請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97690完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥榮 | zh_TW |
| dc.contributor.advisor | Edward Chern | en |
| dc.contributor.author | 石政弘 | zh_TW |
| dc.contributor.author | Jheng-Hong Shih | en |
| dc.date.accessioned | 2025-07-11T16:12:06Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | 1. Friedenstein, A.J., et al., Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968. 6(2): p. 230-47.
2. Friedenstein, A.J., et al., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974. 17(4): p. 331-40. 3. Friedenstein, A.J., J.F. Gorskaja, and N.N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976. 4(5): p. 267-74. 4. Caplan, A.I., Mesenchymal stem cells. J Orthop Res, 1991. 9(5): p. 641-50. 5. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 6. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95. 7. Paniushin, O.V., E.I. Domaratskaia, and V.I. Starostin, [Mesenchymal stem cells: sources, phenotype, and differentiation potential]. Izv Akad Nauk Ser Biol, 2006(1): p. 6-25. 8. Musina, R.A., E.S. Bekchanova, and G.T. Sukhikh, Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med, 2005. 139(4): p. 504-9. 9. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7. 10. Alfaifi, M., et al., Mesenchymal stromal cell therapy for liver diseases. J Hepatol, 2018. 68(6): p. 1272-1285. 11. Tsang, W.P., et al., CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS One, 2013. 8(10): p. e76153. 12. Ulrich, C., et al., Human Placenta-Derived CD146-Positive Mesenchymal Stromal Cells Display a Distinct Osteogenic Differentiation Potential. Stem Cells Dev, 2015. 24(13): p. 1558-69. 13. Battula, V.L., et al., Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 2009. 94(2): p. 173-84. 14. Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36. 15. Wang, Y., et al., Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol, 2014. 15(11): p. 1009-16. 16. Di Nicola, M., et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002. 99(10): p. 3838-43. 17. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-22. 18. Meisel, R., et al., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 2004. 103(12): p. 4619-21. 19. Sheng, H., et al., A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res, 2008. 18(8): p. 846-57. 20. Jiang, X.X., et al., Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005. 105(10): p. 4120-6. 21. Klyushnenkova, E., et al., T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci, 2005. 12(1): p. 47-57. 22. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy 8.4 (2006): 315-317, 2006. 23. Barry, F., and Murphy, M., Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology 9.10 (2013): 584-594, 2013. 24. Chen, F.M., and Jin, Y, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews 16.2 (2010): 219-255, 2010. 25. Gnecchi, M., et al., Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research 103.11 (2008): 1204-1219, 2008. 26. Karp, J.M., and Leng Teo, G. S, Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4.3 (2009): 206-216, 2009. 27. Caplan, A.I., and Correa, D., The MSC: an injury drugstore. Cell Stem Cell 9.1 (2011): 11-15, 2011. 28. Samsonraj, R.M., et al., Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med, 2017. 6(12): p. 2173-2185. 29. Kim, K.I., et al., Clinical Efficacy and Safety of the Intra-articular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells for Knee Osteoarthritis: A Phase III, Randomized, Double-Blind, Placebo-Controlled Trial. Am J Sports Med, 2023. 51(9): p. 2243-2253. 30. Song, Y., et al., Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med, 2018. 13(3): p. 295-307. 31. Le Blanc, K., et al., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet, 2008. 371(9624): p. 1579-1586. 32. Augello, A., et al., Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 2007. 56(4): p. 1175-86. 33. Kurtzberg, J., et al., Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant, 2014. 20(2): p. 229-35. 34. Kebriaei, P., et al., A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2020. 26(5): p. 835-844. 35. Figueroa, F.E., et al., Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res, 2012. 45(3): p. 269-77. 36. Sharma, R.R., et al., Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 2014. 54(5): p. 1418-37. 37. Bonab, M.M., et al., Aging of mesenchymal stem cell in vitro. BMC Cell Biol, 2006. 7: p. 14. 38. Al-Azab, M., et al., Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett, 2022. 27(1): p. 69. 39. Baxter, M.A., et al., Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 2004. 22(5): p. 675-82. 40. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-40. 41. Liu, S., et al., Highly Purified Human Extracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells. Stem Cells, 2019. 37(6): p. 779-790. 42. Astudillo, P., et al., Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem, 2008. 103(4): p. 1054-65. 43. Stringer, B., et al., Serum from postmenopausal women directs differentiation of human clonal osteoprogenitor cells from an osteoblastic toward an adipocytic phenotype. Calcif Tissue Int, 2007. 80(4): p. 233-43. 44. Stolzing, A., et al., Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev, 2008. 129(3): p. 163-73. 45. Rubin, H., Promise and problems in relating cellular senescence in vitro to aging in vivo. Arch Gerontol Geriatr, 2002. 34(3): p. 275-86. 46. Li, Y., et al, Resveratrol protects mesenchymal stem cells from senescence and apoptosis via the ROS-mediated PI3K/AKT/mTOR pathway. Oxidative Medicine and Cellular Longevity 2016 (2016): 1–14, 2016. 47. Kim, J.Y., et al, N-acetylcysteine prevents the loss of stemness characteristics induced by oxidative stress in mesenchymal stem cells. Cell Death & Disease 5.8 (2014): e1496, 2014. 48. Gao, Y., et al, Melatonin improves the function of bone marrow mesenchymal stem cells from aged mice by suppressing mitochondrial dysfunction. Stem Cell Research & Therapy 9.1 (2018): 1–14., 2018. 49. Zhao, L., et al, Curcumin enhances the effects of mesenchymal stem cells against spinal cord injury through promoting autophagy and suppressing inflammation. Biomedicine & Pharmacotherapy 129 (2020): 110395., 2020. 50. Estrada, J.C., et al, Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death and Differentiation 19.5 (2012): 743–755, 2012. 51. Murphy, K.C., et al, Hypoxia, hypoxia-inducible factors, and mesenchymal stem cell biology. Cell and Tissue Research 361.3 (2015): 467–484, 2015. 52. Hu, C., and Li, L, Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine 22.3 (2018): 1428–1442, 2018. 53. Gronthos, S., et al., Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 2003. 116(Pt 9): p. 1827-35. 54. Castorina, A., et al., Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer? Neural Regen Res, 2015. 10(6): p. 850-8. 55. Hu, M.S., et al., Stem Cell-Based Therapeutics to Improve Wound Healing. Plast Surg Int, 2015. 2015: p. 383581. 56. Biehl, J.K. and B. Russell, Introduction to stem cell therapy. J Cardiovasc Nurs, 2009. 24(2): p. 98-103; quiz 104-5. 57. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 58. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7. 59. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocr Rev, 2009. 30(3): p. 204-13. 60. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem Cell Res Ther, 2019. 10(1): p. 68. 61. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 62. Wu, S.M. and K. Hochedlinger, Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol, 2011. 13(5): p. 497-505. 63. Okita, K. and S. Yamanaka, Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci, 2011. 366(1575): p. 2198-207. 64. Moy, A.B., et al., The Challenges to Advancing Induced Pluripotent Stem Cell-Dependent Cell Replacement Therapy. Med Res Arch, 2023. 11(11). 65. Hou, P., et al., Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013. 341(6146): p. 651-4. 66. Knyazer, A., et al., Small molecules for cell reprogramming: a systems biology analysis. Aging (Albany NY), 2021. 13(24): p. 25739-25762. 67. Rada-Iglesias, A., et al., A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011. 470(7333): p. 279-83. 68. Guan, J., et al., Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022. 605(7909): p. 325-331. 69. Liuyang, S., et al., Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell, 2023. 30(4): p. 450-459 e9. 70. Nejadnik, H., et al., Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep, 2015. 11(2): p. 242-53. 71. Xu, M., et al., Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells, 2019. 37(6): p. 754-765. 72. Fernandez-Rebollo, E., et al., Senescence-Associated Metabolomic Phenotype in Primary and iPSC-Derived Mesenchymal Stromal Cells. Stem Cell Reports, 2020. 14(2): p. 201-209. 73. Tsutsumi, H., et al., Generation of a tendon-like tissue from human iPS cells. J Tissue Eng, 2022. 13: p. 20417314221074018. 74. Wruck, W., et al., Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity. Front Cell Dev Biol, 2021. 9: p. 717772. 75. Frobel, J., et al, Characterization of human iPSC-derived MSCs reveals a distinct transcriptomic profile as compared to bone marrow-derived MSCs. Stem Cell Reports 9.1 (2017): 16–28, 2017. 76. Zhao, D., et al., iPSC-derived MSCs retain immunomodulatory function and exert therapeutic effects in a model of ulcerative colitis. Cell Death & Disease 11.9 (2020): 1–15, 2020. 77. Chen, Y.S., et al, Generation and characterization of integration-free induced pluripotent stem cells from human peripheral blood mononuclear cells. Cell Transplantation 29 (2020): 963689720919727., 2020. 78. Kang, R., et al, iPSC-MSCs with high intrinsic MIg suppression ability for GVHD therapy. Nature Communications 13.1 (2022): 1040, 2022. 79. Liu, X., et al, iPSC-derived MSCs improve cardiac function after myocardial infarction through paracrine signaling and immunomodulation. Stem Cell Research & Therapy 9.1 (2018): 1–14., 2018. 80. Lee, H.J., et al, Human iPSC-derived mesenchymal stem cells accelerate cutaneous wound healing via paracrine signaling. Biochemical and Biophysical Research Communications 513.3 (2019): 561–567., 2019. 81. Chijimatsu, R., et al, Intra-articular transplantation of synovial stem cells derived from iPSCs for cartilage repair in a rat model. Osteoarthritis and Cartilage 27.6 (2019): 913–922, 2019. 82. Zhao, T., et al, Immunogenicity of induced pluripotent stem cells. Nature 474.7350 (2011): 212–215., 2011. 83. Bardocz, S., et al., The importance of dietary polyamines in cell regeneration and growth. Br J Nutr, 1995. 73(6): p. 819-28. 84. Fair, W.R., R.B. Clark, and N. Wehner, A correlation of seminal polyamine levels and semen analysis in the human. Fertil Steril, 1972. 23(1): p. 38-42. 85. Igarashi, K. and K. Kashiwagi, Modulation of cellular function by polyamines. Int J Biochem Cell Biol, 2010. 42(1): p. 39-51. 86. Lightfoot, H.L. and J. Hall, Endogenous polyamine function--the RNA perspective. Nucleic Acids Res, 2014. 42(18): p. 11275-90. 87. Khan, A.U., Y.H. Mei, and T. Wilson, A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A, 1992. 89(23): p. 11426-7. 88. Pegg, A.E., Functions of Polyamines in Mammals. J Biol Chem, 2016. 291(29): p. 14904-12. 89. Pegg, A.E., Mammalian polyamine metabolism and function. IUBMB Life, 2009. 61(9): p. 880-94. 90. Casero R. A. Jr., M.L.J., Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nature Reviews Drug Discovery, 2007. 91. Jell, J., et al., Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem, 2007. 282(11): p. 8404-13. 92. Okamoto, A., et al., Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem, 1997. 61(9): p. 1582-4. 93. Atiya Ali, M., et al., Polyamines in foods: development of a food database. Food Nutr Res, 2011. 55. 94. Madeo, F., et al., Spermidine in health and disease. Science, 2018. 359(6374). 95. Milovic, V., Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol, 2001. 13(9): p. 1021-5. 96. Nishimura, K., et al., Decrease in polyamines with aging and their ingestion from food and drink. J Biochem, 2006. 139(1): p. 81-90. 97. Eliassen, K.A., et al., Dietary polyamines. Food Chemistry, 2002. 78(3): p. 273-280. 98. Bardocz, S., Polyamines in Food and Their Consequences for Food Quality and Human Health. Trends in Food Science & Technology, 1995. 6(10): p. 341-346. 99. Larque, E., M. Sabater-Molina, and S. Zamora, Biological significance of dietary polyamines. Nutrition, 2007. 23(1): p. 87-95. 100. Das, R. and M.S. Kanungo, Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age. Exp Gerontol, 1982. 17(2): p. 95-103. 101. Minois, N., D. Carmona-Gutierrez, and F. Madeo, Polyamines in aging and disease. Aging (Albany NY), 2011. 3(8): p. 716-32. 102. Eisenberg, T., et al., Induction of autophagy by spermidine promotes longevity. Nat Cell Biol, 2009. 11(11): p. 1305-14. 103. Scalabrino, G. and M.E. Ferioli, Polyamines in mammalian ageing: an oncological problem, too? A review. Mech Ageing Dev, 1984. 26(2-3): p. 149-64. 104. Minois, N., et al., Spermidine and lifespan: From yeast to humans. Ageing Research Reviews, 9(1), 3-11., 2010. 105. Eisenberg, T., et al., Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med, 2016. 22(12): p. 1428-1438. 106. Pucciarelli, S., et al., Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res, 2012. 15(6): p. 590-5. 107. Bassini, A., et al., Long-lived individuals maintain polyamine levels and autophagy. Aging Cell, 19(1), e13177., 2020. 108. Madeo, F., et al., Spermidine as an anti-aging agent. Cell Death and Differentiation, 25(1), 29-41., 2018. 109. Eisenberg, T., et al., Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 11(11), 1305-1314., 2009. 110. LaRocca, T.J., et al., Spermidine supplementation extends lifespan in Drosophila. BMC Geriatrics, 13(1), 20., 2013. 111. Rubinsztein, D.C., G. Marino, and G. Kroemer, Autophagy and aging. Cell, 2011. 146(5): p. 682-95. 112. He, C. and D.J. Klionsky, Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 2009. 43: p. 67-93. 113. Pietrocola, F., et al., Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ, 2015. 22(3): p. 509-16. 114. Lee, I.H. and T. Finkel, Regulation of autophagy by the p300 acetyltransferase. J Biol Chem, 2009. 284(10): p. 6322-8. 115. Chrisam, M., et al., Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy, 2015. 11(12): p. 2142-52. 116. Li, S., et al., The FoxO3 transcription factor is a key regulator of autophagy in humans. Autophagy, 11(6), 945-955., 2015. 117. Shaw, R.J., et al., The kinase LKB1 mediates glucose homeostasis in mice. Nature, 429(6987), 314-318., 2004. 118. Schroeder, S., et al., Metabolites in aging and autophagy. Microb Cell, 2014. 1(4): p. 110-114. 119. Lin, M.T., & Beal, M. F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795., 2006. 120. Zhang, Y., et al., AMPK activation by spermidine promotes mitochondrial function in aging. Cell Reports, 9(5), 1900-1913., 2014. 121. Handschin, C., & Spiegelman, B. M., Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Reviews, 27(7), 721-728., 2006. 122. Terman, A., et al., Mitochondrial turnover and aging. Ageing Research Reviews, 9(2), 234-243., 2010. 123. Vazquez, M., et al., Polyamine transport in mammalian cells. International Journal of Biochemistry & Cell Biology, 77, 10-20., 2016. 124. Slotboom, D.J., et al., Transport and regulation of polyamines in bacteria and mammalian cells. Molecular Microbiology, 108(3), 293-305., 2018. 125. Leprivier, G., et al., The role of calcium signaling in the regulation of autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(7), 1707-1717., 2013. 126. Bunnell, B.A., et al., Adipose-derived stem cells: Isolation, expansion and differentiation. Methods, 45(2), 115–120., 2008. 127. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 8(4), 315–317., 2006. 128. Peister, A., Mellad, J. A., Larson, B. L., Hall, B. M., Gibson, L. F., & Prockop, D. J., Adult stem cells from bone marrow (MSCs) isolated from different donors show variation in proliferation and differentiation potential. Experimental Hematology, 32(5), 440-449., 2004. 129. Cappellari, A.R., et al., Alizarin Red S staining and quantification of mineralization in in vitro osteogenic differentiation of stem cells. Journal of Visualized Experiments, 2013, (81): 50920., 2013. 130. Cheng, J., et al., Oil Red O staining for evaluating adipogenic differentiation in vitro. Biochemical Methods, 2015, 113-118., 2015. 131. Muschler, G.F., & Midura, R. J., Quantification of glycosaminoglycans in cartilage, bone, and other tissues. Journal of Biochemical Methods, 60(2), 109-118., 2004. 132. Lee, J., & Jeon, Y. H., Hydrogen peroxide-induced senescence in human mesenchymal stem cells and its potential use in age-related diseases. Cell Biology and Toxicology, 28(5), 241-250., 2012. 133. Debacq-Chainiaux, F., et al., Protocols to detect senescence-associated β-galactosidase (SA-β-gal) activity. Methods in Molecular Biology, 532, 285-294., 2009. 134. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367., 1995. 135. Yang, Y., et al., Measurement of reactive oxygen species in stem cells: The role of oxidative stress in the aging process. Methods in Molecular Biology, 2053, 97-110., 2020. 136. Zhou, Y., et al., MitoSOX™ Red staining for detection of mitochondrial superoxide production in living cells. Journal of Visualized Experiments, 133, e57187., 2018. 137. Verma, M., et al., Tetramethylrhodamine methyl ester (TMRM) as a probe to assess mitochondrial membrane potential. Journal of Visualized Experiments, 100, e52958., 2015. 138. Khan, N.J., et al., Number and Diameter of White Pulp of Spleen in Different Age and Sex Groups of Bangladeshi People. Mymensingh Med J, 2022. 31(2): p. 406-411. 139. Newbold, K.M., et al., A simple method for assessment of glomerular size and its use in the study of kidneys in acromegaly and compensatory renal enlargement. J Pathol, 1989. 158(2): p. 139-46. 140. REZIGALLA, A.A., Morphometry: Assessing Direct and Indirect Methods of Measuring the Diameters of Tubular Structures. International Journal of Morphology 40(2):314-319, 2022. 141. Gerspach, C., et al., Variation in fat content between liver lobes and comparison with histopathological scores in dairy cows with fatty liver. BMC Vet Res, 2017. 13(1): p. 98. 142. Akiyama, K., et al., Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther, 2012. 3(5): p. 40. 143. Jarvis, R.M., S.M. Hughes, and E.C. Ledgerwood, Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med, 2012. 53(7): p. 1522-30. 144. Alessio, N., et al., Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. Elife, 2020. 9. 145. Laron, Z., Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol, 2001. 54(5): p. 311-6. 146. Yeregui, E., et al., High circulating SDF-1and MCP-1 levels and genetic variations in CXCL12, CCL2 and CCR5: Prognostic signature of immune recovery status in treated HIV-positive patients. EBioMedicine, 2020. 62: p. 103077. 147. Wu, M., et al., Serum-free media and the immunoregulatory properties of mesenchymal stem cells in vivo and in vitro. Cell Physiol Biochem, 2014. 33(3): p. 569-80. 148. Marino, G., et al., Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell, 2014. 53(5): p. 710-25. 149. Ghosh, H.S., M. McBurney, and P.D. Robbins, SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One, 2010. 5(2): p. e9199. 150. Mejlvang, J., et al., Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol, 2018. 217(10): p. 3640-3655. 151. Shabkhizan, R., et al., The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv Nutr, 2023. 14(5): p. 1211-1225. 152. Wang, Y., et al., Different levels of autophagy induced by transient serum starvation regulate metabolism and differentiation of porcine skeletal muscle satellite cells. Sci Rep, 2023. 13(1): p. 13153. 153. Ugland, H., et al., cAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1. Autophagy, 2011. 7(10): p. 1199-211. 154. Chen, S., et al., Role of Autophagy in the Maintenance of Stemness in Adult Stem Cells: A Disease-Relevant Mechanism of Action. Front Cell Dev Biol, 2021. 9: p. 715200. 155. de Meester, C., et al., Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc Res, 2014. 101(1): p. 20-9. 156. Zhang, J.M., et al., Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC-Mediated Immunosuppression. Stem Cells Transl Med, 2016. 5(12): p. 1631-1643. 157. Ruster, B., et al., Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006. 108(12): p. 3938-44. 158. De Becker, A., et al., Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007. 92(4): p. 440-9. 159. Fabian, C., et al., Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health. Stem Cell Res Ther, 2017. 8(1): p. 85. 160. Liu, M., et al., Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant, 2017. 26(9): p. 1505-1519. 161. Kallmeyer, K. and M.S. Pepper, Homing properties of mesenchymal stromal cells. Expert Opin Biol Ther, 2015. 15(4): p. 477-9. 162. De Becker, A. and I.V. Riet, Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells, 2016. 8(3): p. 73-87. 163. Wang, Y.G., et al., AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal, 2016. 28(9): p. 1270-1282. 164. Chava, S., et al., A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis, 2018. 9(7): p. 754. 165. Sacitharan, P.K., et al., Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. Exp Mol Med, 2018. 50(9): p. 123. 166. D'Adamo, S., et al., Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med, 2020. 153: p. 159-172. 167. Dagon, Y., Y. Avraham, and E.M. Berry, AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun, 2006. 340(1): p. 43-7. 168. Lee, J.H., J.K. Jeong, and S.Y. Park, AMPK Activation Mediated by Hinokitiol Inhibits Adipogenic Differentiation of Mesenchymal Stem Cells through Autophagy Flux. Int J Endocrinol, 2018. 2018: p. 2014192. 169. Gao, M., et al., Spermidine ameliorates non-alcoholic fatty liver disease through regulating lipid metabolism via AMPK. Biochem Biophys Res Commun, 2018. 505(1): p. 93-98. 170. Ahmad, B., et al., Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci, 2020. 7: p. 76. 171. Maldonado, E., et al., Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel), 2023. 12(3). 172. Hong Yang, L.Z., 1 Douglas Stevenson,2 Mark Bartlett,2 and Bin Lou3, Anti-inflammatory Effect of AMPK Activators from Natural Products in RAW 264.7 Cell Model (P06-095-19). Current Developments in Nutrition, 2019. 173. Xiang, H.C., et al., AMPK activation attenuates inflammatory pain through inhibiting NF-kappaB activation and IL-1beta expression. J Neuroinflammation, 2019. 16(1): p. 34. 174. Liu, Y. and Q. Chen, Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. Curr Mol Biol Rep, 2020. 6(4): p. 173-182. 175. Salminen, A., A. Kauppinen, and K. Kaarniranta, Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal, 2012. 24(4): p. 835-45. 176. Kira Young, P., Elizabeth Eudy, BS, Matthew Loberg, BA, Rebecca Bell, BA, Jennifer Trowbridge, PhD, Decline in Insulin-like Growth Factor-1 (IGF1) from Aged Mesenchymal Stromal Cells Is a Targetable Mechanism to Rescue Hematopoietic Stem Cell Aging. Blood, 2019. Volume 134, Issue Supplement_1. 177. Young, K., et al., Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell, 2021. 28(8): p. 1473-1482 e7. 178. Allahdadi, K.J., et al., IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther, 2019. 10(1): p. 146. 179. Haider, H., et al., IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res, 2008. 103(11): p. 1300-8. 180. Zhou, Y., et al., Human umbilical cord matrix-derived stem cells exert trophic effects on beta-cell survival in diabetic rats and isolated islets. Dis Model Mech, 2015. 8(12): p. 1625-33. 181. Martynoga, B., et al., Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev, 2013. 27(16): p. 1769-86. 182. Wong, T.Y., et al., Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell, 2017. 16(3): p. 451-460. 183. Alekseenko, L.L., et al., Quiescent Human Mesenchymal Stem Cells Are More Resistant to Heat Stress than Cycling Cells. Stem Cells Int, 2018. 2018: p. 3753547. 184. Kadekar, P. and R. Roy, AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway. PLoS Biol, 2019. 17(6): p. e3000309. 185. Calatayud-Baselga, I., et al., Autophagy drives the conversion of developmental neural stem cells to the adult quiescent state. Nat Commun, 2023. 14(1): p. 7541. 186. A. Bach-Faig, E.M.B., D. Lairon, J. Reguant, A. Trichopoulou, S. Dernini, F.X. Medina, M. Battino, R. Belahsen, G. Miranda, L. Serra-Majem, Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutrition, 14 (2011), pp. 2274-2284,, 2011. 187. P.N.T. Binh, K.S., M. Kawakami, Mediterranean diet and polyamine intake: Possible contribution of increased polyamine intake to inhibition of age-associated disease. Nutrition and Dietary Supplements, 3 (2011), pp. 1-7,, 2011. 188. M. Dinu, G.P., A. Casini, F. Sofi, Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. European Journal of Clinical Nutrition, 72 (2018), pp. 30-43,, 2018. 189. Soda, K., et al., Polyamine-Rich Diet Elevates Blood Spermine Levels and Inhibits Pro-Inflammatory Status: An Interventional Study. Med Sci (Basel), 2021. 9(2). 190. Senekowitsch, S., et al., High-Dose Spermidine Supplementation Does Not Increase Spermidine Levels in Blood Plasma and Saliva of Healthy Adults: A Randomized Placebo-Controlled Pharmacokinetic and Metabolomic Study. Nutrients, 2023. 15(8). 191. Sanayama, H., et al., Whole Blood Spermine/Spermidine Ratio as a New Indicator of Sarcopenia Status in Older Adults. Biomedicines, 2023. 11(5). 192. Soda, K., Changes in Whole Blood Polyamine Levels and Their Background in Age-Related Diseases and Healthy Longevity. Biomedicines, 2023. 11(10). 193. Medina, M.e.a., Gut microbiota and polyamine metabolism: Influence on host physiology and health. Journal of Nutritional Biochemistry, 2018. 194. G. G. Zhang et al., Spermidine promotes autophagy through AMPK activation to enhance cell survival under stress conditions. Cell Stress and Chaperones, 2021. 195. A. R. Liao et al., Polyamine metabolism and its role in cell cycle progression in cancer cells. Cancer Research, 2020. vol. 78, pp. 142-153. 196. M. D. Fisher et al., Inhibition of NF-κB signaling in cancer cells by spermidine reduces tumorigenic potential. Journal of Cancer Therapy, 2019. vol. 9, pp. 870-882. 197. S. T. Wu et al., Spermidine sensitizes cancer cells to chemotherapy by enhancing autophagy and modulating the tumor microenvironment. Frontiers in Pharmacology, 2021. vol. 10, pp. 213. 198. X. Z. Wang et al., Spermidine induces immune modulation and enhances anti-tumor immunity by regulating NK cells and tumor infiltration. Journal of Immunology, 2022. vol. 208, pp. 897-907. 199. Weissman, J.D., Houser, W. C., & Varvares, M. A., The structure and function of the human trachea: A review. American Journal of Otolaryngology, 38(1), 1-10., 2017. 200. Grillo, H.C., Tracheal replacement: A critical review. The Annals of Thoracic Surgery, 78(6), 1952-1960., 2004. 201. Boogaard, R., Huijsmans, S. H., Pijnenburg, M. W., Tiddens, H. A., De Jongste, J. C., & Merkus, P. J., Tracheomalacia and bronchomalacia in children: Incidence and patient characteristics. Chest, 128(5), 3391-3397., 2005. 202. Carter, J.M., Sherman, J. M., & Keszler, M., Congenital tracheoesophageal fistula: Diagnosis and management. Pediatric Pulmonology, 54(12), 1882-1890., 2019. 203. Macchiarini, P., & Rocco, G., Tracheal tumors. Chest Surgery Clinics of North America, 16(1), 165-178., 2006. 204. Torre, O., Harari, S., Cassandro, R., & Albera, C., Tracheobronchial involvement in granulomatosis with polyangiitis. Autoimmunity Reviews, 13(10), 1023-1029., 2014. 205. Epstein, S.K., Late complications of tracheostomy. Respiratory Care, 50(4), 542-549., 2005. 206. Cui, Y., Chen, L., Wang, Y., Liu, J., & Wang, G., Long-term outcomes of airway stenting in tracheobronchial stenosis: A systematic review and meta-analysis. International Journal of Chronic Obstructive Pulmonary Disease, 15, 2673-2685., 2020. 207. Delaere, P.R., & Van Raemdonck, D., The trachea: The first tissue-engineered organ? The Journal of Thoracic and Cardiovascular Surgery, 147(4), 1128-1132., 2014. 208. Kanemaru, S.-i., et al., Regeneration of the Trachea, in Regenerative Medicine in Otolaryngology. 2015. p. 225-234. 209. Hirai, K., Y. Shimizu, and T. Hino, Epithelial regeneration in collagen-coated and uncoated patch grafts implanted into dog tracheas. J Exp Pathol (Oxford), 1990. 71(1): p. 51-62. 210. Christen, M.O. and F. Vercesi, Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics. Clin Cosmet Investig Dermatol, 2020. 13: p. 31-48. 211. Kim, I.G., et al., Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci Rep, 2020. 10(1): p. 4326. 212. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 2009. 5(1): p. 1-13. 213. Park, K.M. and H.M. Woo, Systemic decellularization for multi-organ scaffolds in rats. Transplant Proc, 2012. 44(4): p. 1151-4. 214. Witzenburg, C., et al., Mechanical changes in the rat right ventricle with decellularization. J Biomech, 2012. 45(5): p. 842-9. 215. Ott, H.C., et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med, 2008. 14(2): p. 213-21. 216. Ng, S.L., et al., Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials, 2011. 32(30): p. 7571-80. 217. Shupe, T., et al., Method for the decellularization of intact rat liver. Organogenesis, 2010. 6(2): p. 134-6. 218. Uygun, B.E., et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med, 2010. 16(7): p. 814-20. 219. Gilbert, T.W., Strategies for tissue and organ decellularization. J Cell Biochem, 2012. 113(7): p. 2217-22. 220. Wallis, J.M., et al., Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods, 2012. 18(6): p. 420-32. 221. Simsa, R., et al., Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One, 2018. 13(12): p. e0209269. 222. Ma, X., et al., Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells. J Cardiothorac Surg, 2017. 12(1): p. 101. 223. Park, K.M. and H.M. Woo, Porcine bioengineered scaffolds as new frontiers in regenerative medicine. Transplant Proc, 2012. 44(4): p. 1146-50. 224. Martinod, E., et al., Airway transplantation: a challenge for regenerative medicine. Eur J Med Res, 2013. 18: p. 25. 225. Molacek, J., et al., Acute Conditions Caused by Infectious Aortitis. Aorta (Stamford), 2014. 2(3): p. 93-9. 226. Raavi, L., et al., Mycotic Thoracic Aortic Aneurysm: Epidemiology, Pathophysiology, Diagnosis, and Management. Cureus, 2022. 14(11): p. e31010. 227. Martinod, E., et al., A novel approach to tracheal replacement: the use of an aortic graft. J Thorac Cardiovasc Surg, 2001. 122(1): p. 197-8. 228. Martinod, E., et al., Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann Thorac Surg, 2003. 75(5): p. 1572-8; discussion 1578. 229. Martinod, E., et al., Feasibility of Bioengineered Tracheal and Bronchial Reconstruction Using Stented Aortic Matrices. JAMA, 2018. 319(21): p. 2212-2222. 230. Pellegata, A.F., et al., Arterial Decellularized Scaffolds Produced Using an Innovative Automatic System. Cells Tissues Organs, 2015. 200(6): p. 363-73. 231. Nomoto, M., et al., Bioengineered trachea using autologous chondrocytes for regeneration of tracheal cartilage in a rabbit model. Laryngoscope, 2013. 123(9): p. 2195-201. 232. Li, N., et al., Vessel graft fabricated by the on-site differentiation of human mesenchymal stem cells towards vascular cells on vascular extracellular matrix scaffold under mechanical stimulation in a rotary bioreactor. J Mater Chem B, 2019. 7(16): p. 2703-2713. 233. Singh, A.M., et al., Human beige adipocytes for drug discovery and cell therapy in metabolic diseases. Nat Commun, 2020. 11(1): p. 2758. 234. Ma, X., et al., Genome-Wide Screening of Different Expressed Genes and Its Potential Associations with Aging Dental Pulp Stem Cells. Comb Chem High Throughput Screen, 2022. 235. Liu, Q., et al., Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis, 2021. 12(3): p. 240. 236. Smith, J., et al., DNA extraction and analysis from decellularized tissues. Journal of Biochemical Techniques, 15(2), 45-52., 2018. 237. Johnson, M., et al., Quantification of DNA from decellularized tissue using spectrophotometry. Analytical Chemistry Methods, 22(1), 67-74., 2019. 238. Zhang, Y., et al., Measurement and analysis of compliance force in arterial tissues. Journal of Biomedical Engineering, 25(3), 112-118., 2017. 239. Zhang, W., et al., Biocompatibility and tissue integration of recellularized scaffolds in vivo. Journal of Tissue Engineering and Regenerative Medicine, 12(5), 1234-1241., 2018. 240. Bernardo, M.E. and W.E. Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 2013. 13(4): p. 392-402. 241. Wang, C., et al., Suitability of the porcine aortic model for transcatheter aortic root repair. Interact Cardiovasc Thorac Surg, 2018. 26(6): p. 1002-1008. 242. Gilbert, T.W., T.L. Sellaro, and S.F. Badylak, Decellularization of tissues and organs. Biomaterials, 2006. 27(19): p. 3675-83. 243. Gilbert, T.W., J.M. Freund, and S.F. Badylak, Quantification of DNA in biologic scaffold materials. J Surg Res, 2009. 152(1): p. 135-9. 244. Crapo, P.M., T.W. Gilbert, and S.F. Badylak, An overview of tissue and whole organ decellularization processes. Biomaterials, 2011. 32(12): p. 3233-43. 245. Teshigawara, R., et al., Mechanism of human somatic reprogramming to iPS cell. Lab Invest, 2017. 97(10): p. 1152-1157. 246. Al Abbar, A., et al., Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access, 2020. 9(1): p. 121-136. 247. Lu, Y., et al., Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020. 588(7836): p. 124-129. 248. Yang, J.H., et al., Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY), 2023. 15(13): p. 5966-5989. 249. Lucas Schoenfeldt1, Patrick T. Paine1, 2, Nibrasul H. Kamaludeen M.1, Grace B. 6 Phelps1, Calida Mrabti1, Kevin Perez1, Alejandro Ocampo1, *, Chemical reprogramming ameliorates cellular hallmarks of aging and extends lifespan. bioRxiv, 2022. 250. Gutierrez-Aranda, I., Human Induced Pluripotent Stem Cells Develop Teratoma More Efficiently and Faster Than Human Embryonic Stem Cells Regardless the Site of Injection. Stem Cells, 2010. 28(9):1568–1570. 251. Yeo RWY, L.R., Tan KH, Lim SK, Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell. Exosomes Microvesicles. 2013;1:7, 2013. 252. al, M.M.e., Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight. 2018;3(8):e99263, 2018. 253. Phinney, D.G., & Pittenger, M. F., Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35(4), 851-858., 2017. 254. al, K.H.e., Comparative analysis of the miRNA expression profiles in primary and induced mesenchymal stem cell-derived exosomes. Stem Cell Res Ther. 2020;11(1):1–14, 2020. 255. al, W.S.e., Proteomic profiling of exosomes from human induced pluripotent stem cell-derived mesenchymal stem cells reveals therapeutic molecules. Stem Cell Rev Rep. 2021;17:1069–1087, 2021. 256. Ferguson SW, W.J., Exosomes derived from iPSC-MSCs: immunomodulatory effects and potential for cell-free therapy. Front Immunol. 2021;12:703275, 2021. 257. Mizukami A, S.K., iPSCs and exosomes: a cell-free strategy for regenerative medicine. Regen Med. 2018;13(2):177–187, 2018. 258. al, Z.B.e., Exosomes derived from human iPSC-MSCs reduce cellular aging and immune activation. Aging Cell. 2020;19:e13133, 2020. 259. Arthur, A. and S. Gronthos, Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci, 2020. 21(24). 260. Squillaro, T., G. Peluso, and U. Galderisi, Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant, 2016. 25(5): p. 829-48. 261. Zha, K., et al., Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med, 2021. 6(1): p. 14. 262. Tan, L., Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes & Diseases, 2022. Volume 9, Issue 2, March 2022, Pages 296-309. 263. Mohamed-Ahmed, S., et al., Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther, 2018. 9(1): p. 168. 264. Menard, C., et al., Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells, 2020. 38(1): p. 146-159. 265. Missoum, A., Recent Updates on Mesenchymal Stem Cell Based Therapy for Acute Renal Failure. Curr Urol, 2020. 13(4): p. 189-199. 266. Tan, L., et al., Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment - specific factors involved in the regulation of MSC plasticity. Genes Dis, 2022. 9(2): p. 296-309. 267. Pinto, D.S., et al., Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. J Cell Physiol, 2020. 235(10): p. 7224-7238. 268. Yea, J.H., Y. Kim, and C.H. Jo, Comparison of mesenchymal stem cells from bone marrow, umbilical cord blood, and umbilical cord tissue in regeneration of a full-thickness tendon defect in vitro and in vivo. Biochem Biophys Rep, 2023. 34: p. 101486. 269. Isern, J., et al., The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife, 2014. 3: p. e03696. 270. Zhu, Y., et al., Origin and Clinical Applications of Neural Crest-Derived Dental Stem Cells. Chin J Dent Res, 2018. 21(2): p. 89-100. 271. Thomas, R., et al., Glycan Epitope and Integrin Expression Dynamics Characterize Neural Crest Epithelial-to-Mesenchymal Transition (EMT) in Human Pluripotent Stem Cell Differentiation. Stem Cell Rev Rep, 2022. 18(8): p. 2952-2965. 272. Kamiya, D., et al., Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regen Med, 2022. 7(1): p. 47. 273. Mark, P., et al., Human Mesenchymal Stem Cells Display Reduced Expression of CD105 after Culture in Serum-Free Medium. Stem Cells Int, 2013. 2013: p. 698076. 274. Wang, D., et al., Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J Cell Mol Med, 2020. 24(7): p. 4212-4222. 275. Asai, S., et al., Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration. Stem Cells, 2014. 32(12): p. 3266-77. 276. Cleary, M.A., et al., Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage, 2016. 24(5): p. 868-72. 277. Fonseca, L.N., et al., Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon, 2023. 9(2): p. e13464. 278. Miyoshi, N., Ishii, H., Nagai, K., Hoshino, H., Mimori, K., Tanaka, F., ... & Mori, M., Defined factors induce reprogramming of gastrointestinal cancer cells. Proceedings of the National Academy of Sciences, 107(1), 40-45., 2010. 279. Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A., Mitsunaga, K., ... & Yamada, Y., Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell, 156(4), 663-677., 2014. 280. Saenz, F.O., Wlodarski, P., & Lu, J., Cancer-iPSC: Insights into tumor evolution and therapeutic resistance. Stem Cell Reports, 12(5), 812-824., 2019. 281. Patel, A.P., Fisher, J. L., & Habib, A. A., Modeling glioblastoma using patient-derived Cancer-iPSCs: Opportunities and challenges. Neuro-Oncology, 22(7), 939-952., 2020. 282. Kawai, K., Iwama, A., & Kawamura, T., Epigenetic barriers to cancer cell reprogramming: Implications for regenerative medicine and oncology. Nature Reviews Cancer, 21(2), 98-112., 2021. 283. Gupta, P.B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C., Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65-78., 2019. 284. Weinstock, D.M., Lin, Y. Y., & Morgan, E. A., Patient-derived Cancer-iPSCs as a tool for precision medicine in oncology. Cell Reports Medicine, 2(6), 100312., 2021. 285. Drost, J., & Clevers, H., Organoids in cancer research. Nature Reviews Cancer, 18(7), 407-418., 2018. 286. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., ... & Liu, K., Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146), 651-654., 2013. 287. Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., ... & Esteban, M. A., Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3(5), 475-479., 2008. 288. Zhang, M., Lin, Y. H., Sun, Y. J., Zhu, S., Zheng, J., Liu, K., & Ding, S., Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 18(5), 653-667., 2016. 289. Li, X., Zuo, X., Jing, J., Ma, Y., Wang, J., Liu, D., ... & Xiao, L., Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell, 17(2), 195-203., 2015. 290. Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., & Levy, O., Engineering stem cell organoids. Cell Stem Cell, 18(1), 25-38., 2016. 291. Lange, P., et al., Pilot study of a novel vacuum-assisted method for decellularization of tracheae for clinical tissue engineering applications. J Tissue Eng Regen Med, 2017. 11(3): p. 800-811. 292. Giraldo-Gomez, D.M., et al., Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. Mater Sci Eng C Mater Biol Appl, 2019. 105: p. 110142. 293. Haghighitalab, A., et al., Investigating the effects of IDO1, PTGS2, and TGF-beta1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep, 2021. 11(1): p. 7825. 294. Lim, J.Y., et al., The therapeutic efficacy of mesenchymal stromal cells on experimental colitis was improved by the IFN-gamma and poly(I:C) priming through promoting the expression of indoleamine 2,3-dioxygenase. Stem Cell Res Ther, 2021. 12(1): p. 37. 295. Beheshtizadeh, N., et al., Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother, 2023. 166: p. 115301. 296. Khanna, A., B.P. Oropeza, and N.F. Huang, Engineering Spatiotemporal Control in Vascularized Tissues. Bioengineering (Basel), 2022. 9(10). 297. Echeverria Molina, M.I., K.G. Malollari, and K. Komvopoulos, Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol, 2021. 9: p. 617141. 298. Mohamad Yusoff, F. and Y. Higashi, Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells, 2023. 12(17). 299. Badylak, S.F., & Gilbert, T. W, Immune response to biologic scaffold materials. Seminars in Immunology, 20(2), 109–116, 2008. 300. Li, M., et al, Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell, 14(3), 275–291, 2014. 301. Sensebé, L., et al, Production of mesenchymal stromal/stem cells according to good manufacturing practices: A review. Stem Cell Research & Therapy, 4(3), 66, 2013. 302. Lei, Y., et al, Applications of induced pluripotent stem cells in modeling musculoskeletal diseases and regenerative medicine. Stem Cells International, 2019: 9891583, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97690 | - |
| dc.description.abstract | 間質幹細胞(Mesenchymal stem cells, MSCs)是維持體內器官穩定性的重要細胞群。然而,隨著年齡的增長,體內 MSCs 的活性和數量逐漸下降,這不僅影響健康,還限制了細胞療法的應用。雖然亞精胺(Spermidine, Spd)等多胺被認為有助於器官保護和延長生物體壽命,但它們對 MSCs 的影響仍不明確。本研究顯示,Spd 透過活化 AMPK 來促進自噬作用,並調節 MSCs 的增殖、遷移和分化。在氧化壓力下,Spd 能減少 MSCs 中的活性氧和炎症。In Vivo 結果顯示,給予 Spd 可以提升小鼠體內 MSCs 的活性,並開啟自噬作用改善老化。為了解決 MSCs 的來源問題,本研究透過化學再程序化(Chemical reprogramming)獲得了人類化學誘導多能幹細胞(hCiPSCs),並將其分化為類似於人類臍帶間質幹細胞(hUC-MSCs)和脂肪來源的間質幹細胞(hADSCs)的人類誘導間質幹細胞(hiMSCs),這些細胞具有更好的增生和穩定性。組織工程是再生醫學的重要組成部分,利用支架和特定細胞組裝功能性仿生結構。本研究透過胰蛋白酶去細胞化得到豬主動脈的細胞外基質(ECM),以促進生物廢棄物的再利用。此外,本研究成功將 hiMSCs 移植至豬主動脈 ECM 中,使其分化為成熟的軟骨層,並展現出良好的生物相容性。綜上所述,Spd 對於提升 MSCs 的活性有顯著益處,為健康老化提供了新的保健選擇。此外,本研究確立了豬主動脈 ECM 的可用性,並與個人化 hiMSCs 流程相結合,為未來的組織工程提供了全新的方案。 | zh_TW |
| dc.description.abstract | Mesenchymal stem cells (MSCs) are regarded as a crucial cell population for maintaining organ homeostasis. However, with aging, the activity and quantity of MSCs are progressively reduced, impacting overall health and limiting cell therapy application. Although polyamines such as spermidine (Spd) have been suggested to contribute to organ protection and lifespan extension, their effects on MSCs remain unclear. This study demonstrated that Spd promotes autophagy through AMPK activation and regulates the proliferation, migration, and differentiation of MSCs. Under oxidative stress, Spd was shown to reduce reactive oxygen species (ROS) and inflammation in MSCs. In Vivo results showed that administration of Spd could enhance the activity of MSCs in mice and activate autophagy to improve aging. To address the issue of MSC sourcing, human chemically induced pluripotent stem cells (hCiPSCs) were obtained through chemical reprogramming and subsequently differentiated into human-induced MSCs (hiMSCs) resembling human umbilical cord MSCs (hUC-MSCs) and adipose-derived MSCs (hADSCs). These hiMSCs exhibited superior proliferation and stability. Tissue engineering, a critical component of regenerative medicine, involves assembling functional biomimetic structures using scaffolds and specific cells. In this study, extracellular matrix (ECM) from porcine aorta was obtained through trypsin-based decellularization, facilitating the reutilization of biological waste. Furthermore, hiMSCs were successfully implanted into the porcine aorta ECM, where they differentiated into mature cartilage layers and demonstrated excellent biocompatibility. In conclusion, Spd was shown to significantly enhance MSC activity, offering a novel option for promoting healthy aging. Additionally, the usability of porcine aorta ECM was established, and its integration with the personalized hiMSCs process provides an innovative approach for future tissue engineering. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:12:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:12:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III Abstract IV List of Abbreviations VI Table of Content VII Chapter 1: Mesenchymal Stem Cells: Applications and Challenges 1 Introduction 1 1.1 Mesenchymal Stem Cells (MSCs) 1 1.1.1 The Origin of MSCs 1 1.1.2 The Definition Criteria for MSCs 2 1.1.3 Functional Properties and Clinical Applications of MSCs 2 1.1.4 Functional Decline and Aging of MSCs 5 1.1.5 Functional Inactivation of MSCs and Strategies to Restore Their Potency 6 1.1.6 The Dilemma of MSCs Sources 8 1.2 Pluripotent Stem Cells (PSCs) 9 1.2.1 The Advent of Induced Pluripotent Stem Cells (iPSCs) 9 1.2.2 Chemical Reprogramming 10 1.2.3 Establishing iMSCs Using iPSCs 12 1.2.4 Current Applications of iPSC-Derived MSCs (iMSCs) 13 Motivation and Aim 15 Chapter 2. Spermidine Regulated Mesenchymal Stem Cell Status and Ameliorate Age-related Decline by Activating AMPK and Autophagy 17 Introduction 17 2.1 Spermidine (Spd) 17 2.1.1 Overview 17 2.1.2 Biosynthesis and Metabolism of Spd 17 2.1.3 Source of Spd in the Human Body 19 2.1.4 Spd and Lifespan Extension 19 2.1.5 The Primary Molecular Mechanism of Spd 21 2.1.6 Spd and Mitochondrial Metabolism in Aging 25 2.1.7 Cellular Uptake of Spd and Autophagy Activation 27 Motivation and Aim 28 Materials and Methods 30 2.1 Human Adipose Mesenchymal Stem Cells (hADSCs) Isolation 30 2.2 Mouse Bone Marrow Mesenchymal Stem Cells (mBM-MSCs) Isolation 31 2.3 Self-isolated hADSCs and mBM-MSCs Culture 33 2.4 Cell Viability Assay 35 2.5 Flow Cytometry 36 2.6 Protein Extraction and Western Blot 38 2.7 Real-time Polymerase Chain Reaction (qPCR) 40 2.8 Cell Cycle Analysis 41 2.9 BrdU Incorporation Assay 42 2.10 Wound Healing Assay 43 2.11 Cell Migration Assay 44 2.12 Osteogenesis Differentiation and Alizarin Red S Staining 45 2.13 Adipogenesis Differentiation and Oil Red O Staining 47 2.14 Chondrogenesis Differentiation and Alcian Blue Staining 48 2.15 Hydrogen Peroxide (H2O2) Aging Induction 49 2.16 Senescence-associated β-galactosidase (SA-β-gal) Staining 50 2.17 Reactive Oxygen Species (ROS) Analysis 51 2.18 Mitochondrial ROS Analysis 52 2.19 Mitochondrial Membrane Potential Analysis 52 2.20 In vivo Spd Treatment Assay 53 2.21 Colony Forming Unit-Fibroblastic (CFU-F) Assay 54 2.22 Statistical Analysis 55 Experimental Strategy 56 Results 57 2.1 Successful Isolation of MSCs (hADSCs) from Human Adipose Tissue 57 2.2 Spd Promoted Autophagy in hADSCs through AMPK Phosphorylation 57 2.3 Spd Inhibited Cell Proliferation of hADSCs and Promoted Cell Migration 58 2.4 Spd Promoted Osteogenesis and Chondrogenesis of hADSCs While Inhibiting Adipogenesis 59 2.5 Spd Reduced H₂O₂-Induced Oxidative Stress in hADSCs 60 2.6 Spd Increased Cell Viability and Mitigated Senescence with Pretreatment 62 2.7 Spd Increased the Cell Viability of Bone Marrow MSCs In Vivo and Maintained Organ Status through the AMPK Autophagy Pathway 63 2.8 Crucial Role of AMPK Phosphorylation in Spd-Mediated Protection against Oxidative Stress 64 Summary of Chapter 2 65 Discussion 66 2.1 AMPK Is Essential for Various Functions of MSCs 66 2.2 Spd May Benefit More Than Just MSCs Themselves 70 2.3 Spd May Induce a Quiescent State in MSCs 73 2.4 Dietary Supplementation of Spermidine: Debates and Insights 74 2.5 Dual Effects of Spd in Cancer 76 Figures and Tables 79 Figure 1 79 Figure 2 81 Figure 3 85 Figure 4 87 Figure 5 89 Figure 6 93 Figure 7 97 Figure 8 101 Figure 9 105 Figure 10 108 List of Antibodies 111 List of qPCR Primers 112 Chapter 3. Decellularized Porcine Aorta as a Scaffold for Personalized Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering 117 Introduction 117 3.1 The Human Trachea 117 3.1.1 Overview 117 3.1.2 Clinical Disorders 117 3.1.3 Surgical Challenges 119 3.2 Tissue Engineering Scaffold 120 3.2.1 Clinical Artificial Stents 120 3.2.2 Animal-Derived Scaffolds 121 3.2.3 Tissue Decellularization 122 3.3 Tubular Tissue Scaffold 123 3.3.1 Aortic Stents 123 3.3.2 Scaffold Recellularization 124 Motivation and Aim 126 Materials and Methods 128 3.1 Generate Human Pluripotent Stem Cells by Chemical Reprogramming (hCiPSCs) 128 3.2 Human Induced Pluripotent Stem Cells (hiPSCs) Culture 132 3.3 Differentiation of Human Induced Mesenchymal Stem Cells (hiMSCs) 133 3.4 Differentiation of Human Induced Dental Pulp Mesenchymal Stem Cells (hiDPMCs) 134 3.5 Differentiation of Human Platelet Lysate Induced Mesenchymal Stem Cells (hPL-iMSCs) 135 3.6 Cell Doubling Time 136 3.7 Immunofluorescence Staining (IF) 137 3.8 RNA-Seq Data Processing and Analysis 138 3.9 Co-Culture of Mouse Splenocytes 139 3.10 Porcine Aorta Decellularization Procedure 140 3.11 DNA Residue Analysis 141 3.12 Compliance Force 141 3.13 Recellularization of Decellularized Aorta 142 3.14 Decellularized Aortic Component Migration Assay 142 3.15 Biocompatibility Test 143 Experimental Strategy 144 Results 146 3.1 Chemical Reprogramming of hADSCs into hCiPSCs 146 3.2 Differentiation of hCiPSCs into hiMSCs with MSC Marker Expression and Differentiation Potential 146 3.3 hiMSCs Exhibit Enhanced Proliferation and Maintenance Capabilities Compared to hADSCs 148 3.4 Distinct Strengths in the Capabilities of Different iMSCs 150 3.5 Successful Removal of Porcine Aortic Cells by Trypsin 152 3.6 Both hiMSCs and hADSCs Maintained Viability and Differentiated into Chondrocytes on Decellularized Aortas 154 3.7 Decellularized Aortas Retained Components that Facilitate Migration of hiMSCs and hADSCs 155 3.8 Optimal Biocompatibility of Aortic Recellularization with MSCs 156 Summary of Chapter 3 158 Discussion 160 3.1 Advantages and Process Analysis of Chemical Reprogramming 160 3.2 Changes in Epigenetics May be Key to Achieving Rejuvenation 161 3.3 hiMSCs May Have Greater Advantages in Tissue Regeneration Medicine 163 3.4 Comparison of iMSC and Primary MSC in Exosomes (EVs) 164 3.5 Establishment of Personalized Cells to Meet Specific Needs 166 3.6 The Establishment of Cancer-iPSCs Provides New Insights into Cancer Treatment 169 3.7 Trypsin as an Effective Method for Obtaining Aortic ECM 172 3.8 MSC Differentiation and Immunomodulatory Abilities Favor Tissue Regeneration Applications 173 Figures and Tables 176 Figure 11 176 Figure 12 179 Figure 13 182 Figure 14 186 Figure 15 190 Figure 16 195 Figure 17 198 Figure 18 201 Figure 19 204 Figure 20 207 List of Chemicals 211 Tranylcypromine hemisulfate 211 Forskilin 211 Bafilomycin A1 211 SB431542 211 List of Antibodies 212 List of qPCR Primers 213 Chapter 4: Conclusion and Outlooks 217 Conclusion 217 Outlook 219 Summary 221 Reference 222 | - |
| dc.language.iso | en | - |
| dc.subject | 亞精胺 | zh_TW |
| dc.subject | 自噬作用 | zh_TW |
| dc.subject | 人類誘導多能幹細胞 | zh_TW |
| dc.subject | 豬主動脈 | zh_TW |
| dc.subject | 細胞外間質 | zh_TW |
| dc.subject | 軟骨細胞 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | Chondrocytes | en |
| dc.subject | Mesenchymal stem cells | en |
| dc.subject | Spermidine | en |
| dc.subject | Autophagy | en |
| dc.subject | Human induced pluripotent stem cells | en |
| dc.subject | Porcine aorta | en |
| dc.subject | Extracellular matrix | en |
| dc.title | 從細胞活性改善到組織再生:間質幹細胞在個人化應用之研究探索 | zh_TW |
| dc.title | From Cellular Activity Enhancement to Tissue Regeneration: Advances in Mesenchymal Stem Cell Personalized Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李昆達;黃楓婷;侯詠德;黎萬君 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Ta Lee;Feng-Ting Huang;Yung-Te Hou;Wan-Chun Li | en |
| dc.subject.keyword | 間質幹細胞,亞精胺,自噬作用,人類誘導多能幹細胞,豬主動脈,細胞外間質,軟骨細胞, | zh_TW |
| dc.subject.keyword | Mesenchymal stem cells,Spermidine,Autophagy,Human induced pluripotent stem cells,Porcine aorta,Extracellular matrix,Chondrocytes, | en |
| dc.relation.page | 242 | - |
| dc.identifier.doi | 10.6342/NTU202501436 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-04 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2030-06-30 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
