Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author林禹彤zh_TW
dc.contributor.authorYu-Tung Linen
dc.date.accessioned2025-07-11T16:12:22Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citation[01] Moore, G. E. Cramming More Components onto Integrated Circuits, Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff. IEEE Solid-State Circuits Society Newsletter 2006, 11 (3), 33–35.
[02] Bohr, M. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE Solid-State Circuits Newsletter 2007, 12 (1), 11–13.
[03] Wong, H.; Iwai, H. On the Scaling Issues and High-κ Replacement of Ultrathin Gate Dielectrics for Nanoscale MOS Transistors. Microelectron Eng 2006, 83 (10), 1867–1904.
[04] Kuhn, K. J. Considerations for Ultimate CMOS Scaling. IEEE Trans Electron Devices 2012, 59 (7), 1813–1828.
[05] Skotnicki, T.; Hutchby, J. A.; King, T.; Wong, H.-S. P.; Boeuf, F. The End of CMOS Scaling. IEEE Circuits and Devices Magazine 2005, 21 (1), 16–26.
[06] Wang, S.; Liu, X.; Zhou, P. The Road for 2D Semiconductors in the Silicon Age. Advanced Materials 2022, 34 (48).
[07] Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications. IEEE Trans Nanotechnology 2005, 4 (2), 153–158.
[08] O’Brien, K. P.; Naylor, C. H.; Dorow, C.; Maxey, K.; Penumatcha, A. V.; Vyatskikh, A.; Zhong, T.; Kitamura, A.; Lee, S.; Rogan, C.; Mortelmans, W.; Kavrik, M. S.; Steinhardt, R.; Buragohain, P.; Dutta, S.; Tronic, T.; Clendenning, S.; Fischer, P.; Putna, E. S.; Radosavljevic, M.; Metz, M.; Avci, U. Process Integration and Future Outlook of 2D Transistors. Nat. Commun. 2023, 14 (1), 6400.
[09] Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory Devices and Applications for In-Memory Computing. Nat. Nanotechnol. 2020, 15 (7), 529–544.
[10] Roy, K.; Jaiswal, A.; Panda, P. Towards Spike-Based Machine Intelligence with Neuromorphic Computing. Nature 2019, 575 (7784), 607–617.
[11] Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M. I.; Goossens, S.; Li, L.-J.; Wong, H.-S. P.; Koppens, F. H. L. Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573 (7775), 507–518.
[12] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science (1979) 2004, 306 (5696), 666–669. 
[13] Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499 (7459), 419–425.
[14] Kang, J.; Cao, W.; Xie, X.; Sarkar, D.; Liu, W.; Banerjee, K. Graphene and Beyond-Graphene 2D Crystals for next-Generation Green Electronics; George, T., Islam, M. S., Dutta, A. K., Eds.; 2014; p 908305.
[15] Subramanian, S.; Xu, K.; Wang, Y.; Moser, S.; Simonson, N. A.; Deng, D.; Crespi, V. H.; Fullerton-Shirey, S. K.; Robinson, J. A. Tuning Transport across MoS2/Graphene Interfaces via as-Grown Lateral Heterostructures. NPJ 2D Mater. Appl. 2020, 4 (1), 9.
[16] Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Hon-Sum Philip Wong. Device Scaling Limits of Si MOSFETs and Their Application Dependencies. Proceedings of the IEEE 2001, 89 (3), 259–288.
[17] Natarajan, S.; Agostinelli, M.; Akbar, S.; Bost, M.; Bowonder, A.; Chikarmane, V.; Chouksey, S.; Dasgupta, A.; Fischer, K.; Fu, Q.; Ghani, T.; Giles, M.; Govindaraju, S.; Grover, R.; Han, W.; Hanken, D.; Haralson, E.; Haran, M.; Heckscher, M.; Heussner, R.; Jain, P.; James, R.; Jhaveri, R.; Jin, I.; Kam, H.; Karl, E.; Kenyon, C.; Liu, M.; Luo, Y.; Mehandru, R.; Morarka, S.; Neiberg, L.; Packan, P.; Paliwal, A.; Parker, C.; Patel, P.; Patel, R.; Pelto, C.; Pipes, L.; Plekhanov, P.; Prince, M.; Rajamani, S.; Sandford, J.; Sell, B.; Sivakumar, S.; Smith, P.; Song, B.; Tone, K.; Troeger, T.; Wiedemer, J.; Yang, M.; Zhang, K. A 14nm Logic Technology Featuring 2nd-Generation FinFET, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 μm2 SRAM Cell Size. In 2014 IEEE International Electron Devices Meeting; IEEE, 2014; pp 3.7.1-3.7.3.
[18] Dutta, T.; Rafhay, Q.; Clerc, R.; Lacord, J.; Monfray, S.; Pananakakis, G.; Boeuf, F.; Ghibaudo, G. Impact of Quantum Effects on the Short Channel Effects of III–V NMOSFETs in Weak and Strong Inversion Regimes. Solid State Electron 2013, 88, 43–48.
[19] Wei, T.; Han, Z.; Zhong, X.; Xiao, Q.; Liu, T.; Xiang, D. Two Dimensional Semiconducting Materials for Ultimately Scaled Transistors. iScience 2022, 25 (10), 105160.
[20] Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11 (2), 1588–1596.
[21] Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky–Mott Limit in van Der Waals Metal–Semiconductor Junctions. Nature 2018, 557 (7707), 696–700. 
[22] Kang, J.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. X 2014, 4 (3), 031005.
[23] Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical Contacts to Two-Dimensional Semiconductors. Nat. Mater. 2015, 14 (12), 1195–1205.
[24] Liu, X.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects. Advanced Materials 2022, 34 (15).
[25] Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11 (2), 1588–1596.
[26] Farmanbar, M.; Brocks, G. Controlling the Schottky Barrier at MoS2/Metal Contacts by Inserting a BN Monolayer. Phys. Rev. B 2015, 91 (16), 161304.
[27] Lee, G.-H.; Yu, Y.-J.; Cui, X.; Petrone, N.; Lee, C.-H.; Choi, M. S.; Lee, D.-Y.; Lee, C.; Yoo, W. J.; Watanabe, K.; Taniguchi, T.; Nuckolls, C.; Kim, P.; Hone, J. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7 (9), 7931–7936.
[28] Chuang, H.-J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J.; Mandrus, D.; Tománek, D.; Zhou, Z. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. Nano Lett. 2016, 16 (3), 1896–1902.
[29] Jang, J.; Kim, Y.; Chee, S.-S.; Kim, H.; Whang, D.; Kim, G.-H.; Yun, S. J. Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS2 Transistors. ACS Appl. Mater. Interfaces 2020, 12 (4), 5031–5039.
[30] Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors. Nat Mater 2014, 13 (12), 1128–1134.
[31] Chou, A.-S.; Wu, T.; Cheng, C.-C.; Zhan, S.-S.; Ni, I.-C.; Wang, S.-Y.; Chang, Y.-C.; Liew, S.-L.; Chen, E.; Chang, W.-H.; Wu, C.-I.; Cai, J.; Wong, H.-S. P.; Wang, H. Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics. In 2021 IEEE International Electron Devices Meeting (IEDM); IEEE, 2021; pp 7.2.1-7.2.4.
[32] Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.-H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M. M.; Pitner, G.; Ji, X.; Cai, Z.; Mao, N.; Wang, J.; Tung, V.; Li, J.; Bokor, J.; Zettl, A.; Wu, C.-I.; Palacios, T.; Li, L.-J.; Kong, J. Ultralow Contact Resistance between Semimetal and Monolayer Semiconductors. Nature 2021, 593 (7858), 211–217.
[33] Zeng, Z.; Sun, X.; Zhang, D.; Zheng, W.; Fan, X.; He, M.; Xu, T.; Sun, L.; Wang, X.; Pan, A. Controlled Vapor Growth and Nonlinear Optical Applications of Large‐Area 3R Phase WS2 and WSe2 Atomic Layers. Adv. Funct. Mater. 2019, 29 (11).
[34] Oberoi, A.; Han, Y.; Stepanoff, S. P.; Pannone, A.; Sun, Y.; Lin, Y.-C.; Chen, C.; Shallenberger, J. R.; Zhou, D.; Terrones, M.; Redwing, J. M.; Robinson, J. A.; Wolfe, D. E.; Yang, Y.; Das, S. Toward High-Performance p-Type Two-Dimensional Field Effect Transistors: Contact Engineering, Scaling, and Doping. ACS Nano 2023, 17 (20), 19709–19723.
[35] Chen, Y.-H.; Xing, K.; Liu, S.; Holtzman, L. N.; Creedon, D. L.; McCallum, J. C.; Watanabe, K.; Taniguchi, T.; Barmak, K.; Hone, J.; Hamilton, A. R.; Chen, S.-Y.; Fuhrer, M. S. P-Type Ohmic Contact to Monolayer WSe2 Field-Effect Transistors Using High-Electron Affinity Amorphous MoO3. ACS Appl. Electron Mater. 2022, 4 (11), 5379–5386.
[36] Aljarb, A.; Cao, Z.; Tang, H.-L.; Huang, J.-K.; Li, M.; Hu, W.; Cavallo, L.; Li, L.-J. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. ACS Nano 2017, 11 (9), 9215–9222.
[37] Jung, Y.; Ji, E.; Capasso, A.; Lee, G.-H. Recent Progresses in the Growth of Two-Dimensional Transition Metal Dichalcogenides. Journal of the Korean Ceramic Society 2019, 56 (1), 24–36.
[38] Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X. Unveiling the Growth Mechanism of MoS 2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Cryst. Growth Des. 2018, 18 (2), 1012–1019.
[39] Chou, S.-A.; Chang, C.; Wu, B.-H.; Chuu, C.-P.; Kuo, P.-C.; Pan, L.-H.; Huang, K.-C.; Lai, M.-H.; Chen, Y.-F.; Lee, C.-L.; Chen, H.-Y.; Shiue, J.; Chang, Y.-M.; Li, M.-Y.; Chiu, Y.-P.; Chen, C.-W.; Ho, P.-H. Large-Scale Alkali-Assisted Growth of Monolayer and Bilayer WSe2 with a Low Defect Density. Nat. Commun. 2025, 16 (1), 2777.
[40] Işık, M. A.; Çelik, K.; Aygün Çağlar, M.; Turgut, G. Lateral Growth of WSe2 Monolayer Film in a Confined Reaction Environment via an Au Vapor-Assisted CVD: A Systematic and Comparative Study with a NaCl-Assisted CVD. FlatChem 2025, 49, 100796.
[41] Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X. Large Area Growth and Electrical Properties of P-Type WSe2 Atomic Layers. Nano Lett. 2015, 15 (1), 709–713.
[42] Malard, L. M.; Lafeta, L.; Cunha, R. S.; Nadas, R.; Gadelha, A.; Cançado, L. G.; Jorio, A. Studying 2D Materials with Advanced Raman Spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics 2021, 23 (41), 23428–23444.
[43] Paillet, M.; Parret, R.; Sauvajol, J.; Colomban, P. Graphene and Related 2D Materials: An Overview of the Raman Studies. Journal of Raman Spectroscopy 2018, 49 (1), 8–12.
[44] Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T. N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H. T. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14 (11), 14579–14604.
[45] Yan, T.; Qiao, X.; Liu, X.; Tan, P.; Zhang, X. Photoluminescence Properties and Exciton Dynamics in Monolayer WSe2. Appl Phys. Lett. 2014, 105 (10).
[46] Brotons-Alcázar, I.; Terreblanche, Jason. S.; Giménez-Santamarina, S.; Gutiérrez-Finol, G. M.; Ryder, K. S.; Forment-Aliaga, A.; Coronado, E. Atomic Force Microscopy beyond Topography: Chemical Sensing of 2D Material Surfaces through Adhesion Measurements. ACS Appl. Mater. Interfaces 2024, 16 (15), 19711–19719.
[47] Gui, C.; Zhang, Z.; Li, Z.; Luo, C.; Xia, J.; Wu, X.; Chu, J. Deep Learning Analysis on Transmission Electron Microscope Imaging of Atomic Defects in Two-Dimensional Materials. iScience 2023, 26 (10), 107982.
[48] Jiang, Y.; Cao, L.; Hu, X.; Ren, Z.; Zhang, C.; Wang, C. Simulating Powder X-Ray Diffraction Patterns of Two-Dimensional Materials. Inorg Chem. 2018, 57 (24), 15123–15132.
[49] Ganta, D.; Sinha, S.; Haasch, R. T. 2-D Material Molybdenum Disulfide Analyzed by XPS. Surface Science Spectra 2014, 21 (1), 19–27.
[50] Shallenberger, J. R. 2D Tungsten Diselenide Analyzed by XPS. Surface Science Spectra 2018, 25 (1).
[51] Roberts, A. J.; Moffitt, C. E. Trends in XPS Instrumentation for Industrial Surface Analysis and Materials Characterization. J. Electron Spectros. Relat. Phenomena 2019, 231, 68–74.
[52] Cheliotis, I.; Zergioti, I. A Review on Transfer Methods of Two-Dimensional Materials. 2d Mater. 2024, 11 (2), 022004.
[53] Dobrescu, L.; Petrov, M.; Dobrescu, D.; Ravariu, C. Threshold Voltage Extraction Methods for MOS Transistors. In 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486); IEEE; pp 371–374.
[54] Swami, Y.; Rai, S. Comparative Methodical Assessment of Established MOSFET Threshold Voltage Extraction Methods at 10-Nm Technology Node. Circuits and Systems 2016, 07 (13), 4248–4279.
[55] Rodder, M. A.; Dodabalapur, A. Modeling of a Back-Gated Monolayer MoS2 FET by Extraction of an Accurate Threshold Voltage and Gate-Bias-Dependent Source/Drain Resistance. IEEE Journal of the Electron Devices Society 2017, 5 (5), 384–389.
[56] Pang, C.; Zhou, R.; Liu, X.; Wu, P.; Hung, T. Y. T.; Guo, S.; Zaghloul, M. E.; Krylyuk, S.; Davydov, A. V.; Appenzeller, J.; Chen, Z. Mobility Extraction in 2D Transition Metal Dichalcogenide Devices—Avoiding Contact Resistance Implicated Overestimation. Small 2021, 17 (28).
[57] Sohier, T.; Campi, D.; Marzari, N.; Gibertini, M. Mobility of Two-Dimensional Materials from First Principles in an Accurate and Automated Framework. Phys. Rev. Mater. 2018, 2 (11), 114010.
[58] Yu, Z.; Ong, Z.; Li, S.; Xu, J.; Zhang, G.; Zhang, Y.; Shi, Y.; Wang, X. Analyzing the Carrier Mobility in Transition‐Metal Dichalcogenide MoS2 Field‐Effect Transistors. Adv. Funct. Mater. 2017, 27 (19).
[59] Pacheco-Sanchez, A.; Jimenez, D. A Contact Resistance Extraction Method of 2D-FET Technologies without Test Structures. In 2021 13th Spanish Conference on Electron Devices (CDE); IEEE, 2021; pp 19–22.
[60] Li, N.; Deng, W.; Wei, X.; Wu, W.; Huang, J. Extraction of Contact Resistance and DC Modeling in Metal Oxide TFTs. IEEE Journal of the Electron Devices Society 2019, 7, 127–133.
[61] Ngo, T. D.; Yang, Z.; Lee, M.; Ali, F.; Moon, I.; Kim, D. G.; Taniguchi, T.; Watanabe, K.; Lee, K.; Yoo, W. J. Fermi‐Level Pinning Free High‐Performance 2D CMOS Inverter Fabricated with Van Der Waals Bottom Contacts. Adv. Electron Mater. 2021, 7 (5).
[62] Zhang, Y.; Hu, S.; Zhou, Y.; Xu, T.; Peng, Y.; Deng, H.; Bao, X.; Zeng, X. A Two-Dimensional MoS2 Device and CMOS Inverter Based on the Plasma Immersion Doping Technique. J Electron Mater. 2023, 52 (8), 5218–5226.
[63] Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S.-W.; Im, S. Low Power Consumption Complementary Inverters with N-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits. ACS Appl. Mater. Interfaces 2015, 7 (40), 22333–22340.
[64] Takbiri, M.; Faghih Mirzaee, R.; Navi, K. Analytical Review of Noise Margin in MVL: Clarification of a Deceptive Matter. Circuits Syst. Signal Process 2019, 38 (9), 4280–4301.
[65] Kang, W. M.; Lee, S. T.; Cho, I. T.; Park, T. H.; Shin, H.; Hwang, C. S.; Lee, C.; Park, B. G.; Lee, J. H. Multi-Layer WSe2 Field Effect Transistor with Improved Carrier-Injection Contact by Using Oxygen Plasma Treatment. Solid-State Electron. 2018, 140, 2−7.
[66] Chu, C.-H.; Lin, H.-C.; Yeh, C.-H.; Liang, Z.-Y.; Chou, M.-Y.; Chiu, P.-W. End-Bonded Metal Contacts on WSe2 Field-Effect Transistors. ACS Nano 2019, 13 (7), 8146−8154
[67] Noori, K.; Xuan, F.; Quek, S. Y. Origin of Contact Polarity at Metal-2D Transition Metal Dichalcogenide Interfaces. NPJ. 2D Materials Applications 2022, 6 (1), 73.
[68] Mascaro, L. H.; Costa, M. B.; Lucas, F. W. S.; Medina, M. All-Electrochemically Grown Sb2Se3/a-MoSx Photocathodes for Hydro-gen Production: The Effect of the MoSx Layer on the Surface Recombination and Photocorrosion of Sb2Se3 Films. ACS Applied Energy Material 2020, 3 (10), 9799−9808.
[69] Li, S.; Shen, H.; Chen, J.; Jiang, Y.; Sun, L.; Raza, A.; Xu, Y. Effect of Selenization Temperature on the Properties of Sb2Se3 Thin Films and Solar Cells by Two-Step Method. Journal of Materials Science: Materials in Electronics 2019, 30 (22), 19871−19879.
[70] Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133−A1138.
[71] Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864−B871.
[72] Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169−11186.
[73] Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15−50.
[74] Hamada, I. Van Der Waals Density Functional Made Accurate. Physical Review B 2014, 89 (12), 121103.
[75] Hamada, I. Erratum: Van Der Waals Density Functional Made Accurate. Physical Review B 2015, 91 (11), 119902.
[76] Chen, Y.-H.; Xing, K.; Liu, S.; Holtzman, L. N.; Creedon, D. L.; McCallum, J. C.; Watanabe, K.; Taniguchi, T.; Barmak, K.; Hone, J.; Hamilton, A. R.; Chen, S.-Y.; Fuhrer, M. S. P-Type Ohmic Contact to Monolayer WSe2 Field-Effect Transistors Using High-Electron Affinity Amorphous MoO3. ACS Applied Electron Materials 2022, 4(11), 5379−5386.
[77] Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition Metal Oxides for Organic Electronics: Energetics. Device Physics and Applications. Advanced Materials 2012, 24 (40),5408−5427.
[78] Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p−n Diodes. Nano Lett. 2014, 14 (10), 5590−5597.
[79] Irfan, I.; James Turinske, A.; Bao, Z.; Gao, Y. Work Function Recovery of Air Exposed Molybdenum Oxide Thin Films. Appl. Phys. Lett. 2012, 101 (9), No. 093305.
[80] Ho, P.-H.; Cheng, R.-H.; Pao, P.-H.; Chou, S.-A.; Huang, Y.-H.; Yang, Y.-Y.; Wu, Y.-S.; Su, Y.-C.; Mao, P.-S.; Su, S.-K.; Chou, B.-J.; Chen, E.; Hung, T. Y. T.; Li, M.-Y.; Cheng, C.-C.; Woon, W.-Y.; Liao, S.; Chang, W.-H.; Chien, C.-H. High-Performance Two-Dimensional Electronics with a Noncontact Remote Doping Method. ACS Nano 2023, 17 (13), 12208−12215.
[81] Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11 (2), 1588−1596.
[82] Bampoulis, P.; van Bremen, R.; Yao, Q.; Poelsema, B.; Zandvliet, H. J. W.; Sotthewes, K. Defect Dominated Charge Transport and Fermi Level Pinning in MoS2 /Metal Contacts. ACS Appl. Mater. Interfaces 2017, 9 (22), 19278−19286.
[83] Sotthewes, K.; van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H. J. W.; Bampoulis, P. Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides. J. Phys. Chem. C 2019, 123 (9), 5411−5420.
[84] Xiao, J.; Zhang, Y.; Chen, H.; Xu, N.; Deng, S. Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode. Nanomicro Lett. 2018, 10 (4), 60.
[85] Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer Excitons and Band Alignment in MoS2 / HBN / WSe2 van Der Waals Heterostructures. Nano Lett. 2017, 17 (2), 938–945.
[86] Chiu, M.-H.; Zhang, C.; Shiu, H.-W.; Chuu, C.-P.; Chen, C.-H.; Chang, C.-Y. S.; Chen, C.-H.; Chou, M.-Y.; Shih, C.-K.; Li, L.-J. Determination of Band Alignment in the Single-Layer MoS2/WSe2 Heterojunction. Nat. Commun. 2015, 6 (1), 7666.
[87] Wu, Z.; Zhao, W.; Jiang, J.; Zheng, T.; You, Y.; Lu, J.; Ni, Z. Defect Activated Photoluminescence in WSe2 Monolayer. J. Phys. Chem. C 2017, 121 (22), 12294−12299.
[88] Yan, T.; Qiao, X.; Liu, X.; Tan, P.; Zhang, X. Photo-luminescence Properties and Exciton Dynamics in Monolayer WSe2. Appl. Phys. Lett. 2014, 105 (10).
[89] Rai, S.; Srivastava, A. Low-Temperature Photoluminescence and Raman Study of Monolayer WSe2 for Photocarrier Dynamics and Thermal Conductivity. J. Appl. Phys. 2024, 136 (15).
[90] Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical Exfoliation and Characterization of Single- and Few-Layer Nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9 (11), 1974−1981.
[91] Chen, C.-H.; Wu, C.-L.; Pu, J.; Chiu, M.-H.; Kumar, P.; Takenobu, T.; Li, L.-J. Hole Mobility Enhancement and p-Doping in Monolayer WSe2 by Gold Decoration. 2d Mater. 2014, 1 (3), 034001.
[92] Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A Review on Raman Fingerprints of Doping and Strain Effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.
[93] Johnson, A. D.; Cheng, F.; Tsai, Y.; Shih, C.-K. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2−Ag Plasmonic Hybrid Structures. Nano Lett. 2017, 17 (7), 4317−4322.
[94] Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical Manipulation of the Exciton Charge State in Single-Layer Tungsten Disulfide. Phys. Rev. B 2013, 88 (24), 245403.
[95] Cheng, Q.; Pang, J.; Sun, D.; Wang, J.; Zhang, S.; Liu, F.; Chen,Y.; Yang, R.; Liang, N.; Lu, X.; Ji, Y.; Wang, J.; Zhang, C.; Sang, Y.; Liu, H.; Zhou, W. WSe2 2D P-type Semiconductor-based Electronic Devices for Information Technology: Design, Preparation, and Applications. InfoMat 2020, 2 (4), 656−697.
[96] Choi, M.; Lee, J. W.; Lee, H. S. Optical and Electrical Characterizations of Volatile Doping Effect Originated from Bilayer Photoresist Process in MoS2 Field-Effect Transistors. Journal of the Korean Physical Society 2022, 81 (4), 317−324.
[97] Zhao, Y.; Gali, S. M.; Wang, C.; Pershin, A.; Slassi, A.; Beljonne, D.; Samorì, P. Molecular Functionalization of Chemically Active Defects in WSe2 for Enhanced Opto-Electronics. Adv. Funct. Mater. 2020, 30 (45).
[98] Zhang, X.; Zhang, F.; Wang, Y.; Schulman, D. S.; Zhang, T.; Bansal, A.; Alem, N.; Das, S.; Crespi, V. H.; Terrones, M.; Redwing, J.M. Defect-Controlled Nucleation and Orientation of WSe2 on HBN: A Route to Single-Crystal Epitaxial Monolayers. ACS Nano 2019, 13(3), 3341−3352.
[99] Xie, J.; Zhang, Z.; Zhang, H.; Nagarajan, V.; Zhao, W.; Kim, H.-L.; Sanborn, C.; Qi, R.; Chen, S.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Crommie, M. F.; Analytis, J.; Wang, F. Low Resistance Contact to P-Type Monolayer WSe2. Nano Lett. 2024, 24 (20), 5937–5943.
[100] Chiang, C.-C.; Lan, H.-Y.; Pang, C.-S.; Appenzeller, J.; Chen, Z. Air-Stable P Doping in Record High-Performance Monolayer WSe2 Devices. IEEE Electron Device Letters 2022, 43 (2), 319–322.
[101] Kim, I.; Higashitarumizu, N.; Rahman, I. K. M. R.; Wang, S.; Kim, H. M.; Geng, J.; Prabhakar, R. R.; Ager, J. W.; Javey, A. Low Contact Resistance WSe2 p- Type Transistors with Highly Stable, CMOS-Compatible Dopants. Nano Lett. 2024, 24 (43), 13528–13533.
[102] Lan, H.-Y.; Tripathi, R.; Liu, X.; Appenzeller, J.; Chen, Z. Wafer-Scale CVD Monolayer WSe2 p-FETs with Record-High 727 µA/µm Ion and 490 µS/µm gmax via Hybrid Charge Transfer and Molecular Doping. In 2023 International Electron Devices Meeting (IEDM); IEEE, 2023; pp 1–4.
[103] Cai, L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2. Nano Lett. 2017, 17 (6), 3854–3861.
[104] Kwon, G.; Choi, Y.-H.; Lee, H.; Kim, H.-S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E.; Cho, M.-H. Interaction- and Defect-Free van Der Waals Contacts between Metals and Two-Dimensional Semiconductors. Nat. Electron. 2022, 5 (4), 241–247.
[105] Chou, A.-S.; Lin, Y.-T.; Lin, Y. C.; Hsu, C.-H.; Li, M.-Y.; Liew, S.-L.; Chou, S.-A.; Chen, H.-Y.; Chiu, H.-Y.; Ho, P.-H.; Hsu, M.-C.; Hsu, Y.-W.; Yang, N.; Woon, W.-Y.; Liao, S.; Hou, D.-H.; Chien, C.-H.; Chang, W.-H.; Radu, I.; Wu, C.-I.; Philip Wong, H.-S.; Wang, H. High-Performance Monolayer WSe2 p/n FETs via Antimony-Platinum Modulated Contact Technology towards 2D CMOS Electronics. In 2022 International Electron Devices Meeting (IEDM); IEEE, 2022; pp 7.2.1-7.2.4.
[106] Li, M.; Zhang, X.; Zhang, Z.; Peng, G.; Zhu, Z.; Li, J.; Qin, S.; Zhu, M. Unipolar P-Type Monolayer WSe2 Field-Effect Transistors with High Current Density and Low Contact Resistance Enabled by van Der Waals Contacts. Nano Research 2024, 17 (11), 10162–10169.
[107] Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 2012, 12 (7), 3788–3792.
[108] Chen, S.; Zhang, Y.; King, W. P.; Bashir, R.; van der Zande, A. M. Extension Doping with Low‐Resistance Contacts for P‐Type Monolayer WSe2 Field‐Effect Transistors. Adv. Electron. Mater. 2024.
[109] Ho, P.-H.; Yang, Y.-Y.; Chou, S.-A.; Cheng, R.-H.; Pao, P.-H.; Cheng, C.-C.; Radu, I.; Chien, C.-H. High-Performance WSe2 Top-Gate Devices with Strong Spacer Doping. Nano Lett. 2023, 23 (22), 10236–10242.
[110] Yu, L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y.; Zhang, Y.; Palacios, T. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. Nano Lett. 2015, 15 (8), 4928–4934.
[111] Yeh, C.-H.; Liang, Z.-Y.; Lin, Y.-C.; Chen, H.-C.; Fan, T.; Ma, C.-H.; Chu, Y.-H.; Suenaga, K.; Chiu, P.-W. Graphene–Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits. ACS Nano 2020, 14 (1), 985–992.
[112] Guan, S.-X.; Yang, T. H.; Yang, C.-H.; Hong, C.-J.; Liang, B.-W.; Simbulan, K. B.; Chen, J.-H.; Su, C.-J.; Li, K.-S.; Zhong, Y.-L.; Li, L.-J.; Lan, Y.-W. Monolithic 3D Integration of Back-End Compatible 2D Material FET on Si FinFET. NPJ 2D Mater. Appl. 2023, 7 (1), 9.
[113] Piacentini, A.; Polyushkin, D. K.; Uzlu, B.; Grundmann, A.; Heuken, M.; Kalisch, H.; Vescan, A.; Wang, Z.; Lemme, M. C.; Mueller, T.; Neumaier, D. Flexible Complementary Metal‐Oxide‐Semiconductor Inverter Based on 2D P‐type WSe2 and N‐type MoS2. physical status solidi (a) 2024, 221 (10).
[114] Huang, X.; Liu, C.; Zhou, P. 2D Semiconductors for Specific Electronic Applications: From Device to System. NPJ 2D Mater. Appl. 2022, 6 (1), 51.
[115] Kim, K. S.; Seo, S.; Kwon, J.; Lee, D.; Kim, C.; Ryu, J.-E.; Kim, J.; Song, M.-K.; Suh, J. M.; Jung, H.-G.; Jo, Y.; Ahn, H.; Lee, S.; Cho, K.; Jeon, J.; Seol, M.; Park, J.-H.; Kim, S. W.; Kim, J. Seamless Monolithic Three-Dimensional Integration of Single-Crystalline Films by Growth. 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97691-
dc.description.abstract二維過渡金屬二硫屬化合物的出現為下一代邏輯電晶體的微縮提供了一條極具潛力的發展路徑,超越了傳統矽基技術。利用過渡金屬二硫屬化合物的互補式金屬氧化物半導體架構可實現極端的垂直微縮,需要高效能的P型與 N型電晶體以達成有效整合。雖然二硫化鉬N型電晶體展現出高導通電流密度及低接觸電阻,但二維P型電晶體仍面臨驅動電流密度不足、高接觸電阻、以及臨界電壓不匹配等挑戰,限制了其在邏輯電路中的應用。
在P型過渡金屬二硫屬化合物材料中,二硒化鎢由於其天然的P型特性和較高的電洞遷移率,被視為極具潛力的候選材料。然而,金屬誘導能隙態和缺陷誘導能隙態所造成的費米能級釘扎現象,導致其費米能級被固定於不利於電洞注入的位置,進而降低接觸效率,造成高接觸電阻,限制其器件效能。
為了解決費米能級釘扎問題,我們提出一種銻-鉑調控接觸策略,實現單層二硒化鎢電晶體中多數載子極性的可調控制。透過調整金屬銻介面層厚度,可將金屬接觸的有效功函數從4.19 eV 調控至 4.42eV。此策略使得單一二硒化鎢通道上同時實現高效N型與 P型電晶體,其電流密度分別達到P型電晶體為 170 µA/µm,N型電晶體為165 µA/µm (|VD| = 1 V),展示了接觸調控技術在低成本二維互補式金屬氧化物半導體整合中的潛力。
然而,進一步分析發現通道低載子濃度及離子束微影於接觸區的轟擊限制了電晶體的效能。為解決此瓶頸,我們提出一種光微影誘導摻雜及介面調控技術,應用於 單層二硒化鎢P型電晶體。該技術可將接觸電阻4.8 kΩ·µm,並透過氧化鉬封裝層進一步降低至0.8 kΩ·μm,使得導通電流密度提升至420 μA/μm。此提升亦促使場效遷移率提高至75 cm²/V·s,並將電洞載子濃度提升1.4 倍。此外,該技術可實現有效功函數在 4.25 eV 至 4.55 eV 的可調性,進一步驗證了介面工程在提升二維電晶體效能方面的可行性。
最後,我們展示了基於二硒化鎢P型電晶體與二硫化鉬N型電晶體邏輯電路整合。透過優化接觸電阻與降低有效氧化層厚度,成功製作異質通道二維反相器,實現超過 10 V/V 的電壓增益、超過 80% 的噪聲容限、以及超低靜態功耗 (~7 pW 在 VDD = 1 V)。此研究標誌著低功耗、高效能二維互補式金屬氧化物半導體邏輯整合的重要進展。
本論文提供了一個系統性的接觸工程、摻雜技術與元件整合策略,克服二維電晶體的關鍵挑戰,推動可擴展、節能且高效能的二維反相器製程技術,加速新興奈米材料與次世代半導體技術的銜接。
zh_TW
dc.description.abstractThe emergence of two-dimensional (2D) transition metal dichalcogenides (TMDs) presents a promising avenue for scaling next-generation logic transistors beyond silicon. TMDs based complementary metal-oxide-semiconductor (CMOS) technology offers strong potential for vertical scaling. To enable efficient integration, both high-performance n-type and p-type transistors are required. Molybdenum disulfide (MoS2) n-type transistors have shown excellent current delivery and low contact resistance (RC). However, the development of two-dimensional p-type transistors is still constrained by low current output, which hinder their application in logic circuits.
Tungsten diselenide (WSe2) is a leading candidate among TMDs for hole transport channels, owing to its intrinsic p-type characteristics and favorable hole mobility. Despite these advantages, contact performance is limited by Fermi-level pinning (FLP), which arises from states introduced by metal interactions and structural imperfections at the interface. These interface states prevent proper alignment between the Fermi level and the valence band, thereby impeding efficient hole injection and contributing to elevated contact resistance.
To mitigate the effects of FLP, we introduce an antimony-platinum (Sb-Pt) modulated contact strategy to enable tunable majority carrier polarity in monolayer WSe2 transistors. By adjusting the Sb interfacial layer thickness, the effective work function of the metal contact can be tuned from 4.42 eV to 4.19 eV. This approach achieves current densities of 170 µA/µm for p-FETs and 165 µA/µm for n-FETs at |VD| = 1 V, demonstrating the potential of contact modulation for CMOS integration.
However, further analysis reveals that low carrier concentration and ion-beam bombardment at the contact region during lithography limit device performance. To address these challenges, a doping and interface engineering technique based on photolithography treatment is introduced for enhancing the performance of monolayer WSe2 p-type transistors. Using this method, the RC is reduced to 4.8 kΩ·µm and further improved to 0.8 kΩ·μm with MoOₓ encapsulation. As a result, the device exhibits a high on-state current of 420 μA/μm. These optimizations also enhance the field-effect mobility to 60 cm²/V·s and increase the hole carrier density by approximately 40 percent. Additionally, the effective work function is tunable from 4.25 to 4.55 eV, confirming the effectiveness of interface engineering in improving 2D transistor performance.
Finally, a co-integrated logic circuit is demonstrated using WSe2 p-MOS and MoS2 n-MOS. Through optimized contact resistance and reduced effective oxide thickness, a hetero-channel 2D inverter is fabricated, achieving a voltage gain of >10 V/V, noise margin exceeding 80%, and ultra-low static power consumption (~ 7 pW at VDD = 1 V).
This dissertation provides a systematic approach to contact engineering, doping, and device co-integration to overcome key challenges in 2D transistors. The findings pave the way for high-performance 2D CMOS electronics, bridging the gap between emerging nanomaterials and next-generation semiconductor technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:12:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:12:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xviii
Chapter 1. Introduction 1
1.1. Overview of two-dimensional materials 4
1.2. Transition Metal Dichalcogenides in logic devices 6
1.2.1. Origins and impacts of Fermi-Level Pinning (FLP) 8
1.2.2. Strategies to relieve FLP in n-type transistors 11
1.3. Challenges in TMDs p-type transistors 14
1.4. Scope and organization of this dissertation 19
Chapter 2. Experiments & Methodologies 21
2.1. Growth mechanism of monolayer MoS2 and WSe2 21
2.2. Characterization of material quality 25
2.2.1. Optical microscopy (OM) 25
2.2.2. Raman and Photoluminescence (PL) spectroscopy 25
2.2.3. Atomic force microscopy (AFM) 28
2.2.4. Scanning electron microscopy (SEM) 30
2.2.5. Transmission electron microscopy (TEM) 32
2.2.6. X-ray diffraction (XRD) 34
2.3. Interface and electronic structure characterization 36
2.3.1. X-ray photoelectron spectroscopy (XPS) 36
2.3.2. Ultraviolet photoelectron spectroscopy (UPS) 39
2.3.3. Depth profiling analysis 40
2.4. Device fabrication and electrical measurement system 42
2.4.1. Transfer process 42
2.4.2. Rapid thermal annealing (RTA) 43
2.4.3. Lithography system 44
2.4.4. Physical vapor deposition (PVD) system 46
2.4.5. Patterning and lift-off process 48
2.4.6. Electrical measurement system 50
2.5. Quantitative analysis of transistor performance metrics 53
2.5.1. Threshold voltage (VTH) 53
2.5.2. Subthreshold swing (SS) 54
2.5.3. On-off ratio 55
2.5.4. Mobility 56
2.5.5. Contact resistance 58
2.6. Static performance evaluation of CMOS inverters 61
2.6.1. Voltage transfer characteristics (VTC) 61
2.6.2. Switching threshold voltage (VM) 63
2.6.3. Gain 63
2.6.4. Noise margins 64
2.6.5. Static power consumption 65
Chapter 3. Antimony-Platinum contacts for n/p-type monolayer WSe2 transistors 67
3.1. Device fabrication and morphological characterization 68
3.2. Electrical characterization and polarity outcomes 70
3.3. Statistical analysis of device performance 72
3.4. Interface analysis and material characterization 75
3.5. Encapsulation strategy for performance enhancement 85
3.6. Summary 91
Chapter 4. Photolithography-assisted surface treatment for WSe2 p-type transistors 93
4.1. Fabrication Process 94
4.2. Statistic electrical property in long-channel devices 96
4.3. Doping mechanisms through 1L-WSe2 channel 100
4.4. Statistic electrical property in short-channel devices 105
4.5. Mechanisms of contact modulation 110
4.6. Ultralow RC and performance boost via MoOx doping 119
4.7. Summary 123
Chapter 5. CMOS integration based on TMDs heterogenous channel 125
5.1. CMOS inverter fabrication and device integration 125
5.2. Electrical characteristics of individual n/p-FETs 128
5.3. Inverter performance metrics and benchmark 129
5.4. Summary 134
Chapter 6. Conclusion and future work 135
Chapter 7. Reference 137
Chapter 8. Publication list 149
-
dc.language.isoen-
dc.subject費米能階釘扎zh_TW
dc.subject互補式電路整合zh_TW
dc.subject單層二硒化鎢zh_TW
dc.subject光微影摻雜zh_TW
dc.subject接觸工程zh_TW
dc.subject二維材料zh_TW
dc.subjectContact Engineeringen
dc.subjectFermi-Level Pinningen
dc.subject2D materialsen
dc.subjectCMOS Integrationen
dc.subjectMonolayer WSe2en
dc.subjectPhotolithography-Induced Dopingen
dc.title透過接觸與介面工程提升二維P型電晶體性能zh_TW
dc.titleEnhancing Two-dimensional P-Type Transistors Performance via Contact and Interface Engineeringen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee周昂昇;李明洋;李宗恩;陳美杏;張子璿;吳肇欣zh_TW
dc.contributor.oralexamcommitteeAng-Sheng Chou;Ming-Yang Li;Tsung-En Lee;Mei-Hsin Chen;Tzu-Hsuan Chang;Chao-Hsin Wuen
dc.subject.keyword二維材料,費米能階釘扎,接觸工程,光微影摻雜,單層二硒化鎢,互補式電路整合,zh_TW
dc.subject.keyword2D materials,Fermi-Level Pinning,Contact Engineering,Photolithography-Induced Doping,Monolayer WSe2,CMOS Integration,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202501401-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2030-06-29-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
11.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved