此方法使我們可以偵測太赫茲波的相位,使用相位而非接收到的能量作為感測工具帶來一些顯著的優勢,此文章將會詳盡討論此兩種感測方法的理論基礎與驗證實驗,最後將會有兩種方法的比較以及總結。 | zh_TW |
| dc.description.abstract | As environmental issues has been increasingly recognized, air pollution has induced much active discussion due to its strong relationship to public health. Dielectric yield in floating particle form has become serious issue since the rapid development of industry. To improve such issues, sensor for such particle discharge is in demand. In most scenario, particles are filtered by filters and are prevented from discharged into the air, so this research models them with a filter with salt particles scattered on it. In order to reduce unnecessary disposal of filtering devices and to monitor mission system effectively, non-attaching, non-destroying and real-time sensor is needed. Dielectric spectroscopy is a potential solution for these demands. Besides properties mentioned previously, high sensitivity should be met due to strict regulatory standard when it comes to industrial yields. This research proposes two methods based on phase detection instead of magnitude or power. The first one is modified 4-terminal impedance analysis. With addition of some discrete circuit components to interface of Kelvin clip, phase change becomes large despite small increment of the capacitor under test, making it possible to detect slight difference in the amount of dielectric substances. The second method is based on terahertz time-domain spectroscopy(THz-TDS). This technique makes detecting phase of terahertz waves achievable. There are some advantages employing phase detection instead of power absorption to develop particle sensors. Working principles and experiments are discussed in detail. There is also a comparison between these two methods and a summary of them in the end of this article. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:13:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:13:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書i 誌謝ii Abstract iii 摘要iv Contents v Figures viii Tables xi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Dielectric Particle Sensor Modified 4-terminal Impedance Analysis 5 2.1 Dielectric Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Dielectric Properties of A Material . . . . . . . . . . . 5 2.2 Dielectric Analysis based on Impedance Analysis . . . . . . . . . . . . 8 2.2.1 Capacitance of Samples . . . . . . . . . . . . . . . . . . . 8 2.2.2 Four-terminal Impedance Measurement . . . . . . . . 11 2.2.3 Modified Parasitic Components . . . . . . . . . . . . . . 12 2.2.4 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . 14 3 Experiment Method of Impedance Analysis 20 3.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Scattering Particles onto the Filter . . . . . . . . . . . 21 3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Electromagnetic Simulation . . . . . . . . . . . . . . . . 23 3.2.2 Circuit Simulation . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Measuring Method . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Result and Discussion of Modified 4-terminal Impedance Analysis 29 4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Sample measurement . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Potential Drifting Effects . . . . . . . . . . . . . . . . . . . . . . 33 5 Dielectric Particle Sensor based on THz-TDS 36 5.1 Working Principle of THz-TDS . . . . . . . . . . . . . . . . . . 36 5.2 Mie’s Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 Experiment Method of Terahertz Time-domain Spectroscopy 46 6.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 Photo-conductive Antenna . . . . . . . . . . . . . . . . . 46 6.1.3 Parabolic Mirror . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.4 Lock-in Amplifier . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.5 Motion Controller and Motorized Actuators . . . . . 49 6.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7 Result and Discussion of THz-TDS 51 7.1 Time-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2 Magnitude in Frequency-Domain . . . . . . . . . . . . . . . . . 53 7.3 Phase in Frequency-Domain . . . . . . . . . . . . . . . . . . . . 58 8 Summary and Conclusion 62 8.1 Summary of Modified 4-terminal Impedance Analysis . . . . . . . . . 62 8.1.1 Modification and Experiment . . . . . . . . . . . . . . . 62 8.1.2 Potential Parasitic Effects at Higher Frequency . . . 63 8.2 Summary of THz-TDS . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.3 Comparison between Two Particle Sensors . . . . . . . . . . . . . . . 66 8.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.4.1 Modified 4-terminal Impedance Analysis . . . . . . . . 67 8.4.2 THz-TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 太赫茲 | zh_TW |
| dc.subject | 頻譜 | zh_TW |
| dc.subject | 阻抗 | zh_TW |
| dc.subject | 顆粒 | zh_TW |
| dc.subject | 介電質 | zh_TW |
| dc.subject | Spectroscopy | en |
| dc.subject | Dielectric | en |
| dc.subject | Particle | en |
| dc.subject | Impedance | en |
| dc.subject | Terahertz | en |
| dc.title | 基於經修飾的阻抗分析和太赫茲時域頻譜的高敏感度與解析度的介電質顆粒感測器 | zh_TW |
| dc.title | Dielectric Particle Sensors with Enhanced Sensitivity and Resolution based on Phase Detection of Modified Impedance Analysis and Terahertz Time-domain Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭宇翔;林駿璿 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsiang Cheng;Chun-Hsuan Lin | en |
| dc.subject.keyword | 介電質,顆粒,阻抗,太赫茲,頻譜, | zh_TW |
| dc.subject.keyword | Dielectric,Particle,Impedance,Terahertz,Spectroscopy, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202501497 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
