Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 全球農業科技與基因體科學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor伊藤剛zh_TW
dc.contributor.advisorTakeshi Itohen
dc.contributor.authorNguyen Van Tuan Anhzh_TW
dc.contributor.authorNguyen Van Tuan Anhen
dc.date.accessioned2025-07-11T16:10:06Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-06-30-
dc.identifier.citationAchakkagari, S. R., Bozan, I., Camargo-Tavares, J. C., McCoy, H. J., Portal, L., Soto, J., Bizimungu, B., Anglin, N. L., Manrique-Carpintero, N., Lindqvist-Kreuze, H., Tai, H. H., & Strömvik, M. V. (2024). The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids. Scientific Data, 11(1), 454. doi: 10.1038/s41597-024-03300-5
Ågren, J., Sundström, A., Håfström, T., & Segerman, B. (2012). Gegenees: Fragmented Alignment of Multiple Genomes for Determining Phylogenomic Distances and Genetic Signatures Unique for Specified Target Groups. PLOS ONE, 7(6), e39107. doi: 10.1371/journal.pone.0039107
Ahmed, F. F., Hossen, M. I., Sarkar, M. A. R., Konak, J. N., Zohra, F. T., Shoyeb, M., & Mondal, S. (2021). Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PloS One, 16(9), e0256873. doi: 10.1371/journal.pone.0256873
Akhunov, E. D., Akhunova, A. R., Anderson, O. D., Anderson, J. A., Blake, N., Clegg, M. T., Coleman-Derr, D., Conley, E. J., Crossman, C. C., Deal, K. R., Dubcovsky, J., Gill, B. S., Gu, Y. Q., Hadam, J., Heo, H., Huo, N., Lazo, G. R., Luo, M.-C., Ma, Y. Q., … Dvorak, J. (2010). Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 11(1), 702. doi: 10.1186/1471-2164-11-702
Aklilu, B. B., & Culligan, K. M. (2016). Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.00033
Akparov, Z., Hajiyeva, S., Abbasov, M., Kaur, S., Hamwieh, A., Alsamman, A. M., Hajiyev, E., Babayeva, S., Izzatullayeva, V., Mustafayeva, Z., Mehdiyeva, S., Mustafayev, O., Shahmuradov, I., Kosarev, P., Solovyev, V., Salamov, A., & Jighly, A. (2023). Two major chromosome evolution events with unrivaled conserved gene content in pomegranate. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1039211
Albrecht, V., Weinl, S., Blazevic, D., D’Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., & Kudla, J. (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. The Plant Journal: For Cell and Molecular Biology, 36(4), 457–470. doi: 10.1046/j.1365-313x.2003.01892.x
Andreace, F., Lechat, P., Dufresne, Y., & Chikhi, R. (2023). Comparing methods for constructing and representing human pangenome graphs. Genome Biology, 24(1), 274. doi: 10.1186/s13059-023-03098-2
Andrew-Peter-Leon, M. T., Selvaraj, R., Kumar, K. K., Muthamilarasan, M., Yasin, J. K., & Pillai, M. A. (2021). Loss of Function of OsFBX267 and OsGA20ox2 in Rice Promotes Early Maturing and Semi-Dwarfism in γ-Irradiated IWP and Genome-Edited Pusa Basmati-1. Frontiers in Plant Science, 12, 714066. doi: 10.3389/fpls.2021.714066
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom.
Angiuoli, S. V., & Salzberg, S. L. (2011). Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics, 27(3), 334–342. doi: 10.1093/bioinformatics/btq665
Ashraf, M. A., Akihiro, T., Ito, K., Kumagai, S., Sugita, R., Tanoi, K., & Rahman, A. (2021). ATP binding cassette proteins ABCG37 and ABCG33 function as potassium-independent cesium uptake carriers in Arabidopsis roots. Molecular Plant, 14(4), 664–678. doi: 10.1016/j.molp.2021.02.002
Astashyn, A., Tvedte, E. S., Sweeney, D., Sapojnikov, V., Bouk, N., Joukov, V., Mozes, E., Strope, P. K., Sylla, P. M., Wagner, L., Bidwell, S. L., Brown, L. C., Clark, K., Davis, E. W., Smith-White, B., Hlavina, W., Pruitt, K. D., Schneider, V. A., & Murphy, T. D. (2024). Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology, 25(1), 60. doi: 10.1186/s13059-024-03198-7
Astashyn, A., Tvedte, E. S., Sweeney, D., Sapojnikov, V., Bouk, N., Joukov, V., Mozes, E., Strope, P. K., Sylla, P. M., Wagner, L., Bidwell, S. L., Clark, K., Davis, E. W., Smith-White, B., Hlavina, W., Pruitt, K. D., Schneider, V. A., & Murphy, T. D. (2023). Rapid and sensitive detection of genome contamination at scale with FCS-GX [Preprint]. Bioinformatics. doi: 10.1101/2023.06.02.543519
Aung, K. M., Oo, W. H., Maung, T. Z., Min, M.-H., Somsri, A., Nam, J., Kim, K.-W., Nawade, B., Lee, C.-Y., Chu, S.-H., & Park, Y.-J. (2023). Genomic landscape of the OsTPP7 gene in its haplotype diversity and association with anaerobic germination tolerance in rice. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1225445
Azam, S., Sahu, A., Pandey, N. K., Neupane, M., Van Tassell, C. P., Rosen, B. D., Gandham, R. K., Rath, S. N., & Majumdar, S. S. (2025). Constructing a draft Indian cattle pangenome using short-read sequencing. Communications Biology, 8(1), 1–11. doi: 10.1038/s42003-025-07978-0
Ballouz, S., Dobin, A., & Gillis, J. A. (2019). Is it time to change the reference genome? Genome Biology, 20(1), 159. doi: 10.1186/s13059-019-1774-4
Banerjee, A., & Roychoudhury, A. (2015). WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses. The Scientific World Journal, 2015, 807560. doi: 10.1155/2015/807560
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. doi: 10.1089/cmb.2012.0021
Bao, H., Xue, N., Wang, B., Yu, H., Huang, M., He, J., Dong, S., Zhou, Y., Gao, Q., & Tian, Y. (2025). Exploration of gene presence/absence variations in Oncorhynchus mykiss and their differentiation between wild and selection populations. Open Biology, 15(5), 240382. doi: 10.1098/rsob.240382
Barchi, L., Rabanus-Wallace, M. T., Prohens, J., Toppino, L., Padmarasu, S., Portis, E., Rotino, G. L., Stein, N., Lanteri, S., & Giuliano, G. (2021). Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. The Plant Journal, 107(2), 579–596. doi: 10.1111/tpj.15313
Bariah, I., Keidar-Friedman, D., & Kashkush, K. (2020). Where the Wild Things Are: Transposable Elements as Drivers of Structural and Functional Variations in the Wheat Genome. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.585515
Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11928–11933. doi: 10.1073/pnas.0505461102
Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J., & Edwards, D. (2020). Plant pan-genomes are the new reference. Nature Plants, 6(8), 914–920. doi: 10.1038/s41477-020-0733-0
Bayer, P. E., Valliyodan, B., Hu, H., Marsh, J. I., Yuan, Y., Vuong, T. D., Patil, G., Song, Q., Batley, J., Varshney, R. K., Lam, H.-M., Edwards, D., & Nguyen, H. T. (2022). Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. The Plant Genome, 15(1), e20109. doi: 10.1002/tpg2.20109
Baykal, P. I., Simonov, M., Deshpande, D., Korukoglu, F. B., Moore, J., Chhugani, K., Liu, C., Sarwal, V., Rajkumar, N., Alser, M., Beerenwinkel, N., & Mangul, S. (2025). Assessing genomic reproducibility of read alignment tools (p. 2025.05.08.652934). bioRxiv. doi: 10.1101/2025.05.08.652934
Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573–580. doi: 10.1093/nar/27.2.573
Bentham, A. R., De la Concepcion, J. C., Benjumea, J. V., Kourelis, J., Jones, S., Mendel, M., Stubbs, J., Stevenson, C. E. M., Maidment, J. H. R., Youles, M., Zdrzałek, R., Kamoun, S., & Banfield, M. J. (2023). Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. The Plant Cell, 35(10), 3809–3827. doi: 10.1093/plcell/koad204
Berglund, A.-C., Sjölund, E., Ostlund, G., & Sonnhammer, E. L. L. (2008). InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Research, 36(Database issue), D263-266. doi: 10.1093/nar/gkm1020
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. doi: 10.1093/bioinformatics/btu170
Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inzé, D., Van Damme, D., & Russinova, E. (2010). Systematic Localization of the Arabidopsis Core Cell Cycle Proteins Reveals Novel Cell Division Complexes. Plant Physiology, 152(2), 553–565. doi: 10.1104/pp.109.148643
Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements. Genome Biology, 19(1), 199. doi: 10.1186/s13059-018-1577-z
Bozan, I., Achakkagari, S. R., Anglin, N. L., Ellis, D., Tai, H. H., & Strömvik, M. V. (2023a). Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences, 120(31), e2211117120. doi: 10.1073/pnas.2211117120
Bozan, I., Achakkagari, S. R., Anglin, N. L., Ellis, D., Tai, H. H., & Strömvik, M. V. (2023b). Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences, 120(31), e2211117120. doi: 10.1073/pnas.2211117120
Breia, R., Conde, A., Badim, H., Fortes, A. M., Gerós, H., & Granell, A. (2021). Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology, 186(2), 836–852. doi: 10.1093/plphys/kiab127
Bush, S. J., Castillo-Morales, A., Tovar-Corona, J. M., Chen, L., Kover, P. X., & Urrutia, A. O. (2014). Presence–Absence Variation in A. thaliana Is Primarily Associated with Genomic Signatures Consistent with Relaxed Selective Constraints. Molecular Biology and Evolution, 31(1), 59–69. doi: 10.1093/molbev/mst166
Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C., & Jaffe, D. B. (2008). ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research, 18(5), 810–820. doi: 10.1101/gr.7337908
Cackett, L., Luginbuehl, L. H., Schreier, T. B., Lopez-Juez, E., & Hibberd, J. M. (2022). Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist, 233(5), 2000–2016. doi: 10.1111/nph.17839
Campbell, M. S., Holt, C., Moore, B., & Yandell, M. (2014). Genome Annotation and Curation Using MAKER and MAKER-P. Current Protocols in Bioinformatics, 48, 4.11.1-4.11.39. doi: 10.1002/0471250953.bi0411s48
Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., & Weigel, D. (2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 43(10), 956–963. doi: 10.1038/ng.911
Carballo, J., Bellido, A. M., Selva, J. P., Zappacosta, D., Gallo, C. A., Albertini, E., Caccamo, M., & Echenique, V. (2023). From tetraploid to diploid, a pangenomic approach to identify genes lost during synthetic diploidization of Eragrostis curvula. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1133986
Carretero-Paulet, L., Cairó, A., Botella-Pavía, P., Besumbes, O., Campos, N., Boronat, A., & Rodríguez-Concepción, M. (2006). Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology, 62(4–5), 683–695. doi: 10.1007/s11103-006-9051-9
Castelán-Muñoz, N., Herrera, J., Cajero-Sánchez, W., Arrizubieta, M., Trejo, C., García-Ponce, B., Sánchez, M. de la P., Álvarez-Buylla, E. R., & Garay-Arroyo, A. (2019). MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00853
Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., Morel, J.-B., Fournier, E., Tharreau, D., Terauchi, R., & Kroj, T. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell, 25. doi: 10.1105/tpc.112.107201
Chakraborty, M., Emerson, J. J., Macdonald, S. J., & Long, A. D. (2019). Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nature Communications, 10(1), 4872. doi: 10.1038/s41467-019-12884-1
Chakraborty, P., Biswas, A., Dey, S., Bhattacharjee, T., & Chakrabarty, S. (2023). Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. Journal of Xenobiotics, 13(3), 402–423. doi: 10.3390/jox13030026
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., Corréa, M., Da Silva, C., Just, J., Falentin, C., Koh, C. S., Le Clainche, I., Bernard, M., Bento, P., Noel, B., … Wincker, P. (2014). Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science (New York, N.Y.), 345(6199), 950–953. doi: 10.1126/science.1253435
Chaves-Sanjuan, A., Sanchez-Barrena, M. J., Gonzalez-Rubio, J. M., Moreno, M., Ragel, P., Jimenez, M., Pardo, J. M., Martinez-Ripoll, M., Quintero, F. J., & Albert, A. (2014). Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4532–E4541. doi: 10.1073/pnas.1407610111
Chen, Fangyu, Wang, Y., Zhang, Z., Chen, X., Huang, J., Chen, Z., Zheng, J., Jiang, L., Huang, Y., Wang, H., & Huang, R. (2022). Transcriptomic, proteomic, and phosphoproteomic analyses reveal dynamic signaling networks influencing long-grain rice development. The Crop Journal, 10(3), 716–728. doi: 10.1016/j.cj.2021.11.007
Chen, Feng, Mackey, A. J., Vermunt, J. K., & Roos, D. S. (2007). Assessing performance of orthology detection strategies applied to eukaryotic genomes. PloS One, 2(4), e383. doi: 10.1371/journal.pone.0000383
Chen, N. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, Chapter 4, Unit 4.10. doi: 10.1002/0471250953.bi0410s05
Chen, S., Ren, C., Zhai, J., Yu, J., Zhao, X., Li, Z., Zhang, T., Ma, W., Han, Z., & Ma, C. (2020). CAFU: a Galaxy framework for exploring unmapped RNA-Seq data. Briefings in Bioinformatics, 21(2), 676–686. doi: 10.1093/bib/bbz018
Chen, Z., & Li, Z. (2022). Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. Reproduction and Breeding, 2(4), 133–137. doi: 10.1016/j.repbre.2022.11.003
Cheng, Y.-S., Sun, Y.-D., Xing, J.-Y., Zhan, L., Li, X.-J., Huang, J., Zhao, M.-H., & Guo, Z.-F. (2024). Transcriptomic and functional analyzes reveal that the brassinosteroid insensitive 1 receptor (OsBRI1) regulates cold tolerance in rice. Plant Physiology and Biochemistry, 208, 108472. doi: 10.1016/j.plaphy.2024.108472
Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. doi: 10.1093/bioinformatics/btt310
Cho, M.-H., & Lee, S.-W. (2015). Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis. International Journal of Molecular Sciences, 16(12), 29120–29133. doi: 10.3390/ijms161226152
Choi, H., Yi, T., & Ha, S.-H. (2021). Diversity of Plastid Types and Their Interconversions. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.692024
Chrisman, B., He, C., Jung, J.-Y., Stockham, N., Paskov, K., Washington, P., & Wall, D. P. (2022). The human “contaminome”: bacterial, viral, and computational contamination in whole genome sequences from 1000 families. Scientific Reports, 12(1), 9863. doi: 10.1038/s41598-022-13269-z
Cleary, A., Ramaraj, T., Kahanda, I., Mudge, J., & Mumey, B. (2019). Exploring Frequented Regions in Pan-Genomic Graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1424–1435. doi: 10.1109/TCBB.2018.2864564
Cochetel, N., Minio, A., Guarracino, A., Garcia, J. F., Figueroa-Balderas, R., Massonnet, M., Kasuga, T., Londo, J. P., Garrison, E., Gaut, B. S., & Cantu, D. (2023). A super-pangenome of the North American wild grape species. Genome Biology, 24(1), 290. doi: 10.1186/s13059-023-03133-2
Contreras-Moreira, B., Cantalapiedra, C. P., García-Pereira, M. J., Gordon, S. P., Vogel, J. P., Igartua, E., Casas, A. M., & Vinuesa, P. (2017). Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Frontiers in Plant Science, 8. doi: 10.3389/fpls.2017.00184
Cornet, L., & Baurain, D. (2022). Contamination detection in genomic data: more is not enough. Genome Biology, 23(1), 60. doi: 10.1186/s13059-022-02619-9
Crespi, M. (n.d.). Plant transcription links environmental cues and phenotypic plasticity. Transcription, 11(3–4), 97–99. doi: 10.1080/21541264.2020.1837498
Cretu Stancu, M., van Roosmalen, M. J., Renkens, I., Nieboer, M. M., Middelkamp, S., de Ligt, J., Pregno, G., Giachino, D., Mandrile, G., Espejo Valle-Inclan, J., Korzelius, J., de Bruijn, E., Cuppen, E., Talkowski, M. E., Marschall, T., de Ridder, J., & Kloosterman, W. P. (2017). Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nature Communications, 8(1), 1326. doi: 10.1038/s41467-017-01343-4
Cui, D., Tang, C., Lu, H., Li, J., Ma, X., A, X., Han, B., Yang, Y., Dong, C., Zhang, F., Dai, L., & Han, L. (2021). Genetic differentiation and restricted gene flow in rice landraces from Yunnan, China: effects of isolation-by-distance and isolation-by-environment. Rice, 14, 54. doi: 10.1186/s12284-021-00497-6
Cui, D.-L., Meng, J.-Y., Ren, X.-Y., Yue, J.-J., Fu, H.-Y., Huang, M.-T., Zhang, Q.-Q., & Gao, S.-J. (2020). Genome-wide identification and characterization of DCL, AGO and RDR gene families in Saccharum spontaneum. Scientific Reports, 10(1), 13202. doi: 10.1038/s41598-020-70061-7
Dai, M., Terzaghi, W., & Wang, H. (2013). Multifaceted roles of Arabidopsis PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling & Behavior, 8(1), e22508. doi: 10.4161/psb.22508
Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B., & Hirsch, C. N. (2021). How the pan-genome is changing crop genomics and improvement. Genome Biology, 22(1), 3. doi: 10.1186/s13059-020-02224-8
Demir, E., Ceccobelli, S., Bilginer, U., Pasquini, M., Attard, G., & Karsli, T. (2022). Conservation and Selection of Genes Related to Environmental Adaptation in Native Small Ruminant Breeds: A Review. Ruminants, 2(2), 255–270. doi: 10.3390/ruminants2020017
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. doi: 10.1038/ng.806
Dev, W., Sultana, F., Li, H., Hu, D., Peng, Z., He, S., Zhang, H., Waqas, M., Geng, X., & Du, X. (2025). Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. Plant Science, 352, 112390. doi: 10.1016/j.plantsci.2025.112390
Dietrich, R. A., Richberg, M. H., Schmidt, R., Dean, C., & Dangl, J. L. (1997). A Novel Zinc Finger Protein Is Encoded by the Arabidopsis LSD1 Gene and Functions as a Negative Regulator of Plant Cell Death. Cell, 88(5), 685–694. doi: 10.1016/S0092-8674(00)81911-X
Ding, J., Araki, H., Wang, Q., Zhang, P., Yang, S., Chen, J.-Q., & Tian, D. (2007). Highly asymmetric rice genomes. BMC Genomics, 8(1), 154. doi: 10.1186/1471-2164-8-154
Do, T. H. T., Martinoia, E., Lee, Y., & Hwang, J.-U. (2021). 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology, 187(4), 1876–1892. doi: 10.1093/plphys/kiab193
Du, Z.-Z., He, J.-B., & Jiao, W.-B. (2025a). Plant graph-based pangenomics: techniques, applications, and challenges. aBIOTECH. doi: 10.1007/s42994-025-00206-7
Du, Z.-Z., He, J.-B., & Jiao, W.-B. (2025b). Plant graph-based pangenomics: techniques, applications, and challenges. aBIOTECH. doi: 10.1007/s42994-025-00206-7
Durbha, S. R., Siromani, N., Jaldhani, V., Krishnakanth, T., Thuraga, V., Neeraja, C. N., Subrahmanyam, D., & Sundaram, R. M. (2024). Dynamics of starch formation and gene expression during grain filling and its possible influence on grain quality. Scientific Reports, 14(1), 6743. doi: 10.1038/s41598-024-57010-4
Ejigu, G. F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology, 9(9), 295. doi: 10.3390/biology9090295
English, A. C., Salerno, W. J., & Reid, J. G. (2014). PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics, 15(1), 180. doi: 10.1186/1471-2105-15-180
Ercoli, M. F., Luu, D. D., Rim, E. Y., Shigenaga, A., Teixeira de Araujo, A., Chern, M., Jain, R., Ruan, R., Joe, A., Stewart, V., & Ronald, P. (2022). Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proceedings of the National Academy of Sciences, 119(8), e2121568119. doi: 10.1073/pnas.2121568119
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. doi: 10.1093/bioinformatics/btw354
Fasani, E., DalCorso, G., Varotto, C., Li, M., Visioli, G., Mattarozzi, M., & Furini, A. (2017). The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. New Phytologist, 214(4), 1614–1630. doi: 10.1111/nph.14529
Flavell, R. B., Bennett, M. D., Smith, J. B., & Smith, D. B. (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics, 12(4), 257–269. doi: 10.1007/BF00485947
Flores-Tornero, M., Anoman, A. D., Rosa-Téllez, S., Toujani, W., Weber, A. P. M., Eisenhut, M., Kurz, S., Alseekh, S., Fernie, A. R., Muñoz-Bertomeu, J., & Ros, R. (2017). Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants. The Plant Journal, 89(6), 1146–1158. doi: 10.1111/tpj.13452
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451–9457. doi: 10.1073/pnas.1921046117
Francis, A., Dhaka, N., Bakshi, M., Jung, K.-H., Sharma, M. K., & Sharma, R. (2016). Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Scientific Reports, 6(1), 38488. doi: 10.1038/srep38488
Frick, E. M., & Strader, L. C. (2018). Kinase MPK17 and the Peroxisome Division Factor PMD1 Influence Salt-induced Peroxisome Proliferation. Plant Physiology, 176(1), 340–351. doi: 10.1104/pp.17.01019
Frommer, B., Hausmann, L., Holtgräwe, D., Viehöver, P., Hüttel, B., Reinhardt, R., Töpfer, R., & Weisshaar, B. (2022). A fully phased interspecific grapevine rootstock genome sequence representing V. riparia and V. cinerea and allele-aware annotation of the phylloxera resistance locus Rdv1 (p. 2022.07.07.499180). bioRxiv. doi: 10.1101/2022.07.07.499180
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. doi: 10.1093/bioinformatics/bts565
Gage, J. L., Vaillancourt, B., Hamilton, J. P., Manrique-Carpintero, N. C., Gustafson, T. J., Barry, K., Lipzen, A., Tracy, W. F., Mikel, M. A., Kaeppler, S. M., Buell, C. R., & de Leon, N. (2019). Multiple Maize Reference Genomes Impact the Identification of Variants by Genome-Wide Association Study in a Diverse Inbred Panel. The Plant Genome, 12(2), 180069. doi: 10.3835/plantgenome2018.09.0069
Gai, Y., Li, L., Liu, B., Ma, H., Chen, Y., Zheng, F., Sun, X., Wang, M., Jiao, C., & Li, H. (2022). Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiological Research, 256, 126915. doi: 10.1016/j.micres.2021.126915
Gao, F., Guo, J., & Shen, Y. (2024). Advances from chlorophyll biosynthesis to photosynthetic adaptation, evolution and signaling. Plant Stress, 12, 100470. doi: 10.1016/j.stress.2024.100470
Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., Burzynski-Chang, E. A., Fish, T. L., Stromberg, K. A., Sacks, G. L., Thannhauser, T. W., Foolad, M. R., Diez, M. J., Blanca, J., Canizares, J., Xu, Y., van der Knaap, E., Huang, S., Klee, H. J., … Fei, Z. (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 51(6), 1044–1051. doi: 10.1038/s41588-019-0410-2
Gao, L., Pan, L., Shi, Y., Zeng, R., Li, M., Li, Z., Zhang, X., Zhao, X., Gong, X., Huang, W., Yang, X., Lai, J., Zuo, J., Gong, Z., Wang, X., Jin, W., Dong, Z., & Yang, S. (2024). Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. Molecular Plant, 17(9), 1423–1438. doi: 10.1016/j.molp.2024.07.015
Gao, Q.-M., Venugopal, S., Navarre, D., & Kachroo, A. (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology, 155(1), 464–476. doi: 10.1104/pp.110.166876
García-González, J., Kebrlová, Š., Semerák, M., Lacek, J., Kotannal Baby, I., Petrášek, J., & Schwarzerová, K. (2020). Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.00486
Garg, G., Kamphuis, L. G., Bayer, P. E., Kaur, P., Dudchenko, O., Taylor, C. M., Frick, K. M., Foley, R. C., Gao, L.-L., Aiden, E. L., Edwards, D., & Singh, K. B. (2022). A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. The Plant Journal, 111(5), 1252–1266. doi: 10.1111/tpj.15885
Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., & McCouch, S. (2005). Genetic Structure and Diversity in Oryza sativa L. Genetics, 169(3), 1631–1638. doi: 10.1534/genetics.104.035642
Garrison, E., Guarracino, A., Heumos, S., Villani, F., Bao, Z., Tattini, L., Hagmann, J., Vorbrugg, S., Marco-Sola, S., Kubica, C., Ashbrook, D. G., Thorell, K., Rusholme-Pilcher, R. L., Liti, G., Rudbeck, E., Nahnsen, S., Yang, Z., Mwaniki, M. N., Nobrega, F. L., … Prins, P. (2024). Building pangenome graphs. bioRxiv: The Preprint Server for Biology, 2023.04.05.535718. doi: 10.1101/2023.04.05.535718
Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., Jones, W., Garg, S., Markello, C., Lin, M. F., Paten, B., & Durbin, R. (2018). Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 36(9), 875–879. doi: 10.1038/nbt.4227
Ge, F., Qu, J., Liu, P., Pan, L., Zou, C., Yuan, G., Yang, C., Pan, G., Huang, J., Ma, L., & Shen, Y. (2022). Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics. The Crop Journal, 10(1), 47–55. doi: 10.1016/j.cj.2021.08.002
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36(8), 2628–2629. doi: 10.1093/bioinformatics/btz931
Glick, L., & Mayrose, I. (2023). The Effect of Methodological Considerations on the Construction of Gene-Based Plant Pan-genomes. Genome Biology and Evolution, 15(7), evad121. doi: 10.1093/gbe/evad121
Goel, M., Sun, H., Jiao, W.-B., & Schneeberger, K. (2019). SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20(1), 277. doi: 10.1186/s13059-019-1911-0
Golicz, A. A., Batley, J., & Edwards, D. (2016). Towards plant pangenomics. Plant Biotechnology Journal, 14(4), 1099–1105. doi: 10.1111/pbi.12499
Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016a). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7(1), 13390. doi: 10.1038/ncomms13390
Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016b). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7(1), 13390. doi: 10.1038/ncomms13390
Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016c). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7, 13390. doi: 10.1038/ncomms13390
Golicz, A. A., Martinez, P. A., Zander, M., Patel, D. A., Van De Wouw, A. P., Visendi, P., Fitzgerald, T. L., Edwards, D., & Batley, J. (2015). Gene loss in the fungal canola pathogen Leptosphaeria maculans. Functional & Integrative Genomics, 15(2), 189–196. doi: 10.1007/s10142-014-0412-1
González, V. M., Aventín, N., Centeno, E., & Puigdomènech, P. (2013). High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genomics, 14(1), 782. doi: 10.1186/1471-2164-14-782
Gonzali, S., Alpi, A., Blando, F., & De Bellis, L. (2002). Arabidopsis (HXK1 and HXK2) and yeast (HXK2) hexokinases overexpressed in transgenic lines are characterized by different catalytic properties. Plant Science, 163(5), 943–954. doi: 10.1016/S0168-9452(02)00243-1
Gordon, S. P., Contreras-Moreira, B., Woods, D. P., Des Marais, D. L., Burgess, D., Shu, S., Stritt, C., Roulin, A. C., Schackwitz, W., Tyler, L., Martin, J., Lipzen, A., Dochy, N., Phillips, J., Barry, K., Geuten, K., Budak, H., Juenger, T. E., Amasino, R., … Vogel, J. P. (2017). Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications, 8(1), 2184. doi: 10.1038/s41467-017-02292-8
Guo, X., Huang, C., Lee, Y.-R. J., WANG, J., & Liu, B. (2021). Distinctive Kinesin-14 Motors Associate with Midzone Microtubules to Construct Mitotic Spindles with Two Convergent Poles in Arabidopsi. doi: 10.21203/rs.3.rs-957980/v1
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. doi: 10.1093/bioinformatics/btt086
Halawa, M., Cortleven, A., Schmülling, T., & Heyl, A. (2021). Characterization of CHARK, an unusual cytokinin receptor of rice. Scientific Reports, 11(1), 1722. doi: 10.1038/s41598-020-80223-2
Han, H., Wang, C., Yang, X., Wang, L., Ye, J., Xu, F., Liao, Y., & Zhang, W. (2023). Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta, 258(1), 13. doi: 10.1007/s00425-023-04174-4
Hao, D.-L., Zhou, J.-Y., Huang, Y.-N., Wang, H.-R., Li, X.-H., Guo, H.-L., & Liu, J.-X. (2022). Roles of plastid-located phosphate transporters in carotenoid accumulation. Frontiers in Plant Science, 13. doi: 10.3389/fpls.2022.1059536
Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., Arima, S., Squeglia, F., Ruggiero, A., Tokuyasu, K., Molinaro, A., Kaku, H., & Shibuya, N. (2014). Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 111(3), E404-413. doi: 10.1073/pnas.1312099111
Hayes, B. J., & Daetwyler, H. D. (2019). 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annual Review of Animal Biosciences, 7, 89–102. doi: 10.1146/annurev-animal-020518-115024
He, W., Li, X., Qian, Q., & Shang, L. (2024). The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. Plant Communications, 6(2), 101230. doi: 10.1016/j.xplc.2024.101230
He, X., Qi, Z., Liu, Z., Chang, X., Zhang, X., Li, J., & Wang, M. (2024). Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biology, 22(1), 92. doi: 10.1186/s12915-024-01893-2
He, Z.-D., Tao, M.-L., Leung, D. W. M., Yan, X.-Y., Chen, L., Peng, X.-X., & Liu, E.-E. (2021). The rice germin-like protein OsGLP1 participates in acclimation to UV-B radiation. Plant Physiology, 186(2), 1254–1268. doi: 10.1093/plphys/kiab125
Hickey, G., Monlong, J., Ebler, J., Novak, A. M., Eizenga, J. M., Gao, Y., Marschall, T., Li, H., & Paten, B. (2024). Pangenome graph construction from genome alignments with Minigraph-Cactus. Nature Biotechnology, 42(4), 663–673. doi: 10.1038/s41587-023-01793-w
Higgins, J., Santos, B., Khanh, T. D., Trung, K. H., Duong, T. D., Doai, N. T. P., Hall, A., Dyer, S., Ham, L. H., Caccamo, M., & De Vega, J. (2022). Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evolutionary Applications, 15(7), 1141–1161. doi: 10.1111/eva.13433
Higgins, J., Santos, B., Khanh, T. D., Trung, K. H., Duong, T. D., Doai, N. T. P., Khoa, N. T., Ha, D. T. T., Diep, N. T., Dung, K. T., Phi, C. N., Thuy, T. T., Tuan, N. T., Tran, H. D., Trung, N. T., Giang, H. T., Nhung, T. K., Tran, C. D., Lang, S. V., … De Vega, J. J. (2021). Resequencing of 672 Native Rice Accessions to Explore Genetic Diversity and Trait Associations in Vietnam. Rice, 14, 52. doi: 10.1186/s12284-021-00481-0
Hirsch, C. N., Foerster, J. M., Johnson, J. M., Sekhon, R. S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., de Leon, N., Kaeppler, S. M., & Buell, C. R. (2014a). Insights into the Maize Pan-Genome and Pan-Transcriptome. The Plant Cell, 26(1), 121–135. doi: 10.1105/tpc.113.119982
Hirsch, C. N., Foerster, J. M., Johnson, J. M., Sekhon, R. S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., de Leon, N., Kaeppler, S. M., & Buell, C. R. (2014b). Insights into the Maize Pan-Genome and Pan-Transcriptome. The Plant Cell, 26(1), 121–135. doi: 10.1105/tpc.113.119982
Ho, S. S., Urban, A. E., & Mills, R. E. (2020). Structural variation in the sequencing era. Nature Reviews Genetics, 21(3), 171–189. doi: 10.1038/s41576-019-0180-9
Hoang, G. T., Van Dinh, L., Nguyen, T. T., Ta, N. K., Gathignol, F., Mai, C. D., Jouannic, S., Tran, K. D., Khuat, T. H., Do, V. N., Lebrun, M., Courtois, B., & Gantet, P. (2019). Genome-wide Association Study of a Panel of Vietnamese Rice Landraces Reveals New QTLs for Tolerance to Water Deficit During the Vegetative Phase. Rice, 12(1), 4. doi: 10.1186/s12284-018-0258-6
Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-Genome Annotation with BRAKER. In M. Kollmar (Ed.), Gene Prediction: Methods and Protocols (pp. 65–95). New York, NY: Springer. doi: 10.1007/978-1-4939-9173-0_5
Holden, L. A., Arumilli, M., Hytönen, M. K., Hundi, S., Salojärvi, J., Brown, K. H., & Lohi, H. (2018). Assembly and Analysis of Unmapped Genome Sequence Reads Reveal Novel Sequence and Variation in Dogs. Scientific Reports, 8(1), 10862. doi: 10.1038/s41598-018-29190-3
Holley, G., & Melsted, P. (2020). Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs. Genome Biology, 21(1), 249. doi: 10.1186/s13059-020-02135-8
Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1), 491. doi: 10.1186/1471-2105-12-491
Hoopes, G., Meng, X., Hamilton, J. P., Achakkagari, S. R., de Alves Freitas Guesdes, F., Bolger, M. E., Coombs, J. J., Esselink, D., Kaiser, N. R., Kodde, L., Kyriakidou, M., Lavrijssen, B., van Lieshout, N., Shereda, R., Tuttle, H. K., Vaillancourt, B., Wood, J. C., de Boer, J. M., Bornowski, N., … Finkers, R. (2022). Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 15(3), 520–536. doi: 10.1016/j.molp.2022.01.003
Hori, K., Suzuki, K., Ishikawa, H., Nonoue, Y., Nagata, K., Fukuoka, S., & Tanaka, J. (2021). Genomic Regions Involved in Differences in Eating and Cooking Quality Other than Wx and Alk Genes between indica and japonica Rice Cultivars. Rice (New York, N.Y.), 14(1), 8. doi: 10.1186/s12284-020-00447-8
Horsfield, S. T., Tonkin-Hill, G., Croucher, N. J., & Lees, J. A. (2023). Accurate and fast graph-based pangenome annotation and clustering with ggCaller. Genome Research, 33(9), 1622–1637. doi: 10.1101/gr.277733.123
Hu, H., Scheben, A., Verpaalen, B., Tirnaz, S., Bayer, P. E., Hodel, R. G. J., Batley, J., Soltis, D. E., Soltis, P. S., & Edwards, D. (2022). Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. The New Phytologist, 233(4), 1548–1555. doi: 10.1111/nph.17658
Hu, H., Scheben, A., Wang, J., Li, F., Li, C., Edwards, D., & Zhao, J. (2024). Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. Plant Biotechnology Journal, 22(3), 544–554. doi: 10.1111/pbi.14224
Hu, H., Wang, J., Nie, S., Zhao, J., Batley, J., & Edwards, D. (2024). Plant pangenomics, current practice and future direction. Agriculture Communications, 2(2), 100039. doi: 10.1016/j.agrcom.2024.100039
Hu, H., Yuan, Y., Bayer, P. E., Fernandez, C. T., Scheben, A., Golicz, A. A., & Edwards, D. (2020). Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. In M. Jain & R. Garg (Eds.), Legume Genomics: Methods and Protocols (pp. 35–47). New York, NY: Springer US. doi: 10.1007/978-1-0716-0235-5_3
Hu, H., Yuan, Y., Bayer, P., Tay Fernandez, C., Scheben, A., Golicz, A., & Edwards, D. (2020). Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. In Methods in molecular biology (Clifton, N.J.) (Vol. 2107, pp. 35–47). doi: 10.1007/978-1-0716-0235-5_3
Hu, H., Zhao, J., Thomas, W. J. W., Batley, J., & Edwards, D. (2025). The role of pangenomics in orphan crop improvement. Nature Communications, 16, 118. doi: 10.1038/s41467-024-55260-4
Huang, L., Popic, V., & Batzoglou, S. (2013). Short read alignment with populations of genomes. Bioinformatics, 29(13), i361–i370. doi: 10.1093/bioinformatics/btt215
Huang, X., Li, Y., Zhang, X., Zuo, J., & Yang, S. (2010). The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. The New Phytologist, 187(2), 301–312. doi: 10.1111/j.1469-8137.2010.03275.x
Huang, Y.-C., Niu, C.-Y., Yang, C.-R., & Jinn, T.-L. (2016). The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiology, 172(2), 1182–1199. doi: 10.1104/pp.16.00860
Huang, Y.-X., Rao, H.-Y., Su, B.-S., Lv, J.-M., Lin, J.-J., Wang, X., Xu, L.-N., Kong, X.-D., & Sun, Y. (2025). The pan-genome of Spodoptera frugiperda provides new insights into genome evolution and horizontal gene transfer. Communications Biology, 8(1), 1–11. doi: 10.1038/s42003-025-07707-7
Hübner, S., Bercovich, N., Todesco, M., Mandel, J. R., Odenheimer, J., Ziegler, E., Lee, J. S., Baute, G. J., Owens, G. L., Grassa, C. J., Ebert, D. P., Ostevik, K. L., Moyers, B. T., Yakimowski, S., Masalia, R. R., Gao, L., Ćalić, I., Bowers, J. E., Kane, N. C., … Rieseberg, L. H. (2019). Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 5(1), 54–62. doi: 10.1038/s41477-018-0329-0
Hufnagel, B., Soriano, A., Taylor, J., Divol, F., Kroc, M., Sanders, H., Yeheyis, L., Nelson, M., & Péret, B. (2021). Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnology Journal, 19(12), 2532–2543. doi: 10.1111/pbi.13678
Hurgobin, B., Golicz, A. A., Bayer, P. E., Chan, C.-K. K., Tirnaz, S., Dolatabadian, A., Schiessl, S. V., Samans, B., Montenegro, J. D., Parkin, I. A. P., Pires, J. C., Chalhoub, B., King, G. J., Snowdon, R., Batley, J., & Edwards, D. (2018). Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnology Journal, 16(7), 1265–1274. doi: 10.1111/pbi.12867
Idänheimo, N., Gauthier, A., Salojärvi, J., Siligato, R., Brosché, M., Kollist, H., Mähönen, A. P., Kangasjärvi, J., & Wrzaczek, M. (2014). The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications, 445(2), 457–462. doi: 10.1016/j.bbrc.2014.02.013
Inaba, T., & Ito-Inaba, Y. (2010). Versatile roles of plastids in plant growth and development. Plant & Cell Physiology, 51(11), 1847–1853. doi: 10.1093/pcp/pcq147
Ioerger, T. R., Koo, S., No, E.-G., Chen, X., Larsen, M. H., Jacobs, W. R., Pillay, M., Sturm, A. W., & Sacchettini, J. C. (2009). Genome Analysis of Multi- and Extensively-Drug-Resistant Tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE, 4(11), e7778. doi: 10.1371/journal.pone.0007778
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., & McVean, G. (2012). De novo assembly and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44(2), 226–232. doi: 10.1038/ng.1028
Isayenkov, S., Isner, J.-C., & Maathuis, F. J. M. (2011). Rice Two-Pore K+ Channels Are Expressed in Different Types of Vacuoles[W]. The Plant Cell, 23(2), 756–768. doi: 10.1105/tpc.110.081463
Ishikawa, T., Aki, T., Yanagisawa, S., Uchimiya, H., & Kawai-Yamada, M. (2015). Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress1[OPEN]. Plant Physiology, 169(2), 1333–1343. doi: 10.1104/pp.15.00445
Jiang, L., Wu, L., Wang, Y., Xu, Q., Xu, Z., & Chen, W. (2022). Research progress on the divergence and genetic basis of agronomic traits in xian and geng rice. The Crop Journal, 10(4), 924–931. doi: 10.1016/j.cj.2022.02.006
Jiang, M., Chen, M., Zeng, J., Du, Z., & Xiao, J. (2024). A comprehensive evaluation of the potential of three next-generation short-read-based plant pan-genome construction strategies for the identification of novel non-reference sequence. Frontiers in Plant Science, 15. doi: 10.3389/fpls.2024.1371222
Jiang, N., & Panaud, O. (2013). Transposable Element Dynamics in Rice and Its Wild Relatives. In Q. Zhang & R. A. Wing (Eds.), Genetics and Genomics of Rice (pp. 55–69). New York, NY: Springer. doi: 10.1007/978-1-4614-7903-1_5
Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M. C., Wang, B., Campbell, M. S., Stein, J. C., Wei, X., Chin, C.-S., Guill, K., Regulski, M., Kumari, S., Olson, A., Gent, J., Schneider, K. L., Wolfgruber, T. K., May, M. R., Springer, N. M., … Ware, D. (2017). Improved maize reference genome with single-molecule technologies. Nature, 546(7659), 524–527. doi: 10.1038/nature22971
Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. doi: 10.1093/bioinformatics/btu031
Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., & Martinoia, E. (2011). Plant ABC Transporters. The Arabidopsis Book / American Society of Plant Biologists, 9, e0153. doi: 10.1199/tab.0153
Kaur, H., Shannon, L. M., & Samac, D. A. (2024). A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics, 25(1), 1022. doi: 10.1186/s12864-024-10931-w
Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S., Childs, K. L., Davidson, R. M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S. S., Kim, J., Numa, H., … Matsumoto, T. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (New York, N.Y.), 6(1), 4. doi: 10.1186/1939-8433-6-4
Khan, J., Kokot, M., Deorowicz, S., & Patro, R. (2022). Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2. Genome Biology, 23(1), 190. doi: 10.1186/s13059-022-02743-6
Khan, M., Hussain, A., Yun, B.-W., & Mun, B.-G. (2024). Melatonin: The Multifaceted Molecule in Plant Growth and Defense. International Journal of Molecular Sciences, 25(12), 6799. doi: 10.3390/ijms25126799
Kierzkowski, D., Kmieciak, M., Piontek, P., Wojtaszek, P., Szweykowska-Kulinska, Z., & Jarmolowski, A. (2009). The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. The Plant Journal: For Cell and Molecular Biology, 59(5), 814–825. doi: 10.1111/j.1365-313X.2009.03915.x
Kirilenko, B. M., Munegowda, C., Osipova, E., Jebb, D., Sharma, V., Blumer, M., Morales, A. E., Ahmed, A.-W., Kontopoulos, D.-G., Hilgers, L., Lindblad-Toh, K., Karlsson, E. K., Zoonomia Consortium‡, & Hiller, M. (2023). Integrating gene annotation with orthology inference at scale. Science (New York, N.Y.), 380(6643), eabn3107. doi: 10.1126/science.abn3107
Kong, S.-G., Suetsugu, N., Kikuchi, S., Nakai, M., Nagatani, A., & Wada, M. (2013). Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant & Cell Physiology, 54(1), 80–92. doi: 10.1093/pcp/pcs151
Konieczna, W., Mierek-Adamska, A., Warchoł, M., Skrzypek, E., & Dąbrowska, G. B. (2023). The involvement of metallothioneins and stress markers in response to osmotic stress in Avena sativa L. Journal of Agronomy and Crop Science, 209(3), 371–389. doi: 10.1111/jac.12633
Konieczna, W., Warchoł, M., Mierek-Adamska, A., Skrzypek, E., Waligórski, P., Piernik, A., & Dąbrowska, G. B. (2023). Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Scientific Reports, 13, 2486. doi: 10.1038/s41598-023-29394-2
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(1), 59. doi: 10.1186/1471-2105-5-59
Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., & Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40(1), 37–44. doi: 10.1023/a:1026438615520
Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M., & Kamatani, Y. (2019). Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biology, 20(1), 117. doi: 10.1186/s13059-019-1720-5
Kronenberg, Z. N., Fiddes, I. T., Gordon, D., Murali, S., Cantsilieris, S., Meyerson, O. S., Underwood, J. G., Nelson, B. J., Chaisson, M. J. P., Dougherty, M. L., Munson, K. M., Hastie, A. R., Diekhans, M., Hormozdiari, F., Lorusso, N., Hoekzema, K., Qiu, R., Clark, K., Raja, A., … Eichler, E. E. (2018). High-resolution comparative analysis of great ape genomes. Science, 360(6393), eaar6343. doi: 10.1126/science.aar6343
Kumar, S., Zavaliev, R., Wu, Q., Zhou, Y., Cheng, J., Dillard, L., Powers, J., Withers, J., Zhao, J., Guan, Z., Borgnia, M. J., Bartesaghi, A., Dong, X., & Zhou, P. (2022). Structural basis of NPR1 in activating plant immunity. Nature, 605(7910), 561–566. doi: 10.1038/s41586-022-04699-w
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5(2), R12. doi: 10.1186/gb-2004-5-2-r12
Laine, V. N., Gossmann, T. I., van Oers, K., Visser, M. E., & Groenen, M. A. M. (2019). Exploring the unmapped DNA and RNA reads in a songbird genome. BMC Genomics, 20(1), 19. doi: 10.1186/s12864-018-5378-2
Lan, D., Fu, W., Ji, W., Mipam, T.-D., Xiong, X., Ying, S., Xiong, Y., Sheng, P., Ni, J., Bai, L., Shan, T., Kong, X., & Li, J. (2024). Pangenome and multi-tissue gene atlas provide new insights into the domestication and highland adaptation of yaks. Journal of Animal Science and Biotechnology, 15(1), 64. doi: 10.1186/s40104-024-01027-2
Lanctot, A., & Nemhauser, J. (2020). It’s Morphin’ Time: How multiple signals converge on ARF transcription factors to direct development. Current Opinion in Plant Biology, 57, 1–7. doi: 10.1016/j.pbi.2020.04.008
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923
Lee, D. J., Park, J. W., Lee, H. W., & Kim, J. (2009). Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. Journal of Experimental Botany, 60(13), 3935–3957. doi: 10.1093/jxb/erp230
Lee, J.-H., Venkatesh, J., Jo, J., Jang, S., Kim, G. W., Kim, J.-M., Han, K., Ro, N., Lee, H.-Y., Kwon, J.-K., Kim, Y.-M., Lee, T.-H., Choi, D., Van Deynze, A., Hill, T., Kfir, N., Freiman, A., Davila Olivas, N. H., Elkind, Y., … Kang, B.-C. (2022). High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. Horticulture Research, 9, uhac210. doi: 10.1093/hr/uhac210
Lee, Y.-R. J., Qiu, W., & Liu, B. (2015). Kinesin motors in plants: from subcellular dynamics to motility regulation. Current Opinion in Plant Biology, 28, 120–126. doi: 10.1016/j.pbi.2015.10.003
Li, C.-H., Wang, G., Zhao, J.-L., Zhang, L.-Q., Ai, L.-F., Han, Y.-F., Sun, D.-Y., Zhang, S.-W., & Sun, Y. (2014). The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice[C][W]. The Plant Cell, 26(6), 2538–2553. doi: 10.1105/tpc.114.125187
Li, Changbao, Zhou, A., & Sang, T. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936–1939. doi: 10.1126/science.1123604
Li, Changsheng, Xiang, X., Huang, Y., Zhou, Y., An, D., Dong, J., Zhao, C., Liu, H., Li, Y., Wang, Q., Du, C., Messing, J., Larkins, B. A., Wu, Y., & Wang, W. (2020). Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications, 11(1), 17. doi: 10.1038/s41467-019-14023-2
Li, Heng. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (arXiv:1303.3997). arXiv. doi: 10.48550/arXiv.1303.3997
Li, Heng. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. doi: 10.1093/bioinformatics/bty191
Li, Heng, & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. doi: 10.1093/bioinformatics/btp324
Li, Heng, Feng, X., & Chu, C. (2020). The design and construction of reference pangenome graphs with minigraph. Genome Biology, 21(1), 265. doi: 10.1186/s13059-020-02168-z
Li, Heng, Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England), 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352
Li, Hongbo, Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., Yang, Q., Fei, Z., Huang, S., & Zhang, Z. (2022). Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 13(1), 682. doi: 10.1038/s41467-022-28362-0
Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., Pei, L., Tu, L., Zhu, L., Chen, L.-L., Lindsey, K., Zhang, X., Jin, S., & Wang, M. (2021). Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biology, 22(1), 119. doi: 10.1186/s13059-021-02351-w
Li, Lei, Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., & Yin, Y. (2009). Arabidopsis MYB30 is a Direct Target of BES1 and Cooperates with BES1 to Regulate Brassinosteroid-Induced Gene Expression. The Plant Journal : For Cell and Molecular Biology, 58(2), 275–286. doi: 10.1111/j.1365-313X.2008.03778.x
Li, Li, Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13(9), 2178–2189. doi: 10.1101/gr.1224503
Li, R., Wu, M.-W., Liu, J., Xu, X., Bao, Y., & Liu, C.-M. (2025). NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. Frontiers in Plant Science, 16. doi: 10.3389/fpls.2025.1563065
Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., Wang, L., Wang, Y., Persson, S., & Peng, L. (2017). Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics, 18(1), 55. doi: 10.1186/s12864-016-3454-z
Li, Yang, Liu, Y., Xie, Y., Wang, Y., Wang, J., Wang, H., Xia, L., & Xie, D. (2025). Long-read RNA sequencing enables full-length chimeric transcript annotation of transposable elements in lung adenocarcinoma. BMC Cancer, 25(1), 482. doi: 10.1186/s12885-025-13888-5
Li, Ying-hui, Zhou, G., Ma, J., Jiang, W., Jin, L., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S., Zuo, Q., Shi, X., Li, Y., Zhang, W., Hu, Y., Kong, G., Hong, H., Tan, B., … Qiu, L. (2014a). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10), 1045–1052. doi: 10.1038/nbt.2979
Li, Ying-hui, Zhou, G., Ma, J., Jiang, W., Jin, L., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S., Zuo, Q., Shi, X., Li, Y., Zhang, W., Hu, Y., Kong, G., Hong, H., Tan, B., … Qiu, L. (2014b). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10), 1045–1052. doi: 10.1038/nbt.2979
Liao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J. K., Monlong, J., Abel, H. J., Buonaiuto, S., Chang, X. H., Cheng, H., Chu, J., Colonna, V., Eizenga, J. M., Feng, X., Fischer, C., Fulton, R. S., … Paten, B. (2023). A draft human pangenome reference. Nature, 617(7960), 312–324. doi: 10.1038/s41586-023-05896-x
Lin, K., Zhang, N., Severing, E. I., Nijveen, H., Cheng, F., Visser, R. G., Wang, X., de Ridder, D., & Bonnema, G. (2014a). Beyond genomic variation - comparison and functional annotation of three Brassica rapagenomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics, 15(1), 250. doi: 10.1186/1471-2164-15-250
Lin, K., Zhang, N., Severing, E. I., Nijveen, H., Cheng, F., Visser, R. G., Wang, X., de Ridder, D., & Bonnema, G. (2014b). Beyond genomic variation - comparison and functional annotation of three Brassica rapagenomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics, 15(1), 250. doi: 10.1186/1471-2164-15-250
Liu, Changyou, Wang, Y., Peng, J., Fan, B., Xu, D., Wu, J., Cao, Z., Gao, Y., Wang, X., Li, S., Su, Q., Zhang, Z., Wang, S., Wu, X., Shang, Q., Shi, H., Shen, Y., Wang, B., & Tian, J. (2022). High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Communications, 3(6), 100352. doi: 10.1016/j.xplc.2022.100352
Liu, Chenggang, Axtell, M. J., & Fedoroff, N. V. (2012). The Helicase and RNaseIIIa Domains of Arabidopsis Dicer-Like1 Modulate Catalytic Parameters during MicroRNA Biogenesis1[C][W][OA]. Plant Physiology, 159(2), 748–758. doi: 10.1104/pp.112.193508
Liu, Chuanxue, Peng, P., Li, W., Ye, C., Zhang, S., Wang, R., Li, D., Guan, S., Zhang, L., Huang, X., Guo, Z., Guo, J., Long, Y., Li, L., Pan, G., Tian, B., & Xiao, J. (2021). Deciphering variation of 239 elite japonica rice genomes for whole genome sequences-enabled breeding. Genomics, 113(5), 3083–3091. doi: 10.1016/j.ygeno.2021.07.002
Liu, J., Mo, D., Luo, L., Shi, Y., & Xu, S. (2025). Sheep pan-genome retrieves the lost sequences and genes during domestication and selection. Genomics, 117(3), 111047. doi: 10.1016/j.ygeno.2025.111047
Liu, J., Shi, Y., Mo, D., Luo, L., Xu, S., & Lv, F. (2024). The goat pan-genome reveals patterns of gene loss during domestication. Journal of Animal Science and Biotechnology, 15(1), 132. doi: 10.1186/s40104-024-01092-7
Liu, L., Zhou, Y., Szczerba, M. W., Li, X., & Lin, Y. (2010). Identification and application of a rice senescence-associated promoter. Plant Physiology, 153(3), 1239–1249. doi: 10.1104/pp.110.157123
Liu, M., Zhang, F., Lu, H., Xue, H., Dong, X., Li, Z., Xu, J., Wang, W., & Wei, C. (2024). PPanG: a precision pangenome browser enabling nucleotide-level analysis of genomic variations in individual genomes and their graph-based pangenome. BMC Genomics, 25(1), 405. doi: 10.1186/s12864-024-10302-5
Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A. P., Zhao, M., Ma, J., Yu, J., Huang, S., Wang, X., Wang, J., Lu, K., Fang, Z., Bancroft, I., Yang, T.-J., Hu, Q., Wang, X., Yue, Z., … Paterson, A. H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5(1), 3930. doi: 10.1038/ncomms4930
Liu, Xiaohui, Lu, T., Yu, S., Li, Y., Huang, Y., Huang, T., Zhang, L., Zhu, J., Zhao, Q., Fan, D., Mu, J., Shangguan, Y., Feng, Q., Guan, J., Ying, K., Zhang, Y., Lin, Z., Sun, Z., Qian, Q., … Han, B. (2007). A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Molecular Biology, 65(4), 403–415. doi: 10.1007/s11103-007-9174-7
Liu, Xuejiao, Yu, F., Yang, G., Liu, X., & Peng, S. (2022). Identification of TIFY gene family in walnut and analysis of its expression under abiotic stresses. BMC Genomics, 23, 190. doi: 10.1186/s12864-022-08416-9
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C., & Tian, Z. (2020). Pan-Genome of Wild and Cultivated Soybeans. Cell, 182(1), 162-176.e13. doi: 10.1016/j.cell.2020.05.023
Lopus, M. (2020). Characterization of Drought Responsive Genes of CIPK Families in Rice, Maize and Sorghum. Journal of Rice Research and Developments, 3(1), Article 1. Retrieved from https://scholars.direct/Articles/rice-research/jrrd-3-012.php?jid=rice-research
Lu, T., Yu, S., Fan, D., Mu, J., Shangguan, Y., Wang, Z., Minobe, Y., Lin, Z., & Han, B. (2008). Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 15(5), 285–295. doi: 10.1093/dnares/dsn018
Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., … Wang, J. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1(1), 18. doi: 10.1186/2047-217X-1-18
Ma, J., & Bennetzen, J. L. (2004). Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences, 101(34), 12404–12410. doi: 10.1073/pnas.0403715101
Ma, Q., Liu, S., Raggi, S., Doyle, S., Parizkova, B., Barange, D., Wilkinson, E., Crespo, I., Bygdell, J., Wingsle, G., Boer, R., Strader, L., Almqvist, F., Novak, O., & Robert, S. (2024). Identification of RACK1A as a component of the auxin-ethylene crosstalk regulating apical hook development in Arabidopsis thaliana. doi: 10.1101/2024.03.04.582885
Ma, X., Li, C., Huang, R., Zhang, K., Wang, Q., Fu, C., Liu, W., Sun, C., Wang, P., Wang, F., & Deng, X. (2021). Rice Brittle Culm19 Encoding Cellulose Synthase Subunit CESA4 Causes Dominant Brittle Phenotype But has No Distinct Influence on Growth and Grain Yield. Rice, 14(1), 95. doi: 10.1186/s12284-021-00536-2
Magoc, T., Pabinger, S., Canzar, S., Liu, X., Su, Q., Puiu, D., Tallon, L. J., & Salzberg, S. L. (2013). GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics, 29(14), 1718–1725. doi: 10.1093/bioinformatics/btt273
Majernik, S. N., Beaver, L., & Bradley, P. H. (2025). Small amounts of misassembly can have disproportionate effects on pangenome-based metagenomic analyses. mSphere, 0(0), e00857-24. doi: 10.1128/msphere.00857-24
Marcus, S., Lee, H., & Schatz, M. C. (2014). SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips. Bioinformatics, 30(24), 3476–3483. doi: 10.1093/bioinformatics/btu756
Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2010). Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 283(2), 185–196. doi: 10.1007/s00438-009-0506-y
Matthews, C. A., Watson-Haigh, N. S., Burton, R. A., & Sheppard, A. E. (2024). A gentle introduction to pangenomics. Briefings in Bioinformatics, 25(6), bbae588. doi: 10.1093/bib/bbae588
Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics & Development, 15(6), 589–594. doi: 10.1016/j.gde.2005.09.006
Mehrotra, S., & Goyal, V. (2014). Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics, 12(4), 164–171. doi: 10.1016/j.gpb.2014.07.003
Mészáros, T., Helfer, A., Hatzimasoura, E., Magyar, Z., Serazetdinova, L., Rios, G., Bardóczy, V., Teige, M., Koncz, C., Peck, S., & Bögre, L. (2006). The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. The Plant Journal: For Cell and Molecular Biology, 48(4), 485–498. doi: 10.1111/j.1365-313X.2006.02888.x
Mizuno, H., Katagiri, S., Kanamori, H., Mukai, Y., Sasaki, T., Matsumoto, T., & Wu, J. (2020). Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Scientific Reports, 10(1), 872. doi: 10.1038/s41598-020-57729-w
Mohorović, P., Geldhof, B., Holsteens, K., Rinia, M., Daems, S., Reijnders, T., Ceusters, J., Van den Ende, W., & Van de Poel, B. (2024). Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. Plant Physiology, 195(1), 762–784. doi: 10.1093/plphys/kiad685
Molina, J., Sikora, M., Garud, N., Flowers, J. M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B. A., Bustamante, C. D., Boyko, A. R., & Purugganan, M. D. (2011). Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8351–8356. doi: 10.1073/pnas.1104686108
Molitor, C., Kurowski, T. J., Fidalgo de Almeida, P. M., Kevei, Z., Spindlow, D. J., Chacko Kaitholil, S. R., Iheanyichi, J. U., Prasanna, H. C., Thompson, A. J., & Mohareb, F. R. (2024). A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. Frontiers in Plant Science, 15. doi: 10.3389/fpls.2024.1342739
Moner, A. M., Furtado, A., & Henry, R. J. (2018). Chloroplast phylogeography of AA genome rice species. Molecular Phylogenetics and Evolution, 127, 475–487. doi: 10.1016/j.ympev.2018.05.002
Montenegro, J. D., Golicz, A. A., Bayer, P. E., Hurgobin, B., Lee, H., Chan, C.-K. K., Visendi, P., Lai, K., Doležel, J., Batley, J., & Edwards, D. (2017). The pangenome of hexaploid bread wheat. The Plant Journal, 90(5), 1007–1013. doi: 10.1111/tpj.13515
Müller, S., & Livanos, P. (2019). Plant Kinesin-12: Localization Heterogeneity and Functional Implications. International Journal of Molecular Sciences, 20(17), 4213. doi: 10.3390/ijms20174213
Mwesigwa, S., Williams, L., Retshabile, G., Katagirya, E., Mboowa, G., Mlotshwa, B., Kyobe, S., Kateete, D. P., Wampande, E. M., Wayengera, M., Mpoloka, S. W., Mirembe, A. N., Kasvosve, I., Morapedi, K., Kisitu, G. P., Kekitiinwa, A. R., Anabwani, G., Joloba, M. L., Matovu, E., … Hanchard, N. A. (2021). Unmapped exome reads implicate a role for Anelloviridae in childhood HIV-1 long-term non-progression. NPJ Genomic Medicine, 6, 24. doi: 10.1038/s41525-021-00185-w
Nachtweide, S., & Stanke, M. (2019). Multi-Genome Annotation with AUGUSTUS. In M. Kollmar (Ed.), Gene Prediction: Methods and Protocols (pp. 139–160). New York, NY: Springer. doi: 10.1007/978-1-4939-9173-0_8
Nahar, S., Kalita, J., Sahoo, L., & Tanti*, B. (2016). Morphophysiological and molecular effects of drought stress in rice. Annals of Plant Sciences, 5(09), 1409–1416. doi: 10.21746/aps.2016.09.001
Naranjo-Arcos, M., Srivastava, M., Deligne, F., Bhagat, P. K., Mansi, M., Sadanandom, A., & Vert, G. (2023). SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2217255120. doi: 10.1073/pnas.2217255120
Nattestad, M., & Schatz, M. (2016). Assemblytics: A web analytics tool for the detection of variants from an assembly. Bioinformatics, 32, btw369. doi: 10.1093/bioinformatics/btw369
Negi, P., Rai, A. N., & Suprasanna, P. (2016). Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.01448
Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson, A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., Sandstrom, R., Humbert, R., & Stamatoyannopoulos, J. A. (2012). BEDOPS: high-performance genomic feature operations. Bioinformatics, 28(14), 1919–1920. doi: 10.1093/bioinformatics/bts277
Neumann, G. B., Korkuć, P., Arends, D., Wolf, M. J., May, K., Reißmann, M., Elzaki, S., König, S., & Brockmann, G. A. (2021). Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics, 22, 905. doi: 10.1186/s12864-021-08237-2
Neumann, G. B., Korkuć, P., Reißmann, M., Wolf, M. J., May, K., König, S., & Brockmann, G. A. (2023). Unmapped short reads from whole-genome sequencing indicate potential infectious pathogens in German Black Pied cattle. Veterinary Research, 54(1), 95. doi: 10.1186/s13567-023-01227-0
Nguyen Duc, K., Ancev, T., & Randall, A. (2019). Evidence of climatic change in Vietnam: Some implications for agricultural production. Journal of Environmental Management, 231, 524–545. doi: 10.1016/j.jenvman.2018.10.011
Okuyama, Y., Kanzaki, H., Abe, A., Yoshida, K., Tamiru, M., Saitoh, H., Fujibe, T., Matsumura, H., Shenton, M., Galam, D. C., Undan, J., Ito, A., Sone, T., & Terauchi, R. (2011). A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. The Plant Journal, 66(3), 467–479. doi: 10.1111/j.1365-313X.2011.04502.x
Olas, J. J., Apelt, F., Annunziata, M. G., John, S., Richard, S. I., Gupta, S., Kragler, F., Balazadeh, S., & Mueller-Roeber, B. (2021). Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Molecular Plant, 14(9), 1508–1524. doi: 10.1016/j.molp.2021.05.024
O’Neil, S. T., Dzurisin, J. D., Carmichael, R. D., Lobo, N. F., Emrich, S. J., & Hellmann, J. J. (2010). Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics, 11(1), 310. doi: 10.1186/1471-2164-11-310
Oren, E., Dafna, A., Tzuri, G., Halperin, I., Isaacson, T., Elkabetz, M., Meir, A., Saar, U., Ohali, S., La, T., Romay, C., Tadmor, Y., Schaffer, A. A., Buckler, E. S., Cohen, R., Burger, J., & Gur, A. (2022). Pan-genome and multi-parental framework for high-resolution trait dissection in melon (Cucumis melo). The Plant Journal, 112(6), 1525–1542. doi: 10.1111/tpj.16021
Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J. R. A., Hellinga, A. J., Lugo, C. S. B., Elliott, T. A., Ware, D., Peterson, T., Jiang, N., Hirsch, C. N., & Hufford, M. B. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 20(1), 275. doi: 10.1186/s13059-019-1905-y
Pacleb, M., Jeong, O.-Y., Lee, J.-S., Padolina, T., Braceros, R., Pautin, L., Torollo, G., Sana, E. E., Del-Amen, J. Y., Baek, M.-K., Jo, S., Hyun, W.-J., Park, H.-S., Jeong, J.-M., Lee, J.-Y., Cho, J.-H., Lee, J.-H., Lee, S.-B., Choi, I.-R., … Park, D.-S. (2021). Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 11(11), 2253. doi: 10.3390/agronomy11112253
Paila, Y. D., Richardson, L. G., Inoue, H., Parks, E. S., McMahon, J., Inoue, K., & Schnell, D. J. (2016). Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife, 5, e12631. doi: 10.7554/eLife.12631
Paniagua, A., Agustín-García, C., Pardo-Palacios, F. J., Brown, T., De Maria, M., Denslow, N. D., Mazzoni, C. J., & Conesa, A. (2025a). Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq. Genome Research, 35(4), 1053–1064. doi: 10.1101/gr.279864.124
Paniagua, A., Agustín-García, C., Pardo-Palacios, F. J., Brown, T., De Maria, M., Denslow, N. D., Mazzoni, C. J., & Conesa, A. (2025b). Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq. Genome Research, 35(4), 1053–1064. doi: 10.1101/gr.279864.124
Park, S., Byeon, Y., & Back, K. (2013). Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research, 55(4), 409–415. doi: 10.1111/jpi.12088
Park, S.-J., Onizuka, S., Seki, M., Suzuki, Y., Iwata, T., & Nakai, K. (2019). A systematic sequencing-based approach for microbial contaminant detection and functional inference. BMC Biology, 17, 72. doi: 10.1186/s12915-019-0690-0
Parkin, I. A., Koh, C., Tang, H., Robinson, S. J., Kagale, S., Clarke, W. E., Town, C. D., Nixon, J., Krishnakumar, V., Bidwell, S. L., Denoeud, F., Belcram, H., Links, M. G., Just, J., Clarke, C., Bender, T., Huebert, T., Mason, A. S., Pires, J. C., … Sharpe, A. G. (2014). Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 15(6), R77. doi: 10.1186/gb-2014-15-6-r77
Pedersen, B., & Quinlan, A. (2017). Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics (Oxford, England), 34. doi: 10.1093/bioinformatics/btx699
Pellicer, J., Hidalgo, O., Dodsworth, S., & Leitch, I. J. (2018). Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 9(2), 88. doi: 10.3390/genes9020088
Peng, H., Chen, Z., Fang, Z., Zhou, J., Xia, Z., Gao, L., Chen, L., Li, L., Li, T., Zhai, W., & Zhang, W. (2015). Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Scientific Reports, 5, 12165. doi: 10.1038/srep12165
Peng, R., Xu, Y., Tian, S., Unver, T., Liu, Z., Zhou, Z., Cai, X., Wang, K., Wei, Y., Liu, Y., Wang, H., Hu, G., Zhang, Z., Grover, C. E., Hou, Y., Wang, Y., Li, P., Wang, T., Lu, Q., … Liu, F. (2022). Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons. Proceedings of the National Academy of Sciences, 119(39), e2208496119. doi: 10.1073/pnas.2208496119
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420–1428. doi: 10.1093/bioinformatics/bts174
Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.00760
Phung, N. T. P., Mai, C. D., Hoang, G. T., Truong, H. T. M., Lavarenne, J., Gonin, M., Nguyen, K. L., Ha, T. T., Do, V. N., Gantet, P., & Courtois, B. (2016). Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biology, 16(1), 64. doi: 10.1186/s12870-016-0747-y
Pignatelli, M., & Moya, A. (2011). Evaluating the fidelity of de novo short read metagenomic assembly using simulated data. PloS One, 6(5), e19984. doi: 10.1371/journal.pone.0019984
Piovesana, M., Wood, A. K. M., Smith, D. P., Deery, M. J., Bayliss, R., Carrera, E., Wellner, N., Kosik, O., Napier, J. A., Kurup, S., & Matthes, M. C. (2023). A point mutation in the kinase domain of CRK10 leads to xylem vessel collapse and activation of defence responses in Arabidopsis. Journal of Experimental Botany, 74(10), 3104–3121. doi: 10.1093/jxb/erad080
Platt, R. N., Blanco-Berdugo, L., & Ray, D. A. (2016). Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies. Genome Biology and Evolution, 8(2), 403–410. doi: 10.1093/gbe/evw009
Platten, J. D., Henry, A., Chebotarov, D., Schepler-Luu, V., & Cobb, J. N. (2025). The rice Trait Development Pipeline: a systematic framework guiding upstream research for impact in breeding, with examples from root biology. Plant and Soil. doi: 10.1007/s11104-025-07399-2
Podder, A., Ahmed, F. F., Suman, M. Z. H., Mim, A. Y., & Hasan, K. (2023). Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PloS One, 18(6), e0286994. doi: 10.1371/journal.pone.0286994
Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., Li, X., Li, Y., Liao, Y., Gao, Q., Tu, B., Yuan, H., Ma, B., Wang, Y., Qian, Y., … Li, S. (2021). Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 184(13), 3542-3558.e16. doi: 10.1016/j.cell.2021.04.046
Qin, X., Liu, J. H., Zhao, W. S., Chen, X. J., Guo, Z. J., & Peng, Y. L. (2013). Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant-Microbe Interactions: MPMI, 26(2), 227–239. doi: 10.1094/MPMI-05-12-0138-R
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841–842. doi: 10.1093/bioinformatics/btq033
Rebollo, I., Tolhurst, D., Obšteter, J., Rosas, J., & Gorjanc, G. (2025). Leveraging ancestral recombination graphs for quantitative genetic analysis of rice yield in indica and japonica subspecies (p. 2025.01.14.633033). bioRxiv. doi: 10.1101/2025.01.14.633033
Reddy Lachagari, V. B., Bodanapu, R., Chakravartty, N., Lekkala, S. P., Lalam, K., Kuriakose, B., Vemireddy, L. R., Velayutham, D., Thomas, G., Gupta, S., & Reddy, A. R. (2019). Uncovering genome wide novel allelic variants for eating and cooking quality in a popular Indian rice cultivar, Samba Mahsuri. Current Plant Biology, 18, 100111. doi: 10.1016/j.cpb.2019.100111
Ren, L., Tang, D., Zhao, T., Zhang, F., Liu, C., Xue, Z., Shi, W., Du, G., Shen, Y., Li, Y., & Cheng, Z. (2018). OsSPL regulates meiotic fate acquisition in rice. The New Phytologist, 218(2), 789–803. doi: 10.1111/nph.15017
Rice Annotation Project, Tanaka, T., Antonio, B. A., Kikuchi, S., Matsumoto, T., Nagamura, Y., Numa, H., Sakai, H., Wu, J., Itoh, T., Sasaki, T., Aono, R., Fujii, Y., Habara, T., Harada, E., Kanno, M., Kawahara, Y., Kawashima, H., Kubooka, H., … Echeverria, M. (2008). The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 36(Database issue), D1028-1033. doi: 10.1093/nar/gkm978
Rice Full-Length cDNA Consortium, National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team, Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C. J., … Yasunishi, A. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science (New York, N.Y.), 301(5631), 376–379. doi: 10.1126/science.1081288
Rijzaani, H., Bayer, P. E., Rouard, M., Doležel, J., Batley, J., & Edwards, D. (2022). The pangenome of banana highlights differences between genera and genomes. The Plant Genome, 15(1), e20100. doi: 10.1002/tpg2.20100
Rosani, U., Sollitto, M., Fogal, N., & Salata, C. (2024). Comparative analysis of Presence-Absence gene Variations in five hard tick species: impact and functional considerations. International Journal for Parasitology, 54(3), 147–156. doi: 10.1016/j.ijpara.2023.08.004
Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., Rowan, T. N., Low, W. Y., Zimin, A., Couldrey, C., Hall, R., Li, W., Rhie, A., Ghurye, J., McKay, S. D., Thibaud-Nissen, F., Hoffman, J., Murdoch, B. M., Snelling, W. M., … Medrano, J. F. (2020). De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience, 9(3), giaa021. doi: 10.1093/gigascience/giaa021
Roy, C., Sahid, S., Debgupta, J., Roy, A., Shee, D., Datta, R., & Paul, S. (2025). Osr40g3 Imparts Salt Tolerance by Regulating GF14e-mediated Gibberellin Metabolism to Activate EG45 in Rice. Plant & Cell Physiology, pcaf023. doi: 10.1093/pcp/pcaf023
Ruili, L., Jiaoling, W., Lei, X., Meihao, S., Keke, Y., & Hongyu, Z. (2020). Functional Analysis of Phosphate Transporter OsPHT4 Family Members in Rice. Rice Science, 27(6), 493–503. doi: 10.1016/j.rsci.2020.09.006
Ruperao, P., Thirunavukkarasu, N., Gandham, P., Selvanayagam, S., Govindaraj, M., Nebie, B., Manyasa, E., Gupta, R., Das, R. R., Odeny, D. A., Gandhi, H., Edwards, D., Deshpande, S. P., & Rathore, A. (2021). Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. Frontiers in Plant Science, 12, 666342. doi: 10.3389/fpls.2021.666342
Sabot, F., & Schulman, A. H. (2006). Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity, 97(6), 381–388. doi: 10.1038/sj.hdy.6800903
Saddhe, A. A., Manuka, R., & Penna, S. (2021). Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiologia Plantarum, 171(4), 739–755. doi: 10.1111/ppl.13283
Sahid, S., Roy, C., Paul, S., & Datta, R. (2020a). Rice lectin protein Osr40c1 imparts drought tolerance by modulating OsSAM2, OsSAP8 and chromatin-associated proteins (p. 2020.04.19.049288). bioRxiv. doi: 10.1101/2020.04.19.049288
Sahid, S., Roy, C., Paul, S., & Datta, R. (2020b). Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22), 7331–7346. doi: 10.1093/jxb/eraa400
Sahid, S., Roy, C., Paul, S., & Datta, R. (2020c). Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22), 7331–7346. doi: 10.1093/jxb/eraa400
Sahid, S., Roy, C., shee, D., Shee, R., Datta, R., & Paul, S. (2023). ZFP37, C3H, NAC94, and bHLH148 transcription factors regulate cultivar-specific drought response by modulating r40C1 gene expression in rice. Environmental and Experimental Botany, 214, 105480. doi: 10.1016/j.envexpbot.2023.105480
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12(1), 87. doi: 10.1186/s12915-014-0087-z
Sangiovanni, M., Granata, I., Thind, A. S., & Guarracino, M. R. (2019). From trash to treasure: detecting unexpected contamination in unmapped NGS data. BMC Bioinformatics, 20(Suppl 4), 168. doi: 10.1186/s12859-019-2684-x
Santos, A. P., Serra, T., Figueiredo, D. D., Barros, P., Lourenço, T., Chander, S., Oliveira, M. M., & Saibo, N. J. M. (2011). Transcription Regulation of Abiotic Stress Responses in Rice: A Combined Action of Transcription Factors and Epigenetic Mechanisms. OMICS: A Journal of Integrative Biology, 15(12), 839–857. doi: 10.1089/omi.2011.0095
Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variations in plant genomes. Briefings in Functional Genomics, 13(4), 296–307. doi: 10.1093/bfgp/elu016
Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. doi: 10.1093/nar/gkab1112
Schatz, M. C., Maron, L. G., Stein, J. C., Wences, A. H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., Wright, M. H., Chia, J., Ware, D., McCouch, S. R., & McCombie, W. R. (2014a). Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 15(11), 506. doi: 10.1186/s13059-014-0506-z
Schatz, M. C., Maron, L. G., Stein, J. C., Wences, A. H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., Wright, M. H., Chia, J., Ware, D., McCouch, S. R., & McCombie, W. R. (2014b). Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 15(11), 506. doi: 10.1186/s13059-014-0506-z
Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., … Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278), 178–183. doi: 10.1038/nature08670
Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson, D. H., & Weigel, D. (2011). Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences, 108(25), 10249–10254. doi: 10.1073/pnas.1107739108
Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A., & Schatz, M. C. (2018). Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 15(6), 461–468. doi: 10.1038/s41592-018-0001-7
Shang, L., Li, X., He, H., Yuan, Q., Song, Y., Wei, Z., Lin, H., Hu, M., Zhao, F., Zhang, C., Li, Y., Gao, H., Wang, T., Liu, X., Zhang, H., Zhang, Y., Cao, S., Yu, X., Zhang, B., … Qian, Q. (2022). A super pan-genomic landscape of rice. Cell Research, 32(10), 878–896. doi: 10.1038/s41422-022-00685-z
Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE, 11. doi: 10.1371/journal.pone.0163962
Sibbesen, J. A., Eizenga, J. M., Novak, A. M., Sirén, J., Chang, X., Garrison, E., & Paten, B. (2023). Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. Nature Methods, 20(2), 239–247. doi: 10.1038/s41592-022-01731-9
Singh, K., Sharma, D., Bhagat, P. K., Tayyeba, S., Noryang, S., & Sinha, A. K. (2024). Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. Plant Science: An International Journal of Experimental Plant Biology, 340, 111967. doi: 10.1016/j.plantsci.2023.111967
Slater, G. S. C., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6(1), 31. doi: 10.1186/1471-2105-6-31
Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39–50.
Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9043–9048. doi: 10.1073/pnas.132266399
Steinberg, G. (2007). Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. New Phytologist, 174(4), 721–733. doi: 10.1111/j.1469-8137.2007.02072.x
Steuernagel, B., Jupe, F., Witek, K., Jones, J. D. G., & Wulff, B. B. H. (2015). NLR-parser: rapid annotation of plant NLR complements. Bioinformatics, 31(10), 1665–1667. doi: 10.1093/bioinformatics/btv005
Stitzer, M. C., & Ross-Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395–408. doi: 10.1111/nph.15350
Strauß, T., Schattner, S., Hoth, S., & Walter, W. J. (2021). The Arabidopsis thaliana Kinesin-5 AtKRP125b Is a Processive, Microtubule-Sliding Motor Protein with Putative Plant-Specific Functions. International Journal of Molecular Sciences, 22(21), 11361. doi: 10.3390/ijms222111361
Sun, H., Jiao, W.-B., Krause, K., Campoy, J. A., Goel, M., Folz-Donahue, K., Kukat, C., Huettel, B., & Schneeberger, K. (2022). Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics, 54(3), 342–348. doi: 10.1038/s41588-022-01015-0
Sun, S., Zhou, Y., Chen, J., Shi, J., Zhao, H., Zhao, H., Song, W., Zhang, M., Cui, Y., Dong, X., Liu, H., Ma, X., Jiao, Y., Wang, B., Wei, X., Stein, J. C., Glaubitz, J. C., Lu, F., Yu, G., … Lai, J. (2018). Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nature Genetics, 50(9), 1289–1295. doi: 10.1038/s41588-018-0182-0
Swanson-Wagner, R. A., Eichten, S. R., Kumari, S., Tiffin, P., Stein, J. C., Ware, D., & Springer, N. M. (2010). Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Research, 20(12), 1689–1699. doi: 10.1101/gr.109165.110
Talenti, A., Powell, J., Hemmink, J. D., Cook, E. A. J., Wragg, D., Jayaraman, S., Paxton, E., Ezeasor, C., Obishakin, E. T., Agusi, E. R., Tijjani, A., Amanyire, W., Muhanguzi, D., Marshall, K., Fisch, A., Ferreira, B. R., Qasim, A., Chaudhry, U., Wiener, P., … Prendergast, J. G. D. (2022). A cattle graph genome incorporating global breed diversity. Nature Communications, 13, 910. doi: 10.1038/s41467-022-28605-0
Tang, T., Lu, J., Huang, J., He, J., McCouch, S. R., Shen, Y., Kai, Z., Purugganan, M. D., Shi, S., & Wu, C.-I. (2006). Genomic Variation in Rice: Genesis of Highly Polymorphic Linkage Blocks during Domestication. PLoS Genetics, 2(11), e199. doi: 10.1371/journal.pgen.0020199
Tao, Y., Luo, H., Xu, J., Cruickshank, A., Zhao, X., Teng, F., Hathorn, A., Wu, X., Liu, Y., Shatte, T., Jordan, D., Jing, H., & Mace, E. (2021). Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 7(6), 766–773. doi: 10.1038/s41477-021-00925-x
Tay Fernandez, C. G., Marsh, J. I., Nestor, B. J., Gill, M., Golicz, A. A., Bayer, P. E., & Edwards, D. (2022). An SGSGeneloss-Based Method for Constructing a Gene Presence-Absence Table Using Mosdepth. Methods in Molecular Biology (Clifton, N.J.), 2512, 73–80. doi: 10.1007/978-1-0716-2429-6_5
Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M., Margarit y Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., … Fraser, C. M. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.” Proceedings of the National Academy of Sciences, 102(39), 13950–13955. doi: 10.1073/pnas.0506758102
Tonkin-Hill, G., Corander, J., & Parkhill, J. (2023). Challenges in prokaryote pangenomics. Microbial Genomics, 9(5), mgen001021. doi: 10.1099/mgen.0.001021
Tonkin-Hill, G., MacAlasdair, N., Ruis, C., Weimann, A., Horesh, G., Lees, J. A., Gladstone, R. A., Lo, S., Beaudoin, C., Floto, R. A., Frost, S. D. W., Corander, J., Bentley, S. D., & Parkhill, J. (2020). Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biology, 21, 180. doi: 10.1186/s13059-020-02090-4
Toshio, S., Yoshihara, T., Handa, K., Sato, M., Nagata, T., & Hasezawa, S. (2012). Metal Ion Homeostasis Mediated by NRAMP Transporters in Plant Cells - Focused on Increased Resistance to Iron and Cadmium Ion. doi: 10.5772/30905
Valliyodan, B., Cannon, S. B., Bayer, P. E., Shu, S., Brown, A. V., Ren, L., Jenkins, J., Chung, C. Y.-L., Chan, T.-F., Daum, C. G., Plott, C., Hastie, A., Baruch, K., Barry, K. W., Huang, W., Patil, G., Varshney, R. K., Hu, H., Batley, J., … Nguyen, H. T. (2019). Construction and comparison of three reference-quality genome assemblies for soybean. The Plant Journal, 100(5), 1066–1082. doi: 10.1111/tpj.14500
Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18(7), 411–424. doi: 10.1038/nrg.2017.26
van Lieshout, N., van der Burgt, A., de Vries, M. E., Ter Maat, M., Eickholt, D., Esselink, D., van Kaauwen, M. P. W., Kodde, L. P., Visser, R. G. F., Lindhout, P., & Finkers, R. (2020). Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum). G3 (Bethesda, Md.), 10(10), 3489–3495. doi: 10.1534/g3.120.401550
van Workum, D.-J. M., Mehrem, S. L., Snoek, B. L., Alderkamp, M. C., Lapin, D., Mulder, F. F. M., Van den Ackerveken, G., de Ridder, D., Schranz, M. E., & Smit, S. (2024). Lactuca super-pangenome reduces bias towards reference genes in lettuce research. BMC Plant Biology, 24(1), 1019. doi: 10.1186/s12870-024-05712-2
Vandepoele, K., Raes, J., De Veylder, L., Rouzé, P., Rombauts, S., & Inzé, D. (2002). Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. The Plant Cell, 14(4), 903–916. doi: 10.1105/tpc.010445
Varshney, R. K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M., Singh, N. P., Du, X., Upadhyaya, H. D., Khan, A. W., Wang, Y., Garg, V., Fan, G., Cowling, W. A., Crossa, J., Gentzbittel, L., Voss-Fels, K. P., Valluri, V. K., Sinha, P., … Liu, X. (2021). A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 599(7886), 622–627. doi: 10.1038/s41586-021-04066-1
Vassilevskaia, T. D., Bekman, E., Jackson, P., Pinto Ricardo, C., & Rodrigues-Pousada, C. (1996). Developmental expression and regulation by light of two closely related beta-tubulin genes in Lupinus albus. Plant Molecular Biology, 32(6), 1185–1189. doi: 10.1007/BF00041404
Vázquez-Castellanos, J. F., García-López, R., Pérez-Brocal, V., Pignatelli, M., & Moya, A. (2014). Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genomics, 15(1), 37. doi: 10.1186/1471-2164-15-37
Vitte, C., Ishii, T., Lamy, F., Brar, D., & Panaud, O. (2004). Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Molecular Genetics and Genomics, 272(5), 504–511. doi: 10.1007/s00438-004-1069-6
Vu, H. T. T., Nguyen ,Hoa Thi Thanh, Tran ,Khanh Dang, Khuat ,Trung Huu, & and Nakamura, C. (2016). Genetic diversity of Vietnamese lowland rice germplasms as revealed by SSR markers in relation to seedling vigour under submergence. Biotechnology & Biotechnological Equipment, 30(1), 17–25. doi: 10.1080/13102818.2015.1085330
Walton, J. D. (2001). Secondary Metabolites: Killing Pathogens. In eLS. John Wiley & Sons, Ltd. doi: 10.1038/npg.els.0000917
Wang, B., Hou, M., Shi, J., Ku, L., Song, W., Li, C., Ning, Q., Li, X., Li, C., Zhao, B., Zhang, R., Xu, H., Bai, Z., Xia, Z., Wang, H., Kong, D., Wei, H., Jing, Y., Dai, Z., … Wang, H. (2023). De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 55(2), 312–323. doi: 10.1038/s41588-022-01283-w
Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B., & Tao, Y. (2007). Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394(1–2), 13–24. doi: 10.1016/j.gene.2007.01.006
Wang, F., Niu, H., Xin, D., Long, Y., Wang, G., Liu, Z., Li, G., Zhang, F., Qi, M., Ye, Y., Wang, Z., Pei, B., Hu, L., Yuan, C., & Chen, X. (2021). OsIAA18, an Aux/IAA Transcription Factor Gene, Is Involved in Salt and Drought Tolerance in Rice. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.738660
Wang, G., Li, X., Ye, N., Huang, M., Feng, L., Li, H., & Zhang, J. (2021). OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist, 230(5), 1925–1939. doi: 10.1111/nph.17300
Wang, He, Wang, Z.-X., Tian, H.-Y., Zeng, Y.-L., Xue, H., Mao, W.-T., Zhang, L.-Y., Chen, J.-N., Lu, X., Zhu, Y., Li, G.-B., Zhao, Z.-X., Zhang, J.-W., Huang, Y.-Y., Fan, J., Xu, P.-Z., Chen, X.-Q., Li, W.-T., Wu, X.-J., … Li, Y. (2025). The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. Molecular Plant, 18(1), 59–75. doi: 10.1016/j.molp.2024.11.015
Wang, Huan, Chen, D., Li, C., Tian, N., Zhang, J., Xu, J.-R., & Wang, C. (2019). Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genetics and Biology, 132, 103251. doi: 10.1016/j.fgb.2019.103251
Wang, J., Yang, W., Zhang, S., Hu, H., Yuan, Y., Dong, J., Chen, L., Ma, Y., Yang, T., Zhou, L., Chen, J., Liu, B., Li, C., Edwards, D., & Zhao, J. (2023). A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biology, 24(1), 19. doi: 10.1186/s13059-023-02861-9
Wang, M., Wang, G., Ji, J., & Wang, J. (2009). The effect of pds gene silencing on chloroplast pigment composition, thylakoid membrane structure and photosynthesis efficiency in tobacco plants. Plant Science, 177(3), 222–226. doi: 10.1016/j.plantsci.2009.04.006
Wang, Q., Hillwig, M. L., Okada, K., Yamazaki, K., Wu, Y., Swaminathan, S., Yamane, H., & Peters, R. J. (2012). Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster. The Journal of Biological Chemistry, 287(9), 6159–6168. doi: 10.1074/jbc.M111.305599
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R. R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K. C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., … Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703), 43–49. doi: 10.1038/s41586-018-0063-9
Wang, Y., Liu, K., Liao, H., Zhuang, C., Ma, H., & Yan, X. (2008). The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biology (Stuttgart, Germany), 10(5), 548–562. doi: 10.1111/j.1438-8677.2008.00072.x
Wang, Yifeng, Hou, Y., Qiu, J., Wang, H., Wang, S., Tang, L., Tong, X., & Zhang, J. (2020). Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytologist, 228(4), 1336–1353. doi: 10.1111/nph.16774
Wang, Z., & Dane, F. (2013). NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiologiae Plantarum, 35(5), 1397–1408. doi: 10.1007/s11738-012-1195-4
Wick, R. R., Schultz, M. B., Zobel, J., & Holt, K. E. (2015). Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 31(20), 3350–3352. doi: 10.1093/bioinformatics/btv383
Wittinghofer, A. (2016). GTP and ATP hydrolysis in biology. Biopolymers, 105(8), 419–421. doi: 10.1002/bip.22867
Woldegiorgis, S. T., Wu, T., Gao, L., Huang, Y., Zheng, Y., Qiu, F., Xu, S., Tao, H., Harrison, A., Liu, W., & He, H. (2022). Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs. Genes, 13(8), 1353. doi: 10.3390/genes13081353
Woo, J., MacPherson, C. R., Liu, J., Wang, H., Kiba, T., Hannah, M. A., Wang, X.-J., Bajic, V. B., & Chua, N.-H. (2012). The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biology, 12, 62. doi: 10.1186/1471-2229-12-62
Wu, J., Zhu, C., Pang, J., Zhang, X., Yang, C., Xia, G., Tian, Y., & He, C. (2014). OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. The Plant Journal, 80(6), 1118–1130. doi: 10.1111/tpj.12714
Xie, K., Chen, J., Wang, Q., & Yang, Y. (2014). Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. The Plant Cell, 26(7), 3077–3089. doi: 10.1105/tpc.114.126441
Xu, G., Zhang, X., Chen, W., Zhang, R., Li, Z., Wen, W., Warburton, M. L., Li, J., Li, H., & Yang, X. (2022). Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 22(1), 72. doi: 10.1186/s12870-022-03427-w
Xu, N., Yu, Z., Wang, X., Lu, J., Chen, H., Sun, Q., Fei, C., Cui, X., Xu, Z., & Xu, Q. (2024). Influence of natural and artificial selection on the yield differences among progeny derived from crossing between subspecies in cultivated rice. New Crops, 1, 100020. doi: 10.1016/j.ncrops.2024.100020
Yan, H., Sun, M., Zhang, Z., Jin, Y., Zhang, A., Lin, C., Wu, B., He, M., Xu, B., Wang, J., Qin, P., Mendieta, J. P., Nie, G., Wang, J., Jones, C. S., Feng, G., Srivastava, R. K., Zhang, X., Bombarely, A., … Huang, L. (2023). Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 55(3), 507–518. doi: 10.1038/s41588-023-01302-4
Yang, C., Halitschke, R., & O’Connor, S. E. (2023). OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata. Plant Physiology, 194(4), 2580–2599. doi: 10.1093/plphys/kiad643
Yang, M., Kong, X., Zhou, C., Kuang, R., Wu, X., Liu, C., He, H., Xu, Z., & Wei, Y. (2025). Genomic insights into the domestication and genetic basis of yield in papaya. Horticulture Research, 12(5), uhaf045. doi: 10.1093/hr/uhaf045
Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., Wang, Y., Xu, P., Peng, Y., Shi, Z., Lan, L., Ma, Z., Yang, X., Zhang, Q., Bai, M., … Yan, J. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51(6), 1052–1059. doi: 10.1038/s41588-019-0427-6
Yang, T., Liu, R., Luo, Y., Hu, S., Wang, D., Wang, C., Pandey, M. K., Ge, S., Xu, Q., Li, N., Li, G., Huang, Y., Saxena, R. K., Ji, Y., Li, M., Yan, X., He, Y., Liu, Y., Wang, X., … Zong, X. (2022). Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics, 54(10), 1553–1563. doi: 10.1038/s41588-022-01172-2
Yao, W., Li, G., Zhao, H., Wang, G., Lian, X., & Xie, W. (2015). Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biology, 16(1), 187. doi: 10.1186/s13059-015-0757-3
Ye, H., Du, H., Tang, N., Li, X., & Xiong, L. (2009). Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 71(3), 291–305. doi: 10.1007/s11103-009-9524-8
Ye, Z., Yuan, Z., Xu, H., Pan, L., Chen, J., Anicet, G., Uzair, M., & Xu, D. (2022). Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley (Hordeum vulgare). Genes, 13. doi: 10.3390/genes13122376
Yin, L.-L., & Xue, H.-W. (2012). The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. The Plant Cell, 24(3), 1049–1065. doi: 10.1105/tpc.111.094854
Yokotani, N., Shikata, M., Ichikawa, H., Mitsuda, N., Ohme-Takagi, M., Minami, E., & Nishizawa, Y. (2018). OsWRKY24, a blast-disease responsive transcription factor, positively regulates rice disease resistance. Journal of General Plant Pathology, 84(2), 85–91. doi: 10.1007/s10327-018-0768-5
Yu, J., Golicz, A. A., Lu, K., Dossa, K., Zhang, Y., Chen, J., Wang, L., You, J., Fan, D., Edwards, D., & Zhang, X. (2019). Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnology Journal, 17(5), 881–892. doi: 10.1111/pbi.13022
Yuan, Y., Bayer, P. E., Batley, J., & Edwards, D. (2021). Current status of structural variation studies in plants. Plant Biotechnology Journal, 19(11), 2153–2163. doi: 10.1111/pbi.13646
Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821. doi: 10.1101/gr.074492.107
Zhang, C., Li, W., Wu, Y., Li, S., Hua, B., & Sun, H. (2025). Chloroplast Functionality at the Interface of Growth, Defense, and Genetic Innovation: A Multi-Omics and Technological Perspective. Plants, 14(6), 978. doi: 10.3390/plants14060978
Zhang, D., Liu, M., Tang, M., Dong, B., Wu, D., Zhang, Z., & Zhou, B. (2015). Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. Plant Science, 237, 24–32. doi: 10.1016/j.plantsci.2015.05.002
Zhang, Lei, Liang, J., Chen, H., Zhang, Z., Wu, J., & Wang, X. (2023). A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. Plant Biotechnology Journal, 21(5), 1022–1032. doi: 10.1111/pbi.14015
Zhang, Liyi, Hu, J., Han, X., Li, J., Gao, Y., Richards, C. M., Zhang, C., Tian, Y., Liu, G., Gul, H., Wang, D., Tian, Y., Yang, C., Meng, M., Yuan, G., Kang, G., Wu, Y., Wang, K., Zhang, H., … Cong, P. (2019). A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 10(1), 1494. doi: 10.1038/s41467-019-09518-x
Zhang, L.-M., Luo, H., Liu, Z.-Q., Zhao, Y., Luo, J.-C., Hao, D.-Y., & Jing, H.-C. (2014). Genome-wide patterns of large-size presence/absence variants in sorghum. Journal of Integrative Plant Biology, 56(1), 24–37. doi: 10.1111/jipb.12121
Zhang, Long, You, R., Chen, H., Zhu, J., Lin, L., & Wei, C. (2023). A New SNP in AGPL2, Associated with Floury Endosperm in Rice, Is Identified Using a Modified MutMap Method. Agronomy, 13(5), 1381. doi: 10.3390/agronomy13051381
Zhang, T., Zhao, Y., Wang, Y., Liu, Z., & Gao, C. (2018). Comprehensive Analysis of MYB Gene Family and Their Expressions Under Abiotic Stresses and Hormone Treatments in Tamarix hispida. Frontiers in Plant Science, 9. doi: 10.3389/fpls.2018.01303
Zhang, W. J., Zhou, Y., Zhang, Y., Su, Y. H., & Xu, T. (2023). Protein phosphorylation: A molecular switch in plant signaling. Cell Reports, 42(7), 112729. doi: 10.1016/j.celrep.2023.112729
Zhang, Xiang, Long, Y., Chen, X., Zhang, B., Xin, Y., Li, L., Cao, S., Liu, F., Wang, Z., Huang, H., Zhou, D., & Xia, J. (2021). A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 21, 546. doi: 10.1186/s12870-021-03333-7
Zhang, Xiaohui, Liu, T., Wang, J., Wang, P., Qiu, Y., Zhao, W., Pang, S., Li, X., Wang, H., Song, J., Zhang, W., Yang, W., Sun, Y., & Li, X. (2021). Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Molecular Plant, 14(12), 2032–2055. doi: 10.1016/j.molp.2021.08.005
Zhao, E., Dong, L., Zhao, H., Zhang, H., Zhang, T., Yuan, S., Jiao, J., Chen, K., Sheng, J., Yang, H., Wang, P., Li, G., & Qin, Q. (2023). A Relationship Prediction Method for Magnaporthe oryzae-Rice Multi-Omics Data Based on WGCNA and Graph Autoencoder. Journal of Fungi (Basel, Switzerland), 9(10), 1007. doi: 10.3390/jof9101007
Zhao, Junli, Shi, M., Yu, J., & Guo, C. (2022). SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana. BMC Plant Biology, 22, 59. doi: 10.1186/s12870-022-03445-8
Zhao, Junliang, Bayer, P. E., Ruperao, P., Saxena, R. K., Khan, A. W., Golicz, A. A., Nguyen, H. T., Batley, J., Edwards, D., & Varshney, R. K. (2020). Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal, 18(9), 1946–1954. doi: 10.1111/pbi.13354
Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., Wang, Y., Fan, D., Zhao, Y., Wang, Z., Zhou, C., Chen, J., Zhu, C., Li, W., Weng, Q., … Huang, X. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 50(2), 278–284. doi: 10.1038/s41588-018-0041-z
Zhou, P., Silverstein, K. A. T., Ramaraj, T., Guhlin, J., Denny, R., Liu, J., Farmer, A. D., Steele, K. P., Stupar, R. M., Miller, J. R., Tiffin, P., Mudge, J., & Young, N. D. (2017). Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics, 18(1), 261. doi: 10.1186/s12864-017-3654-1
Zhou, Yang, Yang, L., Han, X., Han, J., Hu, Y., Li, F., Xia, H., Peng, L., Boschiero, C., Rosen, B. D., Bickhart, D. M., Zhang, S., Guo, A., Van Tassell, C. P., Smith, T. P. L., Yang, L., & Liu, G. E. (2022). Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history. Genome Research, 32(8), 1585–1601. doi: 10.1101/gr.276550.122
Zhou, Yao, Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., Zhang, J., Lyu, H., Lin, T., Gao, Q., Saha, S., Mueller, L., Fei, Z., Städler, T., Xu, S., … Huang, S. (2022). Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 606(7914), 527–534. doi: 10.1038/s41586-022-04808-9
Zhu, Q., & Ge, S. (2005). Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist, 167(1), 249–265. doi: 10.1111/j.1469-8137.2005.01406.x
Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., Shang, Y., Du, S.-Y., Wang, X.-F., Wu, F.-Q., Xu, Y.-H., Zhang, X.-Y., & Zhang, D.-P. (2007). Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 19(10), 3019–3036. doi: 10.1105/tpc.107.050666
Zhuang, Z., Bian, J., Ren, Z., Ta, W., & Peng, Y. (2025). Plant Aux/IAA Gene Family: Significance in Growth, Development and Stress Responses. Agronomy, 15(5), 1228. doi: 10.3390/agronomy15051228
Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., & Yorke, J. A. (2013). The MaSuRCA genome assembler. Bioinformatics, 29(21), 2669–2677. doi: 10.1093/bioinformatics/btt476
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97683-
dc.description.abstractRice (Oryza sativa L.) is an important food crop, exhibits remarkable genetic diversity across its indica and japonica subgroups, reflecting extensive adaptive evolution and selective breeding. While high-quality single-reference genomes have advanced rice genomics research, they inherently fail to capture the full spectrum of genetic variation within the species. Pangenome construction addresses this limitation by encompassing core, variable, and unique genomic regions. Vietnam, with its diverse geography and climate, harbors a rich repository of native and traditional rice landraces, representing an invaluable genetic resource. In this study, the first pangenome for Vietnamese rice landraces was constructed to comprehensively characterize their genetic landscape and uncover unique genomic regions. The pangenome was constructed using 20 geographically diverse Vietnamese rice landrace accessions, employing an iterative mapping and assembly approach with the IRGSP-1.0 as the base reference genome. The resulting pangenome consisted of 386.89 Mb, with 13.64 Mb contributed by novel sequences derived from Vietnamese rice landraces, of which 1.59 Mb (11.67%) constituted repetitive elements. Annotation of the entire pangenome revealed 37,292 genes, categorized into 33,710 core genes, 3,560 dispensable genes, and 22 unique genes. Notably, 673 genes were newly annotated from non-reference contigs, representing genomic regions absent in the IRGSP-1.0 reference but present in Vietnamese rice. Functional enrichment analysis indicated that core genes are vital for fundamental biological processes like plant growth, development, and stress response, while dispensable genes play critical roles in environmental adaptation, stress signaling, and regulatory flexibility, essential for local adaptation. We identified 33,758 genes conserved across all 20 Vietnamese rice landraces, with 3,570 of these associated with agronomically important traits. These conserved genes are fundamentally involved in macromolecular biosynthesis, metabolism, environmental sensing, and cellular homeostasis, highlighting their essential roles in maintaining cellular processes and influencing yield-related traits such as panicle length, grain size, and tiller number. The consistent presence of these genes underscores the potential of traditional Vietnamese germplasms for breeding programs focused on yield improvement and stress adaptation for food security. Furthermore, subspecies-specific analyses revealed distinct functional enrichments. Thirteen indica-specific conserved genes were identified, though none were directly linked to agronomically important traits. Conversely, among 68 japonica-specific conserved genes, three were associated with multiple agronomic traits and functionally enriched in pathways related to phytoalexin metabolism and biosynthesis, indicating their role in antimicrobial defense. Additionally, 243 japonica accessory genes, absent in all indica landraces, included 20 genes critical for yield and morphology, such as OsJAZ13 for panicle length and OsCDKF;2 for 1000-seed weight. Among 94 indica accessory genes, OsGLP1 was linked to cold tolerance and OsLOL1 to blast disease resistance, suggesting their contribution to stress adaptation. Comparative analysis of gene presence/absence variation (PAV) demonstrated significant functional divergence; while core genes exhibited broad functional distribution, japonica-specific gene sets showed pronounced enrichment in stress response traits, supporting the role of PAV in environmental adaptation. This study provides a valuable genomic resource for Vietnamese rice breeding programs, demonstrating how PAV contributes significantly to both genetic diversity and functional divergence, thereby offering invaluable insights for future breeding efforts aimed at enhancing climate resilience and ensuring food security.zh_TW
dc.description.abstractRice (Oryza sativa L.) is an important food crop, exhibits remarkable genetic diversity across its indica and japonica subgroups, reflecting extensive adaptive evolution and selective breeding. While high-quality single-reference genomes have advanced rice genomics research, they inherently fail to capture the full spectrum of genetic variation within the species. Pangenome construction addresses this limitation by encompassing core, variable, and unique genomic regions. Vietnam, with its diverse geography and climate, harbors a rich repository of native and traditional rice landraces, representing an invaluable genetic resource. In this study, the first pangenome for Vietnamese rice landraces was constructed to comprehensively characterize their genetic landscape and uncover unique genomic regions. The pangenome was constructed using 20 geographically diverse Vietnamese rice landrace accessions, employing an iterative mapping and assembly approach with the IRGSP-1.0 as the base reference genome. The resulting pangenome consisted of 386.89 Mb, with 13.64 Mb contributed by novel sequences derived from Vietnamese rice landraces, of which 1.59 Mb (11.67%) constituted repetitive elements. Annotation of the entire pangenome revealed 37,292 genes, categorized into 33,710 core genes, 3,560 dispensable genes, and 22 unique genes. Notably, 673 genes were newly annotated from non-reference contigs, representing genomic regions absent in the IRGSP-1.0 reference but present in Vietnamese rice. Functional enrichment analysis indicated that core genes are vital for fundamental biological processes like plant growth, development, and stress response, while dispensable genes play critical roles in environmental adaptation, stress signaling, and regulatory flexibility, essential for local adaptation. We identified 33,758 genes conserved across all 20 Vietnamese rice landraces, with 3,570 of these associated with agronomically important traits. These conserved genes are fundamentally involved in macromolecular biosynthesis, metabolism, environmental sensing, and cellular homeostasis, highlighting their essential roles in maintaining cellular processes and influencing yield-related traits such as panicle length, grain size, and tiller number. The consistent presence of these genes underscores the potential of traditional Vietnamese germplasms for breeding programs focused on yield improvement and stress adaptation for food security. Furthermore, subspecies-specific analyses revealed distinct functional enrichments. Thirteen indica-specific conserved genes were identified, though none were directly linked to agronomically important traits. Conversely, among 68 japonica-specific conserved genes, three were associated with multiple agronomic traits and functionally enriched in pathways related to phytoalexin metabolism and biosynthesis, indicating their role in antimicrobial defense. Additionally, 243 japonica accessory genes, absent in all indica landraces, included 20 genes critical for yield and morphology, such as OsJAZ13 for panicle length and OsCDKF;2 for 1000-seed weight. Among 94 indica accessory genes, OsGLP1 was linked to cold tolerance and OsLOL1 to blast disease resistance, suggesting their contribution to stress adaptation. Comparative analysis of gene presence/absence variation (PAV) demonstrated significant functional divergence; while core genes exhibited broad functional distribution, japonica-specific gene sets showed pronounced enrichment in stress response traits, supporting the role of PAV in environmental adaptation. This study provides a valuable genomic resource for Vietnamese rice breeding programs, demonstrating how PAV contributes significantly to both genetic diversity and functional divergence, thereby offering invaluable insights for future breeding efforts aimed at enhancing climate resilience and ensuring food security.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:10:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:10:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
Abstract iii
Table of Contents v
List of Tables x
List of Figures xii
Abbreviation xv
Chapter 1. Introduction 1
1.1 Overview of Asian cultivated rice and Vietnamese rice landraces 1
1.2 What is pangenome? 4
1.3 Pangenome development methods 9
1.3.1 Gene-Based Pangenome Approaches 13
1.3.2 Whole Genome Sequence-Based Pangenomes 15
1.3.2.1 Linear Pangenomes 16
1.3.3 Graph-Based Pangenomes 19
1.4 Comparison of strategies used in constructing plant pangenomes 22
1.5 Application of iterative assembly pangenome approach in different plant species 24
1.6 Pangenome annotation and challenges 30
1.7 Gene PAV analysis and Implications of the pangenome 32
1.8 Factors which influence pangenome analysis 37
1.9 Research objectives 39
Chapter 2. Materials and Methods 40
2.1 Materials 40
2.2 Methods 42
2.2.1 Overview of the pangenome construction pipeline 42
2.2.2 Data collection 44
2.2.3 Quality control and data preprocessing 45
2.2.4 Aligner selection for read mapping to the reference 45
2.2.5 Assembler selection for de novo assembly of unmapped reads into novel contigs 46
2.2.6 Contamination detection and Removal from novo contigs 47
2.2.7 Validation of assembly by read remapping to the updated reference genome 49
2.2.8 Evaluation of pangenome assembly statistics 49
2.2.9 Gene prediction and annotation of the pangenome 50
2.2.10 Gene present and absent variation analysis 53
2.2.11 Identification of unique genomic among 20 Vietnamese rice landrace accessions 55
2.2.12 Functional annotation and GO enrichment analysis 58
Chapter 3. Results 62
3.1 Quality control and data preprocessing results 62
3.2 Aligner selection and mapping the reads to the reference genome 65
3.3 Assembler selection and de novo assembly performance 67
3.4 Mapping paired-end reads to the reference genome and extraction of unmapped reads 69
3.5 De novo assembly of unmapped reads into novel contigs and assembly validation 72
3.6 Contamination detection and removal from novel contigs results 74
3.7 Expansion of the pangenome results 78
3.8 Repeat identification in the rice pangenome and non-reference contigs 81
3.9 Gene prediction and annotation results 84
3.10 Gene presence and absence variation and pangenome classification results 89
3.11 Functional classification and GO enrichment analysis for the Core, Dispensable, Unique genes and genes detected within non-reference sequences 93
Core genes 93
Dispensable genes 101
Unique genes 106
Genes annotated within non-reference sequences 108
3.12 Functional classification and GO enrichment analysis for unique and conserved genes among 20 Vietnamese rice landrace accessions 111
Group 1: Genes conserved across all 20 Vietnamese rice landrace accessions (conserved genes in all landraces) 112
Group 2: Genes conserved specifically in all indica accessions and completely absent in all japonica accessions (indica-specific conserved genes) 118
Group 3: Genes conserved specifically in all japonica accessions and completely absent in all indica rice accessions (japonica-specific conserved genes) 119
Group 4: Genes present in both indica and japonica groups, but not consistently across all accessions (indica/japonica shared variable genes) 121
Group 5: Genes present in some japonica accessions but completely absent in all indica landrace accessions (japonica accessory genes) 124
Group 6: Genes present in some indica accessions but completely absent in all japonica accessions (indica accessory genes) 127
3.13 Agronomy important traits within each group 130
Group 1: Genes conserved across all 20 Vietnamese rice landrace accessions (conserved genes in all landraces) 130
Group 2: Genes conserved specifically in all indica accessions and completely absent in all japonica accessions (indica-specific conserved genes) 139
Group 3: Genes conserved specifically in all japonica accessions and completely absent in all indica rice accessions (japonica-specific conserved genes) 140
Group 4: Genes present in both indica and japonica groups, but not consistently across all accessions (indica/japonica shared variable genes) 142
Group 5: Genes present in some japonica accessions but completely absent in all indica landrace accessions (japonica accessory genes) 146
Group 6: Genes present in some indica accessions but completely absent in all japonica accessions (indica accessory genes) 147
Statistical comparison of Trait Ontology classes across gene groups 148
Chapter 4. Discussions 152
4.1 Pangenome construction using iterative mapping and assembly approach 152
4.2 Pangenome annotation 161
4.3 Gene presence and absence variation and pangenome gene analysis results 165
4.4 Functional annotation of the core, dispensable and unique genes in the rice pangenome 171
4.4.1 Core genes 171
4.4.2 Dispensable genes 183
4.4.3 Unique genes 189
4.4.4 Non-reference genes 191
4.5 Conserved genomic regions among Vietnamese rice landraces and associated with agronomy important traits 191
4.6 Unique genomic region among Vietnamese rice landraces and function annotation associated with agronomy important traits 196
4.7 Comparison of Agronomy Important traits class among conserved and unique genes in Vietnamese rice landraces 202
Chapter 5. Conclusions and Perspectives 206
References 213
Supplementary 247
-
dc.language.isoen-
dc.subject籼稻zh_TW
dc.subject粳稻zh_TW
dc.subject特有基因zh_TW
dc.subject越南稻作地方品種zh_TW
dc.subject泛基因組zh_TW
dc.subjectjaponicaen
dc.subjectPangenomeen
dc.subjectVietnamese rice landracesen
dc.subjectunique genesen
dc.subjectindicaen
dc.titlePangenome Analysis of Vietnamese Rice Landraces: Towards the Identification of Unique Genomic Regions for Rice Improvementzh_TW
dc.titlePangenome Analysis of Vietnamese Rice Landraces: Towards the Identification of Unique Genomic Regions for Rice Improvementen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林耀正;熊谷真彥zh_TW
dc.contributor.oralexamcommitteeYao-Cheng Lin;Masahiko Kumagaien
dc.subject.keyword泛基因組,越南稻作地方品種,特有基因,籼稻,粳稻,zh_TW
dc.subject.keywordPangenome,Vietnamese rice landraces,unique genes,indica,japonica,en
dc.relation.page259-
dc.identifier.doi10.6342/NTU202501377-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept全球農業科技與基因體科學碩士學位學程-
dc.date.embargo-lift2025-07-12-
顯示於系所單位:全球農業科技與基因體科學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved