請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97683完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 伊藤剛 | zh_TW |
| dc.contributor.advisor | Takeshi Itoh | en |
| dc.contributor.author | Nguyen Van Tuan Anh | zh_TW |
| dc.contributor.author | Nguyen Van Tuan Anh | en |
| dc.date.accessioned | 2025-07-11T16:10:06Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | Achakkagari, S. R., Bozan, I., Camargo-Tavares, J. C., McCoy, H. J., Portal, L., Soto, J., Bizimungu, B., Anglin, N. L., Manrique-Carpintero, N., Lindqvist-Kreuze, H., Tai, H. H., & Strömvik, M. V. (2024). The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids. Scientific Data, 11(1), 454. doi: 10.1038/s41597-024-03300-5
Ågren, J., Sundström, A., Håfström, T., & Segerman, B. (2012). Gegenees: Fragmented Alignment of Multiple Genomes for Determining Phylogenomic Distances and Genetic Signatures Unique for Specified Target Groups. PLOS ONE, 7(6), e39107. doi: 10.1371/journal.pone.0039107 Ahmed, F. F., Hossen, M. I., Sarkar, M. A. R., Konak, J. N., Zohra, F. T., Shoyeb, M., & Mondal, S. (2021). Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PloS One, 16(9), e0256873. doi: 10.1371/journal.pone.0256873 Akhunov, E. D., Akhunova, A. R., Anderson, O. D., Anderson, J. A., Blake, N., Clegg, M. T., Coleman-Derr, D., Conley, E. J., Crossman, C. C., Deal, K. R., Dubcovsky, J., Gill, B. S., Gu, Y. Q., Hadam, J., Heo, H., Huo, N., Lazo, G. R., Luo, M.-C., Ma, Y. Q., … Dvorak, J. (2010). Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 11(1), 702. doi: 10.1186/1471-2164-11-702 Aklilu, B. B., & Culligan, K. M. (2016). Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.00033 Akparov, Z., Hajiyeva, S., Abbasov, M., Kaur, S., Hamwieh, A., Alsamman, A. M., Hajiyev, E., Babayeva, S., Izzatullayeva, V., Mustafayeva, Z., Mehdiyeva, S., Mustafayev, O., Shahmuradov, I., Kosarev, P., Solovyev, V., Salamov, A., & Jighly, A. (2023). Two major chromosome evolution events with unrivaled conserved gene content in pomegranate. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1039211 Albrecht, V., Weinl, S., Blazevic, D., D’Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., & Kudla, J. (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. The Plant Journal: For Cell and Molecular Biology, 36(4), 457–470. doi: 10.1046/j.1365-313x.2003.01892.x Andreace, F., Lechat, P., Dufresne, Y., & Chikhi, R. (2023). Comparing methods for constructing and representing human pangenome graphs. Genome Biology, 24(1), 274. doi: 10.1186/s13059-023-03098-2 Andrew-Peter-Leon, M. T., Selvaraj, R., Kumar, K. K., Muthamilarasan, M., Yasin, J. K., & Pillai, M. A. (2021). Loss of Function of OsFBX267 and OsGA20ox2 in Rice Promotes Early Maturing and Semi-Dwarfism in γ-Irradiated IWP and Genome-Edited Pusa Basmati-1. Frontiers in Plant Science, 12, 714066. doi: 10.3389/fpls.2021.714066 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom. Angiuoli, S. V., & Salzberg, S. L. (2011). Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics, 27(3), 334–342. doi: 10.1093/bioinformatics/btq665 Ashraf, M. A., Akihiro, T., Ito, K., Kumagai, S., Sugita, R., Tanoi, K., & Rahman, A. (2021). ATP binding cassette proteins ABCG37 and ABCG33 function as potassium-independent cesium uptake carriers in Arabidopsis roots. Molecular Plant, 14(4), 664–678. doi: 10.1016/j.molp.2021.02.002 Astashyn, A., Tvedte, E. S., Sweeney, D., Sapojnikov, V., Bouk, N., Joukov, V., Mozes, E., Strope, P. K., Sylla, P. M., Wagner, L., Bidwell, S. L., Brown, L. C., Clark, K., Davis, E. W., Smith-White, B., Hlavina, W., Pruitt, K. D., Schneider, V. A., & Murphy, T. D. (2024). Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology, 25(1), 60. doi: 10.1186/s13059-024-03198-7 Astashyn, A., Tvedte, E. S., Sweeney, D., Sapojnikov, V., Bouk, N., Joukov, V., Mozes, E., Strope, P. K., Sylla, P. M., Wagner, L., Bidwell, S. L., Clark, K., Davis, E. W., Smith-White, B., Hlavina, W., Pruitt, K. D., Schneider, V. A., & Murphy, T. D. (2023). Rapid and sensitive detection of genome contamination at scale with FCS-GX [Preprint]. Bioinformatics. doi: 10.1101/2023.06.02.543519 Aung, K. M., Oo, W. H., Maung, T. Z., Min, M.-H., Somsri, A., Nam, J., Kim, K.-W., Nawade, B., Lee, C.-Y., Chu, S.-H., & Park, Y.-J. (2023). Genomic landscape of the OsTPP7 gene in its haplotype diversity and association with anaerobic germination tolerance in rice. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1225445 Azam, S., Sahu, A., Pandey, N. K., Neupane, M., Van Tassell, C. P., Rosen, B. D., Gandham, R. K., Rath, S. N., & Majumdar, S. S. (2025). Constructing a draft Indian cattle pangenome using short-read sequencing. Communications Biology, 8(1), 1–11. doi: 10.1038/s42003-025-07978-0 Ballouz, S., Dobin, A., & Gillis, J. A. (2019). Is it time to change the reference genome? Genome Biology, 20(1), 159. doi: 10.1186/s13059-019-1774-4 Banerjee, A., & Roychoudhury, A. (2015). WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses. The Scientific World Journal, 2015, 807560. doi: 10.1155/2015/807560 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. doi: 10.1089/cmb.2012.0021 Bao, H., Xue, N., Wang, B., Yu, H., Huang, M., He, J., Dong, S., Zhou, Y., Gao, Q., & Tian, Y. (2025). Exploration of gene presence/absence variations in Oncorhynchus mykiss and their differentiation between wild and selection populations. Open Biology, 15(5), 240382. doi: 10.1098/rsob.240382 Barchi, L., Rabanus-Wallace, M. T., Prohens, J., Toppino, L., Padmarasu, S., Portis, E., Rotino, G. L., Stein, N., Lanteri, S., & Giuliano, G. (2021). Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. The Plant Journal, 107(2), 579–596. doi: 10.1111/tpj.15313 Bariah, I., Keidar-Friedman, D., & Kashkush, K. (2020). Where the Wild Things Are: Transposable Elements as Drivers of Structural and Functional Variations in the Wheat Genome. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.585515 Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11928–11933. doi: 10.1073/pnas.0505461102 Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J., & Edwards, D. (2020). Plant pan-genomes are the new reference. Nature Plants, 6(8), 914–920. doi: 10.1038/s41477-020-0733-0 Bayer, P. E., Valliyodan, B., Hu, H., Marsh, J. I., Yuan, Y., Vuong, T. D., Patil, G., Song, Q., Batley, J., Varshney, R. K., Lam, H.-M., Edwards, D., & Nguyen, H. T. (2022). Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. The Plant Genome, 15(1), e20109. doi: 10.1002/tpg2.20109 Baykal, P. I., Simonov, M., Deshpande, D., Korukoglu, F. B., Moore, J., Chhugani, K., Liu, C., Sarwal, V., Rajkumar, N., Alser, M., Beerenwinkel, N., & Mangul, S. (2025). Assessing genomic reproducibility of read alignment tools (p. 2025.05.08.652934). bioRxiv. doi: 10.1101/2025.05.08.652934 Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573–580. doi: 10.1093/nar/27.2.573 Bentham, A. R., De la Concepcion, J. C., Benjumea, J. V., Kourelis, J., Jones, S., Mendel, M., Stubbs, J., Stevenson, C. E. M., Maidment, J. H. R., Youles, M., Zdrzałek, R., Kamoun, S., & Banfield, M. J. (2023). Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. The Plant Cell, 35(10), 3809–3827. doi: 10.1093/plcell/koad204 Berglund, A.-C., Sjölund, E., Ostlund, G., & Sonnhammer, E. L. L. (2008). InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Research, 36(Database issue), D263-266. doi: 10.1093/nar/gkm1020 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. doi: 10.1093/bioinformatics/btu170 Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inzé, D., Van Damme, D., & Russinova, E. (2010). Systematic Localization of the Arabidopsis Core Cell Cycle Proteins Reveals Novel Cell Division Complexes. Plant Physiology, 152(2), 553–565. doi: 10.1104/pp.109.148643 Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements. Genome Biology, 19(1), 199. doi: 10.1186/s13059-018-1577-z Bozan, I., Achakkagari, S. R., Anglin, N. L., Ellis, D., Tai, H. H., & Strömvik, M. V. (2023a). Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences, 120(31), e2211117120. doi: 10.1073/pnas.2211117120 Bozan, I., Achakkagari, S. R., Anglin, N. L., Ellis, D., Tai, H. H., & Strömvik, M. V. (2023b). Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Sciences, 120(31), e2211117120. doi: 10.1073/pnas.2211117120 Breia, R., Conde, A., Badim, H., Fortes, A. M., Gerós, H., & Granell, A. (2021). Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology, 186(2), 836–852. doi: 10.1093/plphys/kiab127 Bush, S. J., Castillo-Morales, A., Tovar-Corona, J. M., Chen, L., Kover, P. X., & Urrutia, A. O. (2014). Presence–Absence Variation in A. thaliana Is Primarily Associated with Genomic Signatures Consistent with Relaxed Selective Constraints. Molecular Biology and Evolution, 31(1), 59–69. doi: 10.1093/molbev/mst166 Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C., & Jaffe, D. B. (2008). ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research, 18(5), 810–820. doi: 10.1101/gr.7337908 Cackett, L., Luginbuehl, L. H., Schreier, T. B., Lopez-Juez, E., & Hibberd, J. M. (2022). Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist, 233(5), 2000–2016. doi: 10.1111/nph.17839 Campbell, M. S., Holt, C., Moore, B., & Yandell, M. (2014). Genome Annotation and Curation Using MAKER and MAKER-P. Current Protocols in Bioinformatics, 48, 4.11.1-4.11.39. doi: 10.1002/0471250953.bi0411s48 Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., & Weigel, D. (2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 43(10), 956–963. doi: 10.1038/ng.911 Carballo, J., Bellido, A. M., Selva, J. P., Zappacosta, D., Gallo, C. A., Albertini, E., Caccamo, M., & Echenique, V. (2023). From tetraploid to diploid, a pangenomic approach to identify genes lost during synthetic diploidization of Eragrostis curvula. Frontiers in Plant Science, 14. doi: 10.3389/fpls.2023.1133986 Carretero-Paulet, L., Cairó, A., Botella-Pavía, P., Besumbes, O., Campos, N., Boronat, A., & Rodríguez-Concepción, M. (2006). Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology, 62(4–5), 683–695. doi: 10.1007/s11103-006-9051-9 Castelán-Muñoz, N., Herrera, J., Cajero-Sánchez, W., Arrizubieta, M., Trejo, C., García-Ponce, B., Sánchez, M. de la P., Álvarez-Buylla, E. R., & Garay-Arroyo, A. (2019). MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00853 Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., Rivas, S., Alaux, L., Kanzaki, H., Okuyama, Y., Morel, J.-B., Fournier, E., Tharreau, D., Terauchi, R., & Kroj, T. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell, 25. doi: 10.1105/tpc.112.107201 Chakraborty, M., Emerson, J. J., Macdonald, S. J., & Long, A. D. (2019). Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nature Communications, 10(1), 4872. doi: 10.1038/s41467-019-12884-1 Chakraborty, P., Biswas, A., Dey, S., Bhattacharjee, T., & Chakrabarty, S. (2023). Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. Journal of Xenobiotics, 13(3), 402–423. doi: 10.3390/jox13030026 Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., Corréa, M., Da Silva, C., Just, J., Falentin, C., Koh, C. S., Le Clainche, I., Bernard, M., Bento, P., Noel, B., … Wincker, P. (2014). Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science (New York, N.Y.), 345(6199), 950–953. doi: 10.1126/science.1253435 Chaves-Sanjuan, A., Sanchez-Barrena, M. J., Gonzalez-Rubio, J. M., Moreno, M., Ragel, P., Jimenez, M., Pardo, J. M., Martinez-Ripoll, M., Quintero, F. J., & Albert, A. (2014). Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4532–E4541. doi: 10.1073/pnas.1407610111 Chen, Fangyu, Wang, Y., Zhang, Z., Chen, X., Huang, J., Chen, Z., Zheng, J., Jiang, L., Huang, Y., Wang, H., & Huang, R. (2022). Transcriptomic, proteomic, and phosphoproteomic analyses reveal dynamic signaling networks influencing long-grain rice development. The Crop Journal, 10(3), 716–728. doi: 10.1016/j.cj.2021.11.007 Chen, Feng, Mackey, A. J., Vermunt, J. K., & Roos, D. S. (2007). Assessing performance of orthology detection strategies applied to eukaryotic genomes. PloS One, 2(4), e383. doi: 10.1371/journal.pone.0000383 Chen, N. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, Chapter 4, Unit 4.10. doi: 10.1002/0471250953.bi0410s05 Chen, S., Ren, C., Zhai, J., Yu, J., Zhao, X., Li, Z., Zhang, T., Ma, W., Han, Z., & Ma, C. (2020). CAFU: a Galaxy framework for exploring unmapped RNA-Seq data. Briefings in Bioinformatics, 21(2), 676–686. doi: 10.1093/bib/bbz018 Chen, Z., & Li, Z. (2022). Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. Reproduction and Breeding, 2(4), 133–137. doi: 10.1016/j.repbre.2022.11.003 Cheng, Y.-S., Sun, Y.-D., Xing, J.-Y., Zhan, L., Li, X.-J., Huang, J., Zhao, M.-H., & Guo, Z.-F. (2024). Transcriptomic and functional analyzes reveal that the brassinosteroid insensitive 1 receptor (OsBRI1) regulates cold tolerance in rice. Plant Physiology and Biochemistry, 208, 108472. doi: 10.1016/j.plaphy.2024.108472 Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. doi: 10.1093/bioinformatics/btt310 Cho, M.-H., & Lee, S.-W. (2015). Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis. International Journal of Molecular Sciences, 16(12), 29120–29133. doi: 10.3390/ijms161226152 Choi, H., Yi, T., & Ha, S.-H. (2021). Diversity of Plastid Types and Their Interconversions. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.692024 Chrisman, B., He, C., Jung, J.-Y., Stockham, N., Paskov, K., Washington, P., & Wall, D. P. (2022). The human “contaminome”: bacterial, viral, and computational contamination in whole genome sequences from 1000 families. Scientific Reports, 12(1), 9863. doi: 10.1038/s41598-022-13269-z Cleary, A., Ramaraj, T., Kahanda, I., Mudge, J., & Mumey, B. (2019). Exploring Frequented Regions in Pan-Genomic Graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1424–1435. doi: 10.1109/TCBB.2018.2864564 Cochetel, N., Minio, A., Guarracino, A., Garcia, J. F., Figueroa-Balderas, R., Massonnet, M., Kasuga, T., Londo, J. P., Garrison, E., Gaut, B. S., & Cantu, D. (2023). A super-pangenome of the North American wild grape species. Genome Biology, 24(1), 290. doi: 10.1186/s13059-023-03133-2 Contreras-Moreira, B., Cantalapiedra, C. P., García-Pereira, M. J., Gordon, S. P., Vogel, J. P., Igartua, E., Casas, A. M., & Vinuesa, P. (2017). Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Frontiers in Plant Science, 8. doi: 10.3389/fpls.2017.00184 Cornet, L., & Baurain, D. (2022). Contamination detection in genomic data: more is not enough. Genome Biology, 23(1), 60. doi: 10.1186/s13059-022-02619-9 Crespi, M. (n.d.). Plant transcription links environmental cues and phenotypic plasticity. Transcription, 11(3–4), 97–99. doi: 10.1080/21541264.2020.1837498 Cretu Stancu, M., van Roosmalen, M. J., Renkens, I., Nieboer, M. M., Middelkamp, S., de Ligt, J., Pregno, G., Giachino, D., Mandrile, G., Espejo Valle-Inclan, J., Korzelius, J., de Bruijn, E., Cuppen, E., Talkowski, M. E., Marschall, T., de Ridder, J., & Kloosterman, W. P. (2017). Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nature Communications, 8(1), 1326. doi: 10.1038/s41467-017-01343-4 Cui, D., Tang, C., Lu, H., Li, J., Ma, X., A, X., Han, B., Yang, Y., Dong, C., Zhang, F., Dai, L., & Han, L. (2021). Genetic differentiation and restricted gene flow in rice landraces from Yunnan, China: effects of isolation-by-distance and isolation-by-environment. Rice, 14, 54. doi: 10.1186/s12284-021-00497-6 Cui, D.-L., Meng, J.-Y., Ren, X.-Y., Yue, J.-J., Fu, H.-Y., Huang, M.-T., Zhang, Q.-Q., & Gao, S.-J. (2020). Genome-wide identification and characterization of DCL, AGO and RDR gene families in Saccharum spontaneum. Scientific Reports, 10(1), 13202. doi: 10.1038/s41598-020-70061-7 Dai, M., Terzaghi, W., & Wang, H. (2013). Multifaceted roles of Arabidopsis PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling & Behavior, 8(1), e22508. doi: 10.4161/psb.22508 Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B., & Hirsch, C. N. (2021). How the pan-genome is changing crop genomics and improvement. Genome Biology, 22(1), 3. doi: 10.1186/s13059-020-02224-8 Demir, E., Ceccobelli, S., Bilginer, U., Pasquini, M., Attard, G., & Karsli, T. (2022). Conservation and Selection of Genes Related to Environmental Adaptation in Native Small Ruminant Breeds: A Review. Ruminants, 2(2), 255–270. doi: 10.3390/ruminants2020017 DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. doi: 10.1038/ng.806 Dev, W., Sultana, F., Li, H., Hu, D., Peng, Z., He, S., Zhang, H., Waqas, M., Geng, X., & Du, X. (2025). Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. Plant Science, 352, 112390. doi: 10.1016/j.plantsci.2025.112390 Dietrich, R. A., Richberg, M. H., Schmidt, R., Dean, C., & Dangl, J. L. (1997). A Novel Zinc Finger Protein Is Encoded by the Arabidopsis LSD1 Gene and Functions as a Negative Regulator of Plant Cell Death. Cell, 88(5), 685–694. doi: 10.1016/S0092-8674(00)81911-X Ding, J., Araki, H., Wang, Q., Zhang, P., Yang, S., Chen, J.-Q., & Tian, D. (2007). Highly asymmetric rice genomes. BMC Genomics, 8(1), 154. doi: 10.1186/1471-2164-8-154 Do, T. H. T., Martinoia, E., Lee, Y., & Hwang, J.-U. (2021). 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology, 187(4), 1876–1892. doi: 10.1093/plphys/kiab193 Du, Z.-Z., He, J.-B., & Jiao, W.-B. (2025a). Plant graph-based pangenomics: techniques, applications, and challenges. aBIOTECH. doi: 10.1007/s42994-025-00206-7 Du, Z.-Z., He, J.-B., & Jiao, W.-B. (2025b). Plant graph-based pangenomics: techniques, applications, and challenges. aBIOTECH. doi: 10.1007/s42994-025-00206-7 Durbha, S. R., Siromani, N., Jaldhani, V., Krishnakanth, T., Thuraga, V., Neeraja, C. N., Subrahmanyam, D., & Sundaram, R. M. (2024). Dynamics of starch formation and gene expression during grain filling and its possible influence on grain quality. Scientific Reports, 14(1), 6743. doi: 10.1038/s41598-024-57010-4 Ejigu, G. F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology, 9(9), 295. doi: 10.3390/biology9090295 English, A. C., Salerno, W. J., & Reid, J. G. (2014). PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics, 15(1), 180. doi: 10.1186/1471-2105-15-180 Ercoli, M. F., Luu, D. D., Rim, E. Y., Shigenaga, A., Teixeira de Araujo, A., Chern, M., Jain, R., Ruan, R., Joe, A., Stewart, V., & Ronald, P. (2022). Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proceedings of the National Academy of Sciences, 119(8), e2121568119. doi: 10.1073/pnas.2121568119 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. doi: 10.1093/bioinformatics/btw354 Fasani, E., DalCorso, G., Varotto, C., Li, M., Visioli, G., Mattarozzi, M., & Furini, A. (2017). The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. New Phytologist, 214(4), 1614–1630. doi: 10.1111/nph.14529 Flavell, R. B., Bennett, M. D., Smith, J. B., & Smith, D. B. (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics, 12(4), 257–269. doi: 10.1007/BF00485947 Flores-Tornero, M., Anoman, A. D., Rosa-Téllez, S., Toujani, W., Weber, A. P. M., Eisenhut, M., Kurz, S., Alseekh, S., Fernie, A. R., Muñoz-Bertomeu, J., & Ros, R. (2017). Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants. The Plant Journal, 89(6), 1146–1158. doi: 10.1111/tpj.13452 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451–9457. doi: 10.1073/pnas.1921046117 Francis, A., Dhaka, N., Bakshi, M., Jung, K.-H., Sharma, M. K., & Sharma, R. (2016). Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Scientific Reports, 6(1), 38488. doi: 10.1038/srep38488 Frick, E. M., & Strader, L. C. (2018). Kinase MPK17 and the Peroxisome Division Factor PMD1 Influence Salt-induced Peroxisome Proliferation. Plant Physiology, 176(1), 340–351. doi: 10.1104/pp.17.01019 Frommer, B., Hausmann, L., Holtgräwe, D., Viehöver, P., Hüttel, B., Reinhardt, R., Töpfer, R., & Weisshaar, B. (2022). A fully phased interspecific grapevine rootstock genome sequence representing V. riparia and V. cinerea and allele-aware annotation of the phylloxera resistance locus Rdv1 (p. 2022.07.07.499180). bioRxiv. doi: 10.1101/2022.07.07.499180 Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. doi: 10.1093/bioinformatics/bts565 Gage, J. L., Vaillancourt, B., Hamilton, J. P., Manrique-Carpintero, N. C., Gustafson, T. J., Barry, K., Lipzen, A., Tracy, W. F., Mikel, M. A., Kaeppler, S. M., Buell, C. R., & de Leon, N. (2019). Multiple Maize Reference Genomes Impact the Identification of Variants by Genome-Wide Association Study in a Diverse Inbred Panel. The Plant Genome, 12(2), 180069. doi: 10.3835/plantgenome2018.09.0069 Gai, Y., Li, L., Liu, B., Ma, H., Chen, Y., Zheng, F., Sun, X., Wang, M., Jiao, C., & Li, H. (2022). Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiological Research, 256, 126915. doi: 10.1016/j.micres.2021.126915 Gao, F., Guo, J., & Shen, Y. (2024). Advances from chlorophyll biosynthesis to photosynthetic adaptation, evolution and signaling. Plant Stress, 12, 100470. doi: 10.1016/j.stress.2024.100470 Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., Burzynski-Chang, E. A., Fish, T. L., Stromberg, K. A., Sacks, G. L., Thannhauser, T. W., Foolad, M. R., Diez, M. J., Blanca, J., Canizares, J., Xu, Y., van der Knaap, E., Huang, S., Klee, H. J., … Fei, Z. (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 51(6), 1044–1051. doi: 10.1038/s41588-019-0410-2 Gao, L., Pan, L., Shi, Y., Zeng, R., Li, M., Li, Z., Zhang, X., Zhao, X., Gong, X., Huang, W., Yang, X., Lai, J., Zuo, J., Gong, Z., Wang, X., Jin, W., Dong, Z., & Yang, S. (2024). Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. Molecular Plant, 17(9), 1423–1438. doi: 10.1016/j.molp.2024.07.015 Gao, Q.-M., Venugopal, S., Navarre, D., & Kachroo, A. (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology, 155(1), 464–476. doi: 10.1104/pp.110.166876 García-González, J., Kebrlová, Š., Semerák, M., Lacek, J., Kotannal Baby, I., Petrášek, J., & Schwarzerová, K. (2020). Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.00486 Garg, G., Kamphuis, L. G., Bayer, P. E., Kaur, P., Dudchenko, O., Taylor, C. M., Frick, K. M., Foley, R. C., Gao, L.-L., Aiden, E. L., Edwards, D., & Singh, K. B. (2022). A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. The Plant Journal, 111(5), 1252–1266. doi: 10.1111/tpj.15885 Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., & McCouch, S. (2005). Genetic Structure and Diversity in Oryza sativa L. Genetics, 169(3), 1631–1638. doi: 10.1534/genetics.104.035642 Garrison, E., Guarracino, A., Heumos, S., Villani, F., Bao, Z., Tattini, L., Hagmann, J., Vorbrugg, S., Marco-Sola, S., Kubica, C., Ashbrook, D. G., Thorell, K., Rusholme-Pilcher, R. L., Liti, G., Rudbeck, E., Nahnsen, S., Yang, Z., Mwaniki, M. N., Nobrega, F. L., … Prins, P. (2024). Building pangenome graphs. bioRxiv: The Preprint Server for Biology, 2023.04.05.535718. doi: 10.1101/2023.04.05.535718 Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., Jones, W., Garg, S., Markello, C., Lin, M. F., Paten, B., & Durbin, R. (2018). Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 36(9), 875–879. doi: 10.1038/nbt.4227 Ge, F., Qu, J., Liu, P., Pan, L., Zou, C., Yuan, G., Yang, C., Pan, G., Huang, J., Ma, L., & Shen, Y. (2022). Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics. The Crop Journal, 10(1), 47–55. doi: 10.1016/j.cj.2021.08.002 Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36(8), 2628–2629. doi: 10.1093/bioinformatics/btz931 Glick, L., & Mayrose, I. (2023). The Effect of Methodological Considerations on the Construction of Gene-Based Plant Pan-genomes. Genome Biology and Evolution, 15(7), evad121. doi: 10.1093/gbe/evad121 Goel, M., Sun, H., Jiao, W.-B., & Schneeberger, K. (2019). SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20(1), 277. doi: 10.1186/s13059-019-1911-0 Golicz, A. A., Batley, J., & Edwards, D. (2016). Towards plant pangenomics. Plant Biotechnology Journal, 14(4), 1099–1105. doi: 10.1111/pbi.12499 Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016a). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7(1), 13390. doi: 10.1038/ncomms13390 Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016b). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7(1), 13390. doi: 10.1038/ncomms13390 Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A. P., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016c). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7, 13390. doi: 10.1038/ncomms13390 Golicz, A. A., Martinez, P. A., Zander, M., Patel, D. A., Van De Wouw, A. P., Visendi, P., Fitzgerald, T. L., Edwards, D., & Batley, J. (2015). Gene loss in the fungal canola pathogen Leptosphaeria maculans. Functional & Integrative Genomics, 15(2), 189–196. doi: 10.1007/s10142-014-0412-1 González, V. M., Aventín, N., Centeno, E., & Puigdomènech, P. (2013). High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genomics, 14(1), 782. doi: 10.1186/1471-2164-14-782 Gonzali, S., Alpi, A., Blando, F., & De Bellis, L. (2002). Arabidopsis (HXK1 and HXK2) and yeast (HXK2) hexokinases overexpressed in transgenic lines are characterized by different catalytic properties. Plant Science, 163(5), 943–954. doi: 10.1016/S0168-9452(02)00243-1 Gordon, S. P., Contreras-Moreira, B., Woods, D. P., Des Marais, D. L., Burgess, D., Shu, S., Stritt, C., Roulin, A. C., Schackwitz, W., Tyler, L., Martin, J., Lipzen, A., Dochy, N., Phillips, J., Barry, K., Geuten, K., Budak, H., Juenger, T. E., Amasino, R., … Vogel, J. P. (2017). Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications, 8(1), 2184. doi: 10.1038/s41467-017-02292-8 Guo, X., Huang, C., Lee, Y.-R. J., WANG, J., & Liu, B. (2021). Distinctive Kinesin-14 Motors Associate with Midzone Microtubules to Construct Mitotic Spindles with Two Convergent Poles in Arabidopsi. doi: 10.21203/rs.3.rs-957980/v1 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. doi: 10.1093/bioinformatics/btt086 Halawa, M., Cortleven, A., Schmülling, T., & Heyl, A. (2021). Characterization of CHARK, an unusual cytokinin receptor of rice. Scientific Reports, 11(1), 1722. doi: 10.1038/s41598-020-80223-2 Han, H., Wang, C., Yang, X., Wang, L., Ye, J., Xu, F., Liao, Y., & Zhang, W. (2023). Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta, 258(1), 13. doi: 10.1007/s00425-023-04174-4 Hao, D.-L., Zhou, J.-Y., Huang, Y.-N., Wang, H.-R., Li, X.-H., Guo, H.-L., & Liu, J.-X. (2022). Roles of plastid-located phosphate transporters in carotenoid accumulation. Frontiers in Plant Science, 13. doi: 10.3389/fpls.2022.1059536 Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., Arima, S., Squeglia, F., Ruggiero, A., Tokuyasu, K., Molinaro, A., Kaku, H., & Shibuya, N. (2014). Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 111(3), E404-413. doi: 10.1073/pnas.1312099111 Hayes, B. J., & Daetwyler, H. D. (2019). 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annual Review of Animal Biosciences, 7, 89–102. doi: 10.1146/annurev-animal-020518-115024 He, W., Li, X., Qian, Q., & Shang, L. (2024). The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. Plant Communications, 6(2), 101230. doi: 10.1016/j.xplc.2024.101230 He, X., Qi, Z., Liu, Z., Chang, X., Zhang, X., Li, J., & Wang, M. (2024). Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biology, 22(1), 92. doi: 10.1186/s12915-024-01893-2 He, Z.-D., Tao, M.-L., Leung, D. W. M., Yan, X.-Y., Chen, L., Peng, X.-X., & Liu, E.-E. (2021). The rice germin-like protein OsGLP1 participates in acclimation to UV-B radiation. Plant Physiology, 186(2), 1254–1268. doi: 10.1093/plphys/kiab125 Hickey, G., Monlong, J., Ebler, J., Novak, A. M., Eizenga, J. M., Gao, Y., Marschall, T., Li, H., & Paten, B. (2024). Pangenome graph construction from genome alignments with Minigraph-Cactus. Nature Biotechnology, 42(4), 663–673. doi: 10.1038/s41587-023-01793-w Higgins, J., Santos, B., Khanh, T. D., Trung, K. H., Duong, T. D., Doai, N. T. P., Hall, A., Dyer, S., Ham, L. H., Caccamo, M., & De Vega, J. (2022). Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evolutionary Applications, 15(7), 1141–1161. doi: 10.1111/eva.13433 Higgins, J., Santos, B., Khanh, T. D., Trung, K. H., Duong, T. D., Doai, N. T. P., Khoa, N. T., Ha, D. T. T., Diep, N. T., Dung, K. T., Phi, C. N., Thuy, T. T., Tuan, N. T., Tran, H. D., Trung, N. T., Giang, H. T., Nhung, T. K., Tran, C. D., Lang, S. V., … De Vega, J. J. (2021). Resequencing of 672 Native Rice Accessions to Explore Genetic Diversity and Trait Associations in Vietnam. Rice, 14, 52. doi: 10.1186/s12284-021-00481-0 Hirsch, C. N., Foerster, J. M., Johnson, J. M., Sekhon, R. S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., de Leon, N., Kaeppler, S. M., & Buell, C. R. (2014a). Insights into the Maize Pan-Genome and Pan-Transcriptome. The Plant Cell, 26(1), 121–135. doi: 10.1105/tpc.113.119982 Hirsch, C. N., Foerster, J. M., Johnson, J. M., Sekhon, R. S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., de Leon, N., Kaeppler, S. M., & Buell, C. R. (2014b). Insights into the Maize Pan-Genome and Pan-Transcriptome. The Plant Cell, 26(1), 121–135. doi: 10.1105/tpc.113.119982 Ho, S. S., Urban, A. E., & Mills, R. E. (2020). Structural variation in the sequencing era. Nature Reviews Genetics, 21(3), 171–189. doi: 10.1038/s41576-019-0180-9 Hoang, G. T., Van Dinh, L., Nguyen, T. T., Ta, N. K., Gathignol, F., Mai, C. D., Jouannic, S., Tran, K. D., Khuat, T. H., Do, V. N., Lebrun, M., Courtois, B., & Gantet, P. (2019). Genome-wide Association Study of a Panel of Vietnamese Rice Landraces Reveals New QTLs for Tolerance to Water Deficit During the Vegetative Phase. Rice, 12(1), 4. doi: 10.1186/s12284-018-0258-6 Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-Genome Annotation with BRAKER. In M. Kollmar (Ed.), Gene Prediction: Methods and Protocols (pp. 65–95). New York, NY: Springer. doi: 10.1007/978-1-4939-9173-0_5 Holden, L. A., Arumilli, M., Hytönen, M. K., Hundi, S., Salojärvi, J., Brown, K. H., & Lohi, H. (2018). Assembly and Analysis of Unmapped Genome Sequence Reads Reveal Novel Sequence and Variation in Dogs. Scientific Reports, 8(1), 10862. doi: 10.1038/s41598-018-29190-3 Holley, G., & Melsted, P. (2020). Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs. Genome Biology, 21(1), 249. doi: 10.1186/s13059-020-02135-8 Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1), 491. doi: 10.1186/1471-2105-12-491 Hoopes, G., Meng, X., Hamilton, J. P., Achakkagari, S. R., de Alves Freitas Guesdes, F., Bolger, M. E., Coombs, J. J., Esselink, D., Kaiser, N. R., Kodde, L., Kyriakidou, M., Lavrijssen, B., van Lieshout, N., Shereda, R., Tuttle, H. K., Vaillancourt, B., Wood, J. C., de Boer, J. M., Bornowski, N., … Finkers, R. (2022). Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 15(3), 520–536. doi: 10.1016/j.molp.2022.01.003 Hori, K., Suzuki, K., Ishikawa, H., Nonoue, Y., Nagata, K., Fukuoka, S., & Tanaka, J. (2021). Genomic Regions Involved in Differences in Eating and Cooking Quality Other than Wx and Alk Genes between indica and japonica Rice Cultivars. Rice (New York, N.Y.), 14(1), 8. doi: 10.1186/s12284-020-00447-8 Horsfield, S. T., Tonkin-Hill, G., Croucher, N. J., & Lees, J. A. (2023). Accurate and fast graph-based pangenome annotation and clustering with ggCaller. Genome Research, 33(9), 1622–1637. doi: 10.1101/gr.277733.123 Hu, H., Scheben, A., Verpaalen, B., Tirnaz, S., Bayer, P. E., Hodel, R. G. J., Batley, J., Soltis, D. E., Soltis, P. S., & Edwards, D. (2022). Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. The New Phytologist, 233(4), 1548–1555. doi: 10.1111/nph.17658 Hu, H., Scheben, A., Wang, J., Li, F., Li, C., Edwards, D., & Zhao, J. (2024). Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. Plant Biotechnology Journal, 22(3), 544–554. doi: 10.1111/pbi.14224 Hu, H., Wang, J., Nie, S., Zhao, J., Batley, J., & Edwards, D. (2024). Plant pangenomics, current practice and future direction. Agriculture Communications, 2(2), 100039. doi: 10.1016/j.agrcom.2024.100039 Hu, H., Yuan, Y., Bayer, P. E., Fernandez, C. T., Scheben, A., Golicz, A. A., & Edwards, D. (2020). Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. In M. Jain & R. Garg (Eds.), Legume Genomics: Methods and Protocols (pp. 35–47). New York, NY: Springer US. doi: 10.1007/978-1-0716-0235-5_3 Hu, H., Yuan, Y., Bayer, P., Tay Fernandez, C., Scheben, A., Golicz, A., & Edwards, D. (2020). Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. In Methods in molecular biology (Clifton, N.J.) (Vol. 2107, pp. 35–47). doi: 10.1007/978-1-0716-0235-5_3 Hu, H., Zhao, J., Thomas, W. J. W., Batley, J., & Edwards, D. (2025). The role of pangenomics in orphan crop improvement. Nature Communications, 16, 118. doi: 10.1038/s41467-024-55260-4 Huang, L., Popic, V., & Batzoglou, S. (2013). Short read alignment with populations of genomes. Bioinformatics, 29(13), i361–i370. doi: 10.1093/bioinformatics/btt215 Huang, X., Li, Y., Zhang, X., Zuo, J., & Yang, S. (2010). The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. The New Phytologist, 187(2), 301–312. doi: 10.1111/j.1469-8137.2010.03275.x Huang, Y.-C., Niu, C.-Y., Yang, C.-R., & Jinn, T.-L. (2016). The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiology, 172(2), 1182–1199. doi: 10.1104/pp.16.00860 Huang, Y.-X., Rao, H.-Y., Su, B.-S., Lv, J.-M., Lin, J.-J., Wang, X., Xu, L.-N., Kong, X.-D., & Sun, Y. (2025). The pan-genome of Spodoptera frugiperda provides new insights into genome evolution and horizontal gene transfer. Communications Biology, 8(1), 1–11. doi: 10.1038/s42003-025-07707-7 Hübner, S., Bercovich, N., Todesco, M., Mandel, J. R., Odenheimer, J., Ziegler, E., Lee, J. S., Baute, G. J., Owens, G. L., Grassa, C. J., Ebert, D. P., Ostevik, K. L., Moyers, B. T., Yakimowski, S., Masalia, R. R., Gao, L., Ćalić, I., Bowers, J. E., Kane, N. C., … Rieseberg, L. H. (2019). Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 5(1), 54–62. doi: 10.1038/s41477-018-0329-0 Hufnagel, B., Soriano, A., Taylor, J., Divol, F., Kroc, M., Sanders, H., Yeheyis, L., Nelson, M., & Péret, B. (2021). Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnology Journal, 19(12), 2532–2543. doi: 10.1111/pbi.13678 Hurgobin, B., Golicz, A. A., Bayer, P. E., Chan, C.-K. K., Tirnaz, S., Dolatabadian, A., Schiessl, S. V., Samans, B., Montenegro, J. D., Parkin, I. A. P., Pires, J. C., Chalhoub, B., King, G. J., Snowdon, R., Batley, J., & Edwards, D. (2018). Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnology Journal, 16(7), 1265–1274. doi: 10.1111/pbi.12867 Idänheimo, N., Gauthier, A., Salojärvi, J., Siligato, R., Brosché, M., Kollist, H., Mähönen, A. P., Kangasjärvi, J., & Wrzaczek, M. (2014). The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications, 445(2), 457–462. doi: 10.1016/j.bbrc.2014.02.013 Inaba, T., & Ito-Inaba, Y. (2010). Versatile roles of plastids in plant growth and development. Plant & Cell Physiology, 51(11), 1847–1853. doi: 10.1093/pcp/pcq147 Ioerger, T. R., Koo, S., No, E.-G., Chen, X., Larsen, M. H., Jacobs, W. R., Pillay, M., Sturm, A. W., & Sacchettini, J. C. (2009). Genome Analysis of Multi- and Extensively-Drug-Resistant Tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE, 4(11), e7778. doi: 10.1371/journal.pone.0007778 Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., & McVean, G. (2012). De novo assembly and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44(2), 226–232. doi: 10.1038/ng.1028 Isayenkov, S., Isner, J.-C., & Maathuis, F. J. M. (2011). Rice Two-Pore K+ Channels Are Expressed in Different Types of Vacuoles[W]. The Plant Cell, 23(2), 756–768. doi: 10.1105/tpc.110.081463 Ishikawa, T., Aki, T., Yanagisawa, S., Uchimiya, H., & Kawai-Yamada, M. (2015). Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress1[OPEN]. Plant Physiology, 169(2), 1333–1343. doi: 10.1104/pp.15.00445 Jiang, L., Wu, L., Wang, Y., Xu, Q., Xu, Z., & Chen, W. (2022). Research progress on the divergence and genetic basis of agronomic traits in xian and geng rice. The Crop Journal, 10(4), 924–931. doi: 10.1016/j.cj.2022.02.006 Jiang, M., Chen, M., Zeng, J., Du, Z., & Xiao, J. (2024). A comprehensive evaluation of the potential of three next-generation short-read-based plant pan-genome construction strategies for the identification of novel non-reference sequence. Frontiers in Plant Science, 15. doi: 10.3389/fpls.2024.1371222 Jiang, N., & Panaud, O. (2013). Transposable Element Dynamics in Rice and Its Wild Relatives. In Q. Zhang & R. A. Wing (Eds.), Genetics and Genomics of Rice (pp. 55–69). New York, NY: Springer. doi: 10.1007/978-1-4614-7903-1_5 Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M. C., Wang, B., Campbell, M. S., Stein, J. C., Wei, X., Chin, C.-S., Guill, K., Regulski, M., Kumari, S., Olson, A., Gent, J., Schneider, K. L., Wolfgruber, T. K., May, M. R., Springer, N. M., … Ware, D. (2017). Improved maize reference genome with single-molecule technologies. Nature, 546(7659), 524–527. doi: 10.1038/nature22971 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. doi: 10.1093/bioinformatics/btu031 Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., & Martinoia, E. (2011). Plant ABC Transporters. The Arabidopsis Book / American Society of Plant Biologists, 9, e0153. doi: 10.1199/tab.0153 Kaur, H., Shannon, L. M., & Samac, D. A. (2024). A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics, 25(1), 1022. doi: 10.1186/s12864-024-10931-w Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S., Childs, K. L., Davidson, R. M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S. S., Kim, J., Numa, H., … Matsumoto, T. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (New York, N.Y.), 6(1), 4. doi: 10.1186/1939-8433-6-4 Khan, J., Kokot, M., Deorowicz, S., & Patro, R. (2022). Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2. Genome Biology, 23(1), 190. doi: 10.1186/s13059-022-02743-6 Khan, M., Hussain, A., Yun, B.-W., & Mun, B.-G. (2024). Melatonin: The Multifaceted Molecule in Plant Growth and Defense. International Journal of Molecular Sciences, 25(12), 6799. doi: 10.3390/ijms25126799 Kierzkowski, D., Kmieciak, M., Piontek, P., Wojtaszek, P., Szweykowska-Kulinska, Z., & Jarmolowski, A. (2009). The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. The Plant Journal: For Cell and Molecular Biology, 59(5), 814–825. doi: 10.1111/j.1365-313X.2009.03915.x Kirilenko, B. M., Munegowda, C., Osipova, E., Jebb, D., Sharma, V., Blumer, M., Morales, A. E., Ahmed, A.-W., Kontopoulos, D.-G., Hilgers, L., Lindblad-Toh, K., Karlsson, E. K., Zoonomia Consortium‡, & Hiller, M. (2023). Integrating gene annotation with orthology inference at scale. Science (New York, N.Y.), 380(6643), eabn3107. doi: 10.1126/science.abn3107 Kong, S.-G., Suetsugu, N., Kikuchi, S., Nakai, M., Nagatani, A., & Wada, M. (2013). Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant & Cell Physiology, 54(1), 80–92. doi: 10.1093/pcp/pcs151 Konieczna, W., Mierek-Adamska, A., Warchoł, M., Skrzypek, E., & Dąbrowska, G. B. (2023). The involvement of metallothioneins and stress markers in response to osmotic stress in Avena sativa L. Journal of Agronomy and Crop Science, 209(3), 371–389. doi: 10.1111/jac.12633 Konieczna, W., Warchoł, M., Mierek-Adamska, A., Skrzypek, E., Waligórski, P., Piernik, A., & Dąbrowska, G. B. (2023). Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Scientific Reports, 13, 2486. doi: 10.1038/s41598-023-29394-2 Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(1), 59. doi: 10.1186/1471-2105-5-59 Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., & Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40(1), 37–44. doi: 10.1023/a:1026438615520 Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M., & Kamatani, Y. (2019). Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biology, 20(1), 117. doi: 10.1186/s13059-019-1720-5 Kronenberg, Z. N., Fiddes, I. T., Gordon, D., Murali, S., Cantsilieris, S., Meyerson, O. S., Underwood, J. G., Nelson, B. J., Chaisson, M. J. P., Dougherty, M. L., Munson, K. M., Hastie, A. R., Diekhans, M., Hormozdiari, F., Lorusso, N., Hoekzema, K., Qiu, R., Clark, K., Raja, A., … Eichler, E. E. (2018). High-resolution comparative analysis of great ape genomes. Science, 360(6393), eaar6343. doi: 10.1126/science.aar6343 Kumar, S., Zavaliev, R., Wu, Q., Zhou, Y., Cheng, J., Dillard, L., Powers, J., Withers, J., Zhao, J., Guan, Z., Borgnia, M. J., Bartesaghi, A., Dong, X., & Zhou, P. (2022). Structural basis of NPR1 in activating plant immunity. Nature, 605(7910), 561–566. doi: 10.1038/s41586-022-04699-w Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5(2), R12. doi: 10.1186/gb-2004-5-2-r12 Laine, V. N., Gossmann, T. I., van Oers, K., Visser, M. E., & Groenen, M. A. M. (2019). Exploring the unmapped DNA and RNA reads in a songbird genome. BMC Genomics, 20(1), 19. doi: 10.1186/s12864-018-5378-2 Lan, D., Fu, W., Ji, W., Mipam, T.-D., Xiong, X., Ying, S., Xiong, Y., Sheng, P., Ni, J., Bai, L., Shan, T., Kong, X., & Li, J. (2024). Pangenome and multi-tissue gene atlas provide new insights into the domestication and highland adaptation of yaks. Journal of Animal Science and Biotechnology, 15(1), 64. doi: 10.1186/s40104-024-01027-2 Lanctot, A., & Nemhauser, J. (2020). It’s Morphin’ Time: How multiple signals converge on ARF transcription factors to direct development. Current Opinion in Plant Biology, 57, 1–7. doi: 10.1016/j.pbi.2020.04.008 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923 Lee, D. J., Park, J. W., Lee, H. W., & Kim, J. (2009). Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. Journal of Experimental Botany, 60(13), 3935–3957. doi: 10.1093/jxb/erp230 Lee, J.-H., Venkatesh, J., Jo, J., Jang, S., Kim, G. W., Kim, J.-M., Han, K., Ro, N., Lee, H.-Y., Kwon, J.-K., Kim, Y.-M., Lee, T.-H., Choi, D., Van Deynze, A., Hill, T., Kfir, N., Freiman, A., Davila Olivas, N. H., Elkind, Y., … Kang, B.-C. (2022). High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. Horticulture Research, 9, uhac210. doi: 10.1093/hr/uhac210 Lee, Y.-R. J., Qiu, W., & Liu, B. (2015). Kinesin motors in plants: from subcellular dynamics to motility regulation. Current Opinion in Plant Biology, 28, 120–126. doi: 10.1016/j.pbi.2015.10.003 Li, C.-H., Wang, G., Zhao, J.-L., Zhang, L.-Q., Ai, L.-F., Han, Y.-F., Sun, D.-Y., Zhang, S.-W., & Sun, Y. (2014). The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice[C][W]. The Plant Cell, 26(6), 2538–2553. doi: 10.1105/tpc.114.125187 Li, Changbao, Zhou, A., & Sang, T. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936–1939. doi: 10.1126/science.1123604 Li, Changsheng, Xiang, X., Huang, Y., Zhou, Y., An, D., Dong, J., Zhao, C., Liu, H., Li, Y., Wang, Q., Du, C., Messing, J., Larkins, B. A., Wu, Y., & Wang, W. (2020). Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications, 11(1), 17. doi: 10.1038/s41467-019-14023-2 Li, Heng. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM (arXiv:1303.3997). arXiv. doi: 10.48550/arXiv.1303.3997 Li, Heng. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. doi: 10.1093/bioinformatics/bty191 Li, Heng, & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. doi: 10.1093/bioinformatics/btp324 Li, Heng, Feng, X., & Chu, C. (2020). The design and construction of reference pangenome graphs with minigraph. Genome Biology, 21(1), 265. doi: 10.1186/s13059-020-02168-z Li, Heng, Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England), 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352 Li, Hongbo, Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., Yang, Q., Fei, Z., Huang, S., & Zhang, Z. (2022). Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 13(1), 682. doi: 10.1038/s41467-022-28362-0 Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., Pei, L., Tu, L., Zhu, L., Chen, L.-L., Lindsey, K., Zhang, X., Jin, S., & Wang, M. (2021). Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biology, 22(1), 119. doi: 10.1186/s13059-021-02351-w Li, Lei, Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., & Yin, Y. (2009). Arabidopsis MYB30 is a Direct Target of BES1 and Cooperates with BES1 to Regulate Brassinosteroid-Induced Gene Expression. The Plant Journal : For Cell and Molecular Biology, 58(2), 275–286. doi: 10.1111/j.1365-313X.2008.03778.x Li, Li, Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13(9), 2178–2189. doi: 10.1101/gr.1224503 Li, R., Wu, M.-W., Liu, J., Xu, X., Bao, Y., & Liu, C.-M. (2025). NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. Frontiers in Plant Science, 16. doi: 10.3389/fpls.2025.1563065 Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., Wang, L., Wang, Y., Persson, S., & Peng, L. (2017). Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics, 18(1), 55. doi: 10.1186/s12864-016-3454-z Li, Yang, Liu, Y., Xie, Y., Wang, Y., Wang, J., Wang, H., Xia, L., & Xie, D. (2025). Long-read RNA sequencing enables full-length chimeric transcript annotation of transposable elements in lung adenocarcinoma. BMC Cancer, 25(1), 482. doi: 10.1186/s12885-025-13888-5 Li, Ying-hui, Zhou, G., Ma, J., Jiang, W., Jin, L., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S., Zuo, Q., Shi, X., Li, Y., Zhang, W., Hu, Y., Kong, G., Hong, H., Tan, B., … Qiu, L. (2014a). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10), 1045–1052. doi: 10.1038/nbt.2979 Li, Ying-hui, Zhou, G., Ma, J., Jiang, W., Jin, L., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S., Zuo, Q., Shi, X., Li, Y., Zhang, W., Hu, Y., Kong, G., Hong, H., Tan, B., … Qiu, L. (2014b). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10), 1045–1052. doi: 10.1038/nbt.2979 Liao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J. K., Monlong, J., Abel, H. J., Buonaiuto, S., Chang, X. H., Cheng, H., Chu, J., Colonna, V., Eizenga, J. M., Feng, X., Fischer, C., Fulton, R. S., … Paten, B. (2023). A draft human pangenome reference. Nature, 617(7960), 312–324. doi: 10.1038/s41586-023-05896-x Lin, K., Zhang, N., Severing, E. I., Nijveen, H., Cheng, F., Visser, R. G., Wang, X., de Ridder, D., & Bonnema, G. (2014a). Beyond genomic variation - comparison and functional annotation of three Brassica rapagenomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics, 15(1), 250. doi: 10.1186/1471-2164-15-250 Lin, K., Zhang, N., Severing, E. I., Nijveen, H., Cheng, F., Visser, R. G., Wang, X., de Ridder, D., & Bonnema, G. (2014b). Beyond genomic variation - comparison and functional annotation of three Brassica rapagenomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics, 15(1), 250. doi: 10.1186/1471-2164-15-250 Liu, Changyou, Wang, Y., Peng, J., Fan, B., Xu, D., Wu, J., Cao, Z., Gao, Y., Wang, X., Li, S., Su, Q., Zhang, Z., Wang, S., Wu, X., Shang, Q., Shi, H., Shen, Y., Wang, B., & Tian, J. (2022). High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Communications, 3(6), 100352. doi: 10.1016/j.xplc.2022.100352 Liu, Chenggang, Axtell, M. J., & Fedoroff, N. V. (2012). The Helicase and RNaseIIIa Domains of Arabidopsis Dicer-Like1 Modulate Catalytic Parameters during MicroRNA Biogenesis1[C][W][OA]. Plant Physiology, 159(2), 748–758. doi: 10.1104/pp.112.193508 Liu, Chuanxue, Peng, P., Li, W., Ye, C., Zhang, S., Wang, R., Li, D., Guan, S., Zhang, L., Huang, X., Guo, Z., Guo, J., Long, Y., Li, L., Pan, G., Tian, B., & Xiao, J. (2021). Deciphering variation of 239 elite japonica rice genomes for whole genome sequences-enabled breeding. Genomics, 113(5), 3083–3091. doi: 10.1016/j.ygeno.2021.07.002 Liu, J., Mo, D., Luo, L., Shi, Y., & Xu, S. (2025). Sheep pan-genome retrieves the lost sequences and genes during domestication and selection. Genomics, 117(3), 111047. doi: 10.1016/j.ygeno.2025.111047 Liu, J., Shi, Y., Mo, D., Luo, L., Xu, S., & Lv, F. (2024). The goat pan-genome reveals patterns of gene loss during domestication. Journal of Animal Science and Biotechnology, 15(1), 132. doi: 10.1186/s40104-024-01092-7 Liu, L., Zhou, Y., Szczerba, M. W., Li, X., & Lin, Y. (2010). Identification and application of a rice senescence-associated promoter. Plant Physiology, 153(3), 1239–1249. doi: 10.1104/pp.110.157123 Liu, M., Zhang, F., Lu, H., Xue, H., Dong, X., Li, Z., Xu, J., Wang, W., & Wei, C. (2024). PPanG: a precision pangenome browser enabling nucleotide-level analysis of genomic variations in individual genomes and their graph-based pangenome. BMC Genomics, 25(1), 405. doi: 10.1186/s12864-024-10302-5 Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A. P., Zhao, M., Ma, J., Yu, J., Huang, S., Wang, X., Wang, J., Lu, K., Fang, Z., Bancroft, I., Yang, T.-J., Hu, Q., Wang, X., Yue, Z., … Paterson, A. H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5(1), 3930. doi: 10.1038/ncomms4930 Liu, Xiaohui, Lu, T., Yu, S., Li, Y., Huang, Y., Huang, T., Zhang, L., Zhu, J., Zhao, Q., Fan, D., Mu, J., Shangguan, Y., Feng, Q., Guan, J., Ying, K., Zhang, Y., Lin, Z., Sun, Z., Qian, Q., … Han, B. (2007). A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Molecular Biology, 65(4), 403–415. doi: 10.1007/s11103-007-9174-7 Liu, Xuejiao, Yu, F., Yang, G., Liu, X., & Peng, S. (2022). Identification of TIFY gene family in walnut and analysis of its expression under abiotic stresses. BMC Genomics, 23, 190. doi: 10.1186/s12864-022-08416-9 Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C., & Tian, Z. (2020). Pan-Genome of Wild and Cultivated Soybeans. Cell, 182(1), 162-176.e13. doi: 10.1016/j.cell.2020.05.023 Lopus, M. (2020). Characterization of Drought Responsive Genes of CIPK Families in Rice, Maize and Sorghum. Journal of Rice Research and Developments, 3(1), Article 1. Retrieved from https://scholars.direct/Articles/rice-research/jrrd-3-012.php?jid=rice-research Lu, T., Yu, S., Fan, D., Mu, J., Shangguan, Y., Wang, Z., Minobe, Y., Lin, Z., & Han, B. (2008). Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 15(5), 285–295. doi: 10.1093/dnares/dsn018 Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., … Wang, J. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1(1), 18. doi: 10.1186/2047-217X-1-18 Ma, J., & Bennetzen, J. L. (2004). Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences, 101(34), 12404–12410. doi: 10.1073/pnas.0403715101 Ma, Q., Liu, S., Raggi, S., Doyle, S., Parizkova, B., Barange, D., Wilkinson, E., Crespo, I., Bygdell, J., Wingsle, G., Boer, R., Strader, L., Almqvist, F., Novak, O., & Robert, S. (2024). Identification of RACK1A as a component of the auxin-ethylene crosstalk regulating apical hook development in Arabidopsis thaliana. doi: 10.1101/2024.03.04.582885 Ma, X., Li, C., Huang, R., Zhang, K., Wang, Q., Fu, C., Liu, W., Sun, C., Wang, P., Wang, F., & Deng, X. (2021). Rice Brittle Culm19 Encoding Cellulose Synthase Subunit CESA4 Causes Dominant Brittle Phenotype But has No Distinct Influence on Growth and Grain Yield. Rice, 14(1), 95. doi: 10.1186/s12284-021-00536-2 Magoc, T., Pabinger, S., Canzar, S., Liu, X., Su, Q., Puiu, D., Tallon, L. J., & Salzberg, S. L. (2013). GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics, 29(14), 1718–1725. doi: 10.1093/bioinformatics/btt273 Majernik, S. N., Beaver, L., & Bradley, P. H. (2025). Small amounts of misassembly can have disproportionate effects on pangenome-based metagenomic analyses. mSphere, 0(0), e00857-24. doi: 10.1128/msphere.00857-24 Marcus, S., Lee, H., & Schatz, M. C. (2014). SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips. Bioinformatics, 30(24), 3476–3483. doi: 10.1093/bioinformatics/btu756 Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2010). Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 283(2), 185–196. doi: 10.1007/s00438-009-0506-y Matthews, C. A., Watson-Haigh, N. S., Burton, R. A., & Sheppard, A. E. (2024). A gentle introduction to pangenomics. Briefings in Bioinformatics, 25(6), bbae588. doi: 10.1093/bib/bbae588 Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics & Development, 15(6), 589–594. doi: 10.1016/j.gde.2005.09.006 Mehrotra, S., & Goyal, V. (2014). Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics, 12(4), 164–171. doi: 10.1016/j.gpb.2014.07.003 Mészáros, T., Helfer, A., Hatzimasoura, E., Magyar, Z., Serazetdinova, L., Rios, G., Bardóczy, V., Teige, M., Koncz, C., Peck, S., & Bögre, L. (2006). The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. The Plant Journal: For Cell and Molecular Biology, 48(4), 485–498. doi: 10.1111/j.1365-313X.2006.02888.x Mizuno, H., Katagiri, S., Kanamori, H., Mukai, Y., Sasaki, T., Matsumoto, T., & Wu, J. (2020). Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Scientific Reports, 10(1), 872. doi: 10.1038/s41598-020-57729-w Mohorović, P., Geldhof, B., Holsteens, K., Rinia, M., Daems, S., Reijnders, T., Ceusters, J., Van den Ende, W., & Van de Poel, B. (2024). Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. Plant Physiology, 195(1), 762–784. doi: 10.1093/plphys/kiad685 Molina, J., Sikora, M., Garud, N., Flowers, J. M., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B. A., Bustamante, C. D., Boyko, A. R., & Purugganan, M. D. (2011). Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8351–8356. doi: 10.1073/pnas.1104686108 Molitor, C., Kurowski, T. J., Fidalgo de Almeida, P. M., Kevei, Z., Spindlow, D. J., Chacko Kaitholil, S. R., Iheanyichi, J. U., Prasanna, H. C., Thompson, A. J., & Mohareb, F. R. (2024). A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. Frontiers in Plant Science, 15. doi: 10.3389/fpls.2024.1342739 Moner, A. M., Furtado, A., & Henry, R. J. (2018). Chloroplast phylogeography of AA genome rice species. Molecular Phylogenetics and Evolution, 127, 475–487. doi: 10.1016/j.ympev.2018.05.002 Montenegro, J. D., Golicz, A. A., Bayer, P. E., Hurgobin, B., Lee, H., Chan, C.-K. K., Visendi, P., Lai, K., Doležel, J., Batley, J., & Edwards, D. (2017). The pangenome of hexaploid bread wheat. The Plant Journal, 90(5), 1007–1013. doi: 10.1111/tpj.13515 Müller, S., & Livanos, P. (2019). Plant Kinesin-12: Localization Heterogeneity and Functional Implications. International Journal of Molecular Sciences, 20(17), 4213. doi: 10.3390/ijms20174213 Mwesigwa, S., Williams, L., Retshabile, G., Katagirya, E., Mboowa, G., Mlotshwa, B., Kyobe, S., Kateete, D. P., Wampande, E. M., Wayengera, M., Mpoloka, S. W., Mirembe, A. N., Kasvosve, I., Morapedi, K., Kisitu, G. P., Kekitiinwa, A. R., Anabwani, G., Joloba, M. L., Matovu, E., … Hanchard, N. A. (2021). Unmapped exome reads implicate a role for Anelloviridae in childhood HIV-1 long-term non-progression. NPJ Genomic Medicine, 6, 24. doi: 10.1038/s41525-021-00185-w Nachtweide, S., & Stanke, M. (2019). Multi-Genome Annotation with AUGUSTUS. In M. Kollmar (Ed.), Gene Prediction: Methods and Protocols (pp. 139–160). New York, NY: Springer. doi: 10.1007/978-1-4939-9173-0_8 Nahar, S., Kalita, J., Sahoo, L., & Tanti*, B. (2016). Morphophysiological and molecular effects of drought stress in rice. Annals of Plant Sciences, 5(09), 1409–1416. doi: 10.21746/aps.2016.09.001 Naranjo-Arcos, M., Srivastava, M., Deligne, F., Bhagat, P. K., Mansi, M., Sadanandom, A., & Vert, G. (2023). SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2217255120. doi: 10.1073/pnas.2217255120 Nattestad, M., & Schatz, M. (2016). Assemblytics: A web analytics tool for the detection of variants from an assembly. Bioinformatics, 32, btw369. doi: 10.1093/bioinformatics/btw369 Negi, P., Rai, A. N., & Suprasanna, P. (2016). Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.01448 Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., Johnson, A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., Sandstrom, R., Humbert, R., & Stamatoyannopoulos, J. A. (2012). BEDOPS: high-performance genomic feature operations. Bioinformatics, 28(14), 1919–1920. doi: 10.1093/bioinformatics/bts277 Neumann, G. B., Korkuć, P., Arends, D., Wolf, M. J., May, K., Reißmann, M., Elzaki, S., König, S., & Brockmann, G. A. (2021). Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics, 22, 905. doi: 10.1186/s12864-021-08237-2 Neumann, G. B., Korkuć, P., Reißmann, M., Wolf, M. J., May, K., König, S., & Brockmann, G. A. (2023). Unmapped short reads from whole-genome sequencing indicate potential infectious pathogens in German Black Pied cattle. Veterinary Research, 54(1), 95. doi: 10.1186/s13567-023-01227-0 Nguyen Duc, K., Ancev, T., & Randall, A. (2019). Evidence of climatic change in Vietnam: Some implications for agricultural production. Journal of Environmental Management, 231, 524–545. doi: 10.1016/j.jenvman.2018.10.011 Okuyama, Y., Kanzaki, H., Abe, A., Yoshida, K., Tamiru, M., Saitoh, H., Fujibe, T., Matsumura, H., Shenton, M., Galam, D. C., Undan, J., Ito, A., Sone, T., & Terauchi, R. (2011). A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. The Plant Journal, 66(3), 467–479. doi: 10.1111/j.1365-313X.2011.04502.x Olas, J. J., Apelt, F., Annunziata, M. G., John, S., Richard, S. I., Gupta, S., Kragler, F., Balazadeh, S., & Mueller-Roeber, B. (2021). Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Molecular Plant, 14(9), 1508–1524. doi: 10.1016/j.molp.2021.05.024 O’Neil, S. T., Dzurisin, J. D., Carmichael, R. D., Lobo, N. F., Emrich, S. J., & Hellmann, J. J. (2010). Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics, 11(1), 310. doi: 10.1186/1471-2164-11-310 Oren, E., Dafna, A., Tzuri, G., Halperin, I., Isaacson, T., Elkabetz, M., Meir, A., Saar, U., Ohali, S., La, T., Romay, C., Tadmor, Y., Schaffer, A. A., Buckler, E. S., Cohen, R., Burger, J., & Gur, A. (2022). Pan-genome and multi-parental framework for high-resolution trait dissection in melon (Cucumis melo). The Plant Journal, 112(6), 1525–1542. doi: 10.1111/tpj.16021 Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J. R. A., Hellinga, A. J., Lugo, C. S. B., Elliott, T. A., Ware, D., Peterson, T., Jiang, N., Hirsch, C. N., & Hufford, M. B. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 20(1), 275. doi: 10.1186/s13059-019-1905-y Pacleb, M., Jeong, O.-Y., Lee, J.-S., Padolina, T., Braceros, R., Pautin, L., Torollo, G., Sana, E. E., Del-Amen, J. Y., Baek, M.-K., Jo, S., Hyun, W.-J., Park, H.-S., Jeong, J.-M., Lee, J.-Y., Cho, J.-H., Lee, J.-H., Lee, S.-B., Choi, I.-R., … Park, D.-S. (2021). Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 11(11), 2253. doi: 10.3390/agronomy11112253 Paila, Y. D., Richardson, L. G., Inoue, H., Parks, E. S., McMahon, J., Inoue, K., & Schnell, D. J. (2016). Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife, 5, e12631. doi: 10.7554/eLife.12631 Paniagua, A., Agustín-García, C., Pardo-Palacios, F. J., Brown, T., De Maria, M., Denslow, N. D., Mazzoni, C. J., & Conesa, A. (2025a). Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq. Genome Research, 35(4), 1053–1064. doi: 10.1101/gr.279864.124 Paniagua, A., Agustín-García, C., Pardo-Palacios, F. J., Brown, T., De Maria, M., Denslow, N. D., Mazzoni, C. J., & Conesa, A. (2025b). Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq. Genome Research, 35(4), 1053–1064. doi: 10.1101/gr.279864.124 Park, S., Byeon, Y., & Back, K. (2013). Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research, 55(4), 409–415. doi: 10.1111/jpi.12088 Park, S.-J., Onizuka, S., Seki, M., Suzuki, Y., Iwata, T., & Nakai, K. (2019). A systematic sequencing-based approach for microbial contaminant detection and functional inference. BMC Biology, 17, 72. doi: 10.1186/s12915-019-0690-0 Parkin, I. A., Koh, C., Tang, H., Robinson, S. J., Kagale, S., Clarke, W. E., Town, C. D., Nixon, J., Krishnakumar, V., Bidwell, S. L., Denoeud, F., Belcram, H., Links, M. G., Just, J., Clarke, C., Bender, T., Huebert, T., Mason, A. S., Pires, J. C., … Sharpe, A. G. (2014). Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 15(6), R77. doi: 10.1186/gb-2014-15-6-r77 Pedersen, B., & Quinlan, A. (2017). Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics (Oxford, England), 34. doi: 10.1093/bioinformatics/btx699 Pellicer, J., Hidalgo, O., Dodsworth, S., & Leitch, I. J. (2018). Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 9(2), 88. doi: 10.3390/genes9020088 Peng, H., Chen, Z., Fang, Z., Zhou, J., Xia, Z., Gao, L., Chen, L., Li, L., Li, T., Zhai, W., & Zhang, W. (2015). Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Scientific Reports, 5, 12165. doi: 10.1038/srep12165 Peng, R., Xu, Y., Tian, S., Unver, T., Liu, Z., Zhou, Z., Cai, X., Wang, K., Wei, Y., Liu, Y., Wang, H., Hu, G., Zhang, Z., Grover, C. E., Hou, Y., Wang, Y., Li, P., Wang, T., Lu, Q., … Liu, F. (2022). Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons. Proceedings of the National Academy of Sciences, 119(39), e2208496119. doi: 10.1073/pnas.2208496119 Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420–1428. doi: 10.1093/bioinformatics/bts174 Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.00760 Phung, N. T. P., Mai, C. D., Hoang, G. T., Truong, H. T. M., Lavarenne, J., Gonin, M., Nguyen, K. L., Ha, T. T., Do, V. N., Gantet, P., & Courtois, B. (2016). Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biology, 16(1), 64. doi: 10.1186/s12870-016-0747-y Pignatelli, M., & Moya, A. (2011). Evaluating the fidelity of de novo short read metagenomic assembly using simulated data. PloS One, 6(5), e19984. doi: 10.1371/journal.pone.0019984 Piovesana, M., Wood, A. K. M., Smith, D. P., Deery, M. J., Bayliss, R., Carrera, E., Wellner, N., Kosik, O., Napier, J. A., Kurup, S., & Matthes, M. C. (2023). A point mutation in the kinase domain of CRK10 leads to xylem vessel collapse and activation of defence responses in Arabidopsis. Journal of Experimental Botany, 74(10), 3104–3121. doi: 10.1093/jxb/erad080 Platt, R. N., Blanco-Berdugo, L., & Ray, D. A. (2016). Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies. Genome Biology and Evolution, 8(2), 403–410. doi: 10.1093/gbe/evw009 Platten, J. D., Henry, A., Chebotarov, D., Schepler-Luu, V., & Cobb, J. N. (2025). The rice Trait Development Pipeline: a systematic framework guiding upstream research for impact in breeding, with examples from root biology. Plant and Soil. doi: 10.1007/s11104-025-07399-2 Podder, A., Ahmed, F. F., Suman, M. Z. H., Mim, A. Y., & Hasan, K. (2023). Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PloS One, 18(6), e0286994. doi: 10.1371/journal.pone.0286994 Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., Li, X., Li, Y., Liao, Y., Gao, Q., Tu, B., Yuan, H., Ma, B., Wang, Y., Qian, Y., … Li, S. (2021). Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 184(13), 3542-3558.e16. doi: 10.1016/j.cell.2021.04.046 Qin, X., Liu, J. H., Zhao, W. S., Chen, X. J., Guo, Z. J., & Peng, Y. L. (2013). Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant-Microbe Interactions: MPMI, 26(2), 227–239. doi: 10.1094/MPMI-05-12-0138-R Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841–842. doi: 10.1093/bioinformatics/btq033 Rebollo, I., Tolhurst, D., Obšteter, J., Rosas, J., & Gorjanc, G. (2025). Leveraging ancestral recombination graphs for quantitative genetic analysis of rice yield in indica and japonica subspecies (p. 2025.01.14.633033). bioRxiv. doi: 10.1101/2025.01.14.633033 Reddy Lachagari, V. B., Bodanapu, R., Chakravartty, N., Lekkala, S. P., Lalam, K., Kuriakose, B., Vemireddy, L. R., Velayutham, D., Thomas, G., Gupta, S., & Reddy, A. R. (2019). Uncovering genome wide novel allelic variants for eating and cooking quality in a popular Indian rice cultivar, Samba Mahsuri. Current Plant Biology, 18, 100111. doi: 10.1016/j.cpb.2019.100111 Ren, L., Tang, D., Zhao, T., Zhang, F., Liu, C., Xue, Z., Shi, W., Du, G., Shen, Y., Li, Y., & Cheng, Z. (2018). OsSPL regulates meiotic fate acquisition in rice. The New Phytologist, 218(2), 789–803. doi: 10.1111/nph.15017 Rice Annotation Project, Tanaka, T., Antonio, B. A., Kikuchi, S., Matsumoto, T., Nagamura, Y., Numa, H., Sakai, H., Wu, J., Itoh, T., Sasaki, T., Aono, R., Fujii, Y., Habara, T., Harada, E., Kanno, M., Kawahara, Y., Kawashima, H., Kubooka, H., … Echeverria, M. (2008). The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 36(Database issue), D1028-1033. doi: 10.1093/nar/gkm978 Rice Full-Length cDNA Consortium, National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team, Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C. J., … Yasunishi, A. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science (New York, N.Y.), 301(5631), 376–379. doi: 10.1126/science.1081288 Rijzaani, H., Bayer, P. E., Rouard, M., Doležel, J., Batley, J., & Edwards, D. (2022). The pangenome of banana highlights differences between genera and genomes. The Plant Genome, 15(1), e20100. doi: 10.1002/tpg2.20100 Rosani, U., Sollitto, M., Fogal, N., & Salata, C. (2024). Comparative analysis of Presence-Absence gene Variations in five hard tick species: impact and functional considerations. International Journal for Parasitology, 54(3), 147–156. doi: 10.1016/j.ijpara.2023.08.004 Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., Rowan, T. N., Low, W. Y., Zimin, A., Couldrey, C., Hall, R., Li, W., Rhie, A., Ghurye, J., McKay, S. D., Thibaud-Nissen, F., Hoffman, J., Murdoch, B. M., Snelling, W. M., … Medrano, J. F. (2020). De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience, 9(3), giaa021. doi: 10.1093/gigascience/giaa021 Roy, C., Sahid, S., Debgupta, J., Roy, A., Shee, D., Datta, R., & Paul, S. (2025). Osr40g3 Imparts Salt Tolerance by Regulating GF14e-mediated Gibberellin Metabolism to Activate EG45 in Rice. Plant & Cell Physiology, pcaf023. doi: 10.1093/pcp/pcaf023 Ruili, L., Jiaoling, W., Lei, X., Meihao, S., Keke, Y., & Hongyu, Z. (2020). Functional Analysis of Phosphate Transporter OsPHT4 Family Members in Rice. Rice Science, 27(6), 493–503. doi: 10.1016/j.rsci.2020.09.006 Ruperao, P., Thirunavukkarasu, N., Gandham, P., Selvanayagam, S., Govindaraj, M., Nebie, B., Manyasa, E., Gupta, R., Das, R. R., Odeny, D. A., Gandhi, H., Edwards, D., Deshpande, S. P., & Rathore, A. (2021). Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. Frontiers in Plant Science, 12, 666342. doi: 10.3389/fpls.2021.666342 Sabot, F., & Schulman, A. H. (2006). Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity, 97(6), 381–388. doi: 10.1038/sj.hdy.6800903 Saddhe, A. A., Manuka, R., & Penna, S. (2021). Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiologia Plantarum, 171(4), 739–755. doi: 10.1111/ppl.13283 Sahid, S., Roy, C., Paul, S., & Datta, R. (2020a). Rice lectin protein Osr40c1 imparts drought tolerance by modulating OsSAM2, OsSAP8 and chromatin-associated proteins (p. 2020.04.19.049288). bioRxiv. doi: 10.1101/2020.04.19.049288 Sahid, S., Roy, C., Paul, S., & Datta, R. (2020b). Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22), 7331–7346. doi: 10.1093/jxb/eraa400 Sahid, S., Roy, C., Paul, S., & Datta, R. (2020c). Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22), 7331–7346. doi: 10.1093/jxb/eraa400 Sahid, S., Roy, C., shee, D., Shee, R., Datta, R., & Paul, S. (2023). ZFP37, C3H, NAC94, and bHLH148 transcription factors regulate cultivar-specific drought response by modulating r40C1 gene expression in rice. Environmental and Experimental Botany, 214, 105480. doi: 10.1016/j.envexpbot.2023.105480 Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12(1), 87. doi: 10.1186/s12915-014-0087-z Sangiovanni, M., Granata, I., Thind, A. S., & Guarracino, M. R. (2019). From trash to treasure: detecting unexpected contamination in unmapped NGS data. BMC Bioinformatics, 20(Suppl 4), 168. doi: 10.1186/s12859-019-2684-x Santos, A. P., Serra, T., Figueiredo, D. D., Barros, P., Lourenço, T., Chander, S., Oliveira, M. M., & Saibo, N. J. M. (2011). Transcription Regulation of Abiotic Stress Responses in Rice: A Combined Action of Transcription Factors and Epigenetic Mechanisms. OMICS: A Journal of Integrative Biology, 15(12), 839–857. doi: 10.1089/omi.2011.0095 Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variations in plant genomes. Briefings in Functional Genomics, 13(4), 296–307. doi: 10.1093/bfgp/elu016 Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. doi: 10.1093/nar/gkab1112 Schatz, M. C., Maron, L. G., Stein, J. C., Wences, A. H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., Wright, M. H., Chia, J., Ware, D., McCouch, S. R., & McCombie, W. R. (2014a). Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 15(11), 506. doi: 10.1186/s13059-014-0506-z Schatz, M. C., Maron, L. G., Stein, J. C., Wences, A. H., Gurtowski, J., Biggers, E., Lee, H., Kramer, M., Antoniou, E., Ghiban, E., Wright, M. H., Chia, J., Ware, D., McCouch, S. R., & McCombie, W. R. (2014b). Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 15(11), 506. doi: 10.1186/s13059-014-0506-z Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., … Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278), 178–183. doi: 10.1038/nature08670 Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson, D. H., & Weigel, D. (2011). Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences, 108(25), 10249–10254. doi: 10.1073/pnas.1107739108 Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., von Haeseler, A., & Schatz, M. C. (2018). Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 15(6), 461–468. doi: 10.1038/s41592-018-0001-7 Shang, L., Li, X., He, H., Yuan, Q., Song, Y., Wei, Z., Lin, H., Hu, M., Zhao, F., Zhang, C., Li, Y., Gao, H., Wang, T., Liu, X., Zhang, H., Zhang, Y., Cao, S., Yu, X., Zhang, B., … Qian, Q. (2022). A super pan-genomic landscape of rice. Cell Research, 32(10), 878–896. doi: 10.1038/s41422-022-00685-z Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE, 11. doi: 10.1371/journal.pone.0163962 Sibbesen, J. A., Eizenga, J. M., Novak, A. M., Sirén, J., Chang, X., Garrison, E., & Paten, B. (2023). Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. Nature Methods, 20(2), 239–247. doi: 10.1038/s41592-022-01731-9 Singh, K., Sharma, D., Bhagat, P. K., Tayyeba, S., Noryang, S., & Sinha, A. K. (2024). Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. Plant Science: An International Journal of Experimental Plant Biology, 340, 111967. doi: 10.1016/j.plantsci.2023.111967 Slater, G. S. C., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6(1), 31. doi: 10.1186/1471-2105-6-31 Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39–50. Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9043–9048. doi: 10.1073/pnas.132266399 Steinberg, G. (2007). Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. New Phytologist, 174(4), 721–733. doi: 10.1111/j.1469-8137.2007.02072.x Steuernagel, B., Jupe, F., Witek, K., Jones, J. D. G., & Wulff, B. B. H. (2015). NLR-parser: rapid annotation of plant NLR complements. Bioinformatics, 31(10), 1665–1667. doi: 10.1093/bioinformatics/btv005 Stitzer, M. C., & Ross-Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395–408. doi: 10.1111/nph.15350 Strauß, T., Schattner, S., Hoth, S., & Walter, W. J. (2021). The Arabidopsis thaliana Kinesin-5 AtKRP125b Is a Processive, Microtubule-Sliding Motor Protein with Putative Plant-Specific Functions. International Journal of Molecular Sciences, 22(21), 11361. doi: 10.3390/ijms222111361 Sun, H., Jiao, W.-B., Krause, K., Campoy, J. A., Goel, M., Folz-Donahue, K., Kukat, C., Huettel, B., & Schneeberger, K. (2022). Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics, 54(3), 342–348. doi: 10.1038/s41588-022-01015-0 Sun, S., Zhou, Y., Chen, J., Shi, J., Zhao, H., Zhao, H., Song, W., Zhang, M., Cui, Y., Dong, X., Liu, H., Ma, X., Jiao, Y., Wang, B., Wei, X., Stein, J. C., Glaubitz, J. C., Lu, F., Yu, G., … Lai, J. (2018). Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nature Genetics, 50(9), 1289–1295. doi: 10.1038/s41588-018-0182-0 Swanson-Wagner, R. A., Eichten, S. R., Kumari, S., Tiffin, P., Stein, J. C., Ware, D., & Springer, N. M. (2010). Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Research, 20(12), 1689–1699. doi: 10.1101/gr.109165.110 Talenti, A., Powell, J., Hemmink, J. D., Cook, E. A. J., Wragg, D., Jayaraman, S., Paxton, E., Ezeasor, C., Obishakin, E. T., Agusi, E. R., Tijjani, A., Amanyire, W., Muhanguzi, D., Marshall, K., Fisch, A., Ferreira, B. R., Qasim, A., Chaudhry, U., Wiener, P., … Prendergast, J. G. D. (2022). A cattle graph genome incorporating global breed diversity. Nature Communications, 13, 910. doi: 10.1038/s41467-022-28605-0 Tang, T., Lu, J., Huang, J., He, J., McCouch, S. R., Shen, Y., Kai, Z., Purugganan, M. D., Shi, S., & Wu, C.-I. (2006). Genomic Variation in Rice: Genesis of Highly Polymorphic Linkage Blocks during Domestication. PLoS Genetics, 2(11), e199. doi: 10.1371/journal.pgen.0020199 Tao, Y., Luo, H., Xu, J., Cruickshank, A., Zhao, X., Teng, F., Hathorn, A., Wu, X., Liu, Y., Shatte, T., Jordan, D., Jing, H., & Mace, E. (2021). Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 7(6), 766–773. doi: 10.1038/s41477-021-00925-x Tay Fernandez, C. G., Marsh, J. I., Nestor, B. J., Gill, M., Golicz, A. A., Bayer, P. E., & Edwards, D. (2022). An SGSGeneloss-Based Method for Constructing a Gene Presence-Absence Table Using Mosdepth. Methods in Molecular Biology (Clifton, N.J.), 2512, 73–80. doi: 10.1007/978-1-0716-2429-6_5 Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M., Margarit y Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., … Fraser, C. M. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.” Proceedings of the National Academy of Sciences, 102(39), 13950–13955. doi: 10.1073/pnas.0506758102 Tonkin-Hill, G., Corander, J., & Parkhill, J. (2023). Challenges in prokaryote pangenomics. Microbial Genomics, 9(5), mgen001021. doi: 10.1099/mgen.0.001021 Tonkin-Hill, G., MacAlasdair, N., Ruis, C., Weimann, A., Horesh, G., Lees, J. A., Gladstone, R. A., Lo, S., Beaudoin, C., Floto, R. A., Frost, S. D. W., Corander, J., Bentley, S. D., & Parkhill, J. (2020). Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biology, 21, 180. doi: 10.1186/s13059-020-02090-4 Toshio, S., Yoshihara, T., Handa, K., Sato, M., Nagata, T., & Hasezawa, S. (2012). Metal Ion Homeostasis Mediated by NRAMP Transporters in Plant Cells - Focused on Increased Resistance to Iron and Cadmium Ion. doi: 10.5772/30905 Valliyodan, B., Cannon, S. B., Bayer, P. E., Shu, S., Brown, A. V., Ren, L., Jenkins, J., Chung, C. Y.-L., Chan, T.-F., Daum, C. G., Plott, C., Hastie, A., Baruch, K., Barry, K. W., Huang, W., Patil, G., Varshney, R. K., Hu, H., Batley, J., … Nguyen, H. T. (2019). Construction and comparison of three reference-quality genome assemblies for soybean. The Plant Journal, 100(5), 1066–1082. doi: 10.1111/tpj.14500 Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18(7), 411–424. doi: 10.1038/nrg.2017.26 van Lieshout, N., van der Burgt, A., de Vries, M. E., Ter Maat, M., Eickholt, D., Esselink, D., van Kaauwen, M. P. W., Kodde, L. P., Visser, R. G. F., Lindhout, P., & Finkers, R. (2020). Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum). G3 (Bethesda, Md.), 10(10), 3489–3495. doi: 10.1534/g3.120.401550 van Workum, D.-J. M., Mehrem, S. L., Snoek, B. L., Alderkamp, M. C., Lapin, D., Mulder, F. F. M., Van den Ackerveken, G., de Ridder, D., Schranz, M. E., & Smit, S. (2024). Lactuca super-pangenome reduces bias towards reference genes in lettuce research. BMC Plant Biology, 24(1), 1019. doi: 10.1186/s12870-024-05712-2 Vandepoele, K., Raes, J., De Veylder, L., Rouzé, P., Rombauts, S., & Inzé, D. (2002). Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. The Plant Cell, 14(4), 903–916. doi: 10.1105/tpc.010445 Varshney, R. K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M., Singh, N. P., Du, X., Upadhyaya, H. D., Khan, A. W., Wang, Y., Garg, V., Fan, G., Cowling, W. A., Crossa, J., Gentzbittel, L., Voss-Fels, K. P., Valluri, V. K., Sinha, P., … Liu, X. (2021). A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 599(7886), 622–627. doi: 10.1038/s41586-021-04066-1 Vassilevskaia, T. D., Bekman, E., Jackson, P., Pinto Ricardo, C., & Rodrigues-Pousada, C. (1996). Developmental expression and regulation by light of two closely related beta-tubulin genes in Lupinus albus. Plant Molecular Biology, 32(6), 1185–1189. doi: 10.1007/BF00041404 Vázquez-Castellanos, J. F., García-López, R., Pérez-Brocal, V., Pignatelli, M., & Moya, A. (2014). Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genomics, 15(1), 37. doi: 10.1186/1471-2164-15-37 Vitte, C., Ishii, T., Lamy, F., Brar, D., & Panaud, O. (2004). Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Molecular Genetics and Genomics, 272(5), 504–511. doi: 10.1007/s00438-004-1069-6 Vu, H. T. T., Nguyen ,Hoa Thi Thanh, Tran ,Khanh Dang, Khuat ,Trung Huu, & and Nakamura, C. (2016). Genetic diversity of Vietnamese lowland rice germplasms as revealed by SSR markers in relation to seedling vigour under submergence. Biotechnology & Biotechnological Equipment, 30(1), 17–25. doi: 10.1080/13102818.2015.1085330 Walton, J. D. (2001). Secondary Metabolites: Killing Pathogens. In eLS. John Wiley & Sons, Ltd. doi: 10.1038/npg.els.0000917 Wang, B., Hou, M., Shi, J., Ku, L., Song, W., Li, C., Ning, Q., Li, X., Li, C., Zhao, B., Zhang, R., Xu, H., Bai, Z., Xia, Z., Wang, H., Kong, D., Wei, H., Jing, Y., Dai, Z., … Wang, H. (2023). De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 55(2), 312–323. doi: 10.1038/s41588-022-01283-w Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B., & Tao, Y. (2007). Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394(1–2), 13–24. doi: 10.1016/j.gene.2007.01.006 Wang, F., Niu, H., Xin, D., Long, Y., Wang, G., Liu, Z., Li, G., Zhang, F., Qi, M., Ye, Y., Wang, Z., Pei, B., Hu, L., Yuan, C., & Chen, X. (2021). OsIAA18, an Aux/IAA Transcription Factor Gene, Is Involved in Salt and Drought Tolerance in Rice. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.738660 Wang, G., Li, X., Ye, N., Huang, M., Feng, L., Li, H., & Zhang, J. (2021). OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist, 230(5), 1925–1939. doi: 10.1111/nph.17300 Wang, He, Wang, Z.-X., Tian, H.-Y., Zeng, Y.-L., Xue, H., Mao, W.-T., Zhang, L.-Y., Chen, J.-N., Lu, X., Zhu, Y., Li, G.-B., Zhao, Z.-X., Zhang, J.-W., Huang, Y.-Y., Fan, J., Xu, P.-Z., Chen, X.-Q., Li, W.-T., Wu, X.-J., … Li, Y. (2025). The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. Molecular Plant, 18(1), 59–75. doi: 10.1016/j.molp.2024.11.015 Wang, Huan, Chen, D., Li, C., Tian, N., Zhang, J., Xu, J.-R., & Wang, C. (2019). Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genetics and Biology, 132, 103251. doi: 10.1016/j.fgb.2019.103251 Wang, J., Yang, W., Zhang, S., Hu, H., Yuan, Y., Dong, J., Chen, L., Ma, Y., Yang, T., Zhou, L., Chen, J., Liu, B., Li, C., Edwards, D., & Zhao, J. (2023). A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biology, 24(1), 19. doi: 10.1186/s13059-023-02861-9 Wang, M., Wang, G., Ji, J., & Wang, J. (2009). The effect of pds gene silencing on chloroplast pigment composition, thylakoid membrane structure and photosynthesis efficiency in tobacco plants. Plant Science, 177(3), 222–226. doi: 10.1016/j.plantsci.2009.04.006 Wang, Q., Hillwig, M. L., Okada, K., Yamazaki, K., Wu, Y., Swaminathan, S., Yamane, H., & Peters, R. J. (2012). Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster. The Journal of Biological Chemistry, 287(9), 6159–6168. doi: 10.1074/jbc.M111.305599 Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R. R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K. C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., … Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703), 43–49. doi: 10.1038/s41586-018-0063-9 Wang, Y., Liu, K., Liao, H., Zhuang, C., Ma, H., & Yan, X. (2008). The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biology (Stuttgart, Germany), 10(5), 548–562. doi: 10.1111/j.1438-8677.2008.00072.x Wang, Yifeng, Hou, Y., Qiu, J., Wang, H., Wang, S., Tang, L., Tong, X., & Zhang, J. (2020). Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytologist, 228(4), 1336–1353. doi: 10.1111/nph.16774 Wang, Z., & Dane, F. (2013). NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiologiae Plantarum, 35(5), 1397–1408. doi: 10.1007/s11738-012-1195-4 Wick, R. R., Schultz, M. B., Zobel, J., & Holt, K. E. (2015). Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 31(20), 3350–3352. doi: 10.1093/bioinformatics/btv383 Wittinghofer, A. (2016). GTP and ATP hydrolysis in biology. Biopolymers, 105(8), 419–421. doi: 10.1002/bip.22867 Woldegiorgis, S. T., Wu, T., Gao, L., Huang, Y., Zheng, Y., Qiu, F., Xu, S., Tao, H., Harrison, A., Liu, W., & He, H. (2022). Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs. Genes, 13(8), 1353. doi: 10.3390/genes13081353 Woo, J., MacPherson, C. R., Liu, J., Wang, H., Kiba, T., Hannah, M. A., Wang, X.-J., Bajic, V. B., & Chua, N.-H. (2012). The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biology, 12, 62. doi: 10.1186/1471-2229-12-62 Wu, J., Zhu, C., Pang, J., Zhang, X., Yang, C., Xia, G., Tian, Y., & He, C. (2014). OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. The Plant Journal, 80(6), 1118–1130. doi: 10.1111/tpj.12714 Xie, K., Chen, J., Wang, Q., & Yang, Y. (2014). Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. The Plant Cell, 26(7), 3077–3089. doi: 10.1105/tpc.114.126441 Xu, G., Zhang, X., Chen, W., Zhang, R., Li, Z., Wen, W., Warburton, M. L., Li, J., Li, H., & Yang, X. (2022). Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 22(1), 72. doi: 10.1186/s12870-022-03427-w Xu, N., Yu, Z., Wang, X., Lu, J., Chen, H., Sun, Q., Fei, C., Cui, X., Xu, Z., & Xu, Q. (2024). Influence of natural and artificial selection on the yield differences among progeny derived from crossing between subspecies in cultivated rice. New Crops, 1, 100020. doi: 10.1016/j.ncrops.2024.100020 Yan, H., Sun, M., Zhang, Z., Jin, Y., Zhang, A., Lin, C., Wu, B., He, M., Xu, B., Wang, J., Qin, P., Mendieta, J. P., Nie, G., Wang, J., Jones, C. S., Feng, G., Srivastava, R. K., Zhang, X., Bombarely, A., … Huang, L. (2023). Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 55(3), 507–518. doi: 10.1038/s41588-023-01302-4 Yang, C., Halitschke, R., & O’Connor, S. E. (2023). OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata. Plant Physiology, 194(4), 2580–2599. doi: 10.1093/plphys/kiad643 Yang, M., Kong, X., Zhou, C., Kuang, R., Wu, X., Liu, C., He, H., Xu, Z., & Wei, Y. (2025). Genomic insights into the domestication and genetic basis of yield in papaya. Horticulture Research, 12(5), uhaf045. doi: 10.1093/hr/uhaf045 Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., Wang, Y., Xu, P., Peng, Y., Shi, Z., Lan, L., Ma, Z., Yang, X., Zhang, Q., Bai, M., … Yan, J. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51(6), 1052–1059. doi: 10.1038/s41588-019-0427-6 Yang, T., Liu, R., Luo, Y., Hu, S., Wang, D., Wang, C., Pandey, M. K., Ge, S., Xu, Q., Li, N., Li, G., Huang, Y., Saxena, R. K., Ji, Y., Li, M., Yan, X., He, Y., Liu, Y., Wang, X., … Zong, X. (2022). Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics, 54(10), 1553–1563. doi: 10.1038/s41588-022-01172-2 Yao, W., Li, G., Zhao, H., Wang, G., Lian, X., & Xie, W. (2015). Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biology, 16(1), 187. doi: 10.1186/s13059-015-0757-3 Ye, H., Du, H., Tang, N., Li, X., & Xiong, L. (2009). Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 71(3), 291–305. doi: 10.1007/s11103-009-9524-8 Ye, Z., Yuan, Z., Xu, H., Pan, L., Chen, J., Anicet, G., Uzair, M., & Xu, D. (2022). Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley (Hordeum vulgare). Genes, 13. doi: 10.3390/genes13122376 Yin, L.-L., & Xue, H.-W. (2012). The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. The Plant Cell, 24(3), 1049–1065. doi: 10.1105/tpc.111.094854 Yokotani, N., Shikata, M., Ichikawa, H., Mitsuda, N., Ohme-Takagi, M., Minami, E., & Nishizawa, Y. (2018). OsWRKY24, a blast-disease responsive transcription factor, positively regulates rice disease resistance. Journal of General Plant Pathology, 84(2), 85–91. doi: 10.1007/s10327-018-0768-5 Yu, J., Golicz, A. A., Lu, K., Dossa, K., Zhang, Y., Chen, J., Wang, L., You, J., Fan, D., Edwards, D., & Zhang, X. (2019). Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnology Journal, 17(5), 881–892. doi: 10.1111/pbi.13022 Yuan, Y., Bayer, P. E., Batley, J., & Edwards, D. (2021). Current status of structural variation studies in plants. Plant Biotechnology Journal, 19(11), 2153–2163. doi: 10.1111/pbi.13646 Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821. doi: 10.1101/gr.074492.107 Zhang, C., Li, W., Wu, Y., Li, S., Hua, B., & Sun, H. (2025). Chloroplast Functionality at the Interface of Growth, Defense, and Genetic Innovation: A Multi-Omics and Technological Perspective. Plants, 14(6), 978. doi: 10.3390/plants14060978 Zhang, D., Liu, M., Tang, M., Dong, B., Wu, D., Zhang, Z., & Zhou, B. (2015). Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. Plant Science, 237, 24–32. doi: 10.1016/j.plantsci.2015.05.002 Zhang, Lei, Liang, J., Chen, H., Zhang, Z., Wu, J., & Wang, X. (2023). A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. Plant Biotechnology Journal, 21(5), 1022–1032. doi: 10.1111/pbi.14015 Zhang, Liyi, Hu, J., Han, X., Li, J., Gao, Y., Richards, C. M., Zhang, C., Tian, Y., Liu, G., Gul, H., Wang, D., Tian, Y., Yang, C., Meng, M., Yuan, G., Kang, G., Wu, Y., Wang, K., Zhang, H., … Cong, P. (2019). A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 10(1), 1494. doi: 10.1038/s41467-019-09518-x Zhang, L.-M., Luo, H., Liu, Z.-Q., Zhao, Y., Luo, J.-C., Hao, D.-Y., & Jing, H.-C. (2014). Genome-wide patterns of large-size presence/absence variants in sorghum. Journal of Integrative Plant Biology, 56(1), 24–37. doi: 10.1111/jipb.12121 Zhang, Long, You, R., Chen, H., Zhu, J., Lin, L., & Wei, C. (2023). A New SNP in AGPL2, Associated with Floury Endosperm in Rice, Is Identified Using a Modified MutMap Method. Agronomy, 13(5), 1381. doi: 10.3390/agronomy13051381 Zhang, T., Zhao, Y., Wang, Y., Liu, Z., & Gao, C. (2018). Comprehensive Analysis of MYB Gene Family and Their Expressions Under Abiotic Stresses and Hormone Treatments in Tamarix hispida. Frontiers in Plant Science, 9. doi: 10.3389/fpls.2018.01303 Zhang, W. J., Zhou, Y., Zhang, Y., Su, Y. H., & Xu, T. (2023). Protein phosphorylation: A molecular switch in plant signaling. Cell Reports, 42(7), 112729. doi: 10.1016/j.celrep.2023.112729 Zhang, Xiang, Long, Y., Chen, X., Zhang, B., Xin, Y., Li, L., Cao, S., Liu, F., Wang, Z., Huang, H., Zhou, D., & Xia, J. (2021). A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 21, 546. doi: 10.1186/s12870-021-03333-7 Zhang, Xiaohui, Liu, T., Wang, J., Wang, P., Qiu, Y., Zhao, W., Pang, S., Li, X., Wang, H., Song, J., Zhang, W., Yang, W., Sun, Y., & Li, X. (2021). Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Molecular Plant, 14(12), 2032–2055. doi: 10.1016/j.molp.2021.08.005 Zhao, E., Dong, L., Zhao, H., Zhang, H., Zhang, T., Yuan, S., Jiao, J., Chen, K., Sheng, J., Yang, H., Wang, P., Li, G., & Qin, Q. (2023). A Relationship Prediction Method for Magnaporthe oryzae-Rice Multi-Omics Data Based on WGCNA and Graph Autoencoder. Journal of Fungi (Basel, Switzerland), 9(10), 1007. doi: 10.3390/jof9101007 Zhao, Junli, Shi, M., Yu, J., & Guo, C. (2022). SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana. BMC Plant Biology, 22, 59. doi: 10.1186/s12870-022-03445-8 Zhao, Junliang, Bayer, P. E., Ruperao, P., Saxena, R. K., Khan, A. W., Golicz, A. A., Nguyen, H. T., Batley, J., Edwards, D., & Varshney, R. K. (2020). Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal, 18(9), 1946–1954. doi: 10.1111/pbi.13354 Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., Wang, Y., Fan, D., Zhao, Y., Wang, Z., Zhou, C., Chen, J., Zhu, C., Li, W., Weng, Q., … Huang, X. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 50(2), 278–284. doi: 10.1038/s41588-018-0041-z Zhou, P., Silverstein, K. A. T., Ramaraj, T., Guhlin, J., Denny, R., Liu, J., Farmer, A. D., Steele, K. P., Stupar, R. M., Miller, J. R., Tiffin, P., Mudge, J., & Young, N. D. (2017). Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics, 18(1), 261. doi: 10.1186/s12864-017-3654-1 Zhou, Yang, Yang, L., Han, X., Han, J., Hu, Y., Li, F., Xia, H., Peng, L., Boschiero, C., Rosen, B. D., Bickhart, D. M., Zhang, S., Guo, A., Van Tassell, C. P., Smith, T. P. L., Yang, L., & Liu, G. E. (2022). Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history. Genome Research, 32(8), 1585–1601. doi: 10.1101/gr.276550.122 Zhou, Yao, Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., Zhang, J., Lyu, H., Lin, T., Gao, Q., Saha, S., Mueller, L., Fei, Z., Städler, T., Xu, S., … Huang, S. (2022). Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 606(7914), 527–534. doi: 10.1038/s41586-022-04808-9 Zhu, Q., & Ge, S. (2005). Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist, 167(1), 249–265. doi: 10.1111/j.1469-8137.2005.01406.x Zhu, S.-Y., Yu, X.-C., Wang, X.-J., Zhao, R., Li, Y., Fan, R.-C., Shang, Y., Du, S.-Y., Wang, X.-F., Wu, F.-Q., Xu, Y.-H., Zhang, X.-Y., & Zhang, D.-P. (2007). Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 19(10), 3019–3036. doi: 10.1105/tpc.107.050666 Zhuang, Z., Bian, J., Ren, Z., Ta, W., & Peng, Y. (2025). Plant Aux/IAA Gene Family: Significance in Growth, Development and Stress Responses. Agronomy, 15(5), 1228. doi: 10.3390/agronomy15051228 Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., & Yorke, J. A. (2013). The MaSuRCA genome assembler. Bioinformatics, 29(21), 2669–2677. doi: 10.1093/bioinformatics/btt476 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97683 | - |
| dc.description.abstract | Rice (Oryza sativa L.) is an important food crop, exhibits remarkable genetic diversity across its indica and japonica subgroups, reflecting extensive adaptive evolution and selective breeding. While high-quality single-reference genomes have advanced rice genomics research, they inherently fail to capture the full spectrum of genetic variation within the species. Pangenome construction addresses this limitation by encompassing core, variable, and unique genomic regions. Vietnam, with its diverse geography and climate, harbors a rich repository of native and traditional rice landraces, representing an invaluable genetic resource. In this study, the first pangenome for Vietnamese rice landraces was constructed to comprehensively characterize their genetic landscape and uncover unique genomic regions. The pangenome was constructed using 20 geographically diverse Vietnamese rice landrace accessions, employing an iterative mapping and assembly approach with the IRGSP-1.0 as the base reference genome. The resulting pangenome consisted of 386.89 Mb, with 13.64 Mb contributed by novel sequences derived from Vietnamese rice landraces, of which 1.59 Mb (11.67%) constituted repetitive elements. Annotation of the entire pangenome revealed 37,292 genes, categorized into 33,710 core genes, 3,560 dispensable genes, and 22 unique genes. Notably, 673 genes were newly annotated from non-reference contigs, representing genomic regions absent in the IRGSP-1.0 reference but present in Vietnamese rice. Functional enrichment analysis indicated that core genes are vital for fundamental biological processes like plant growth, development, and stress response, while dispensable genes play critical roles in environmental adaptation, stress signaling, and regulatory flexibility, essential for local adaptation. We identified 33,758 genes conserved across all 20 Vietnamese rice landraces, with 3,570 of these associated with agronomically important traits. These conserved genes are fundamentally involved in macromolecular biosynthesis, metabolism, environmental sensing, and cellular homeostasis, highlighting their essential roles in maintaining cellular processes and influencing yield-related traits such as panicle length, grain size, and tiller number. The consistent presence of these genes underscores the potential of traditional Vietnamese germplasms for breeding programs focused on yield improvement and stress adaptation for food security. Furthermore, subspecies-specific analyses revealed distinct functional enrichments. Thirteen indica-specific conserved genes were identified, though none were directly linked to agronomically important traits. Conversely, among 68 japonica-specific conserved genes, three were associated with multiple agronomic traits and functionally enriched in pathways related to phytoalexin metabolism and biosynthesis, indicating their role in antimicrobial defense. Additionally, 243 japonica accessory genes, absent in all indica landraces, included 20 genes critical for yield and morphology, such as OsJAZ13 for panicle length and OsCDKF;2 for 1000-seed weight. Among 94 indica accessory genes, OsGLP1 was linked to cold tolerance and OsLOL1 to blast disease resistance, suggesting their contribution to stress adaptation. Comparative analysis of gene presence/absence variation (PAV) demonstrated significant functional divergence; while core genes exhibited broad functional distribution, japonica-specific gene sets showed pronounced enrichment in stress response traits, supporting the role of PAV in environmental adaptation. This study provides a valuable genomic resource for Vietnamese rice breeding programs, demonstrating how PAV contributes significantly to both genetic diversity and functional divergence, thereby offering invaluable insights for future breeding efforts aimed at enhancing climate resilience and ensuring food security. | zh_TW |
| dc.description.abstract | Rice (Oryza sativa L.) is an important food crop, exhibits remarkable genetic diversity across its indica and japonica subgroups, reflecting extensive adaptive evolution and selective breeding. While high-quality single-reference genomes have advanced rice genomics research, they inherently fail to capture the full spectrum of genetic variation within the species. Pangenome construction addresses this limitation by encompassing core, variable, and unique genomic regions. Vietnam, with its diverse geography and climate, harbors a rich repository of native and traditional rice landraces, representing an invaluable genetic resource. In this study, the first pangenome for Vietnamese rice landraces was constructed to comprehensively characterize their genetic landscape and uncover unique genomic regions. The pangenome was constructed using 20 geographically diverse Vietnamese rice landrace accessions, employing an iterative mapping and assembly approach with the IRGSP-1.0 as the base reference genome. The resulting pangenome consisted of 386.89 Mb, with 13.64 Mb contributed by novel sequences derived from Vietnamese rice landraces, of which 1.59 Mb (11.67%) constituted repetitive elements. Annotation of the entire pangenome revealed 37,292 genes, categorized into 33,710 core genes, 3,560 dispensable genes, and 22 unique genes. Notably, 673 genes were newly annotated from non-reference contigs, representing genomic regions absent in the IRGSP-1.0 reference but present in Vietnamese rice. Functional enrichment analysis indicated that core genes are vital for fundamental biological processes like plant growth, development, and stress response, while dispensable genes play critical roles in environmental adaptation, stress signaling, and regulatory flexibility, essential for local adaptation. We identified 33,758 genes conserved across all 20 Vietnamese rice landraces, with 3,570 of these associated with agronomically important traits. These conserved genes are fundamentally involved in macromolecular biosynthesis, metabolism, environmental sensing, and cellular homeostasis, highlighting their essential roles in maintaining cellular processes and influencing yield-related traits such as panicle length, grain size, and tiller number. The consistent presence of these genes underscores the potential of traditional Vietnamese germplasms for breeding programs focused on yield improvement and stress adaptation for food security. Furthermore, subspecies-specific analyses revealed distinct functional enrichments. Thirteen indica-specific conserved genes were identified, though none were directly linked to agronomically important traits. Conversely, among 68 japonica-specific conserved genes, three were associated with multiple agronomic traits and functionally enriched in pathways related to phytoalexin metabolism and biosynthesis, indicating their role in antimicrobial defense. Additionally, 243 japonica accessory genes, absent in all indica landraces, included 20 genes critical for yield and morphology, such as OsJAZ13 for panicle length and OsCDKF;2 for 1000-seed weight. Among 94 indica accessory genes, OsGLP1 was linked to cold tolerance and OsLOL1 to blast disease resistance, suggesting their contribution to stress adaptation. Comparative analysis of gene presence/absence variation (PAV) demonstrated significant functional divergence; while core genes exhibited broad functional distribution, japonica-specific gene sets showed pronounced enrichment in stress response traits, supporting the role of PAV in environmental adaptation. This study provides a valuable genomic resource for Vietnamese rice breeding programs, demonstrating how PAV contributes significantly to both genetic diversity and functional divergence, thereby offering invaluable insights for future breeding efforts aimed at enhancing climate resilience and ensuring food security. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:10:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:10:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgments i
Abstract iii Table of Contents v List of Tables x List of Figures xii Abbreviation xv Chapter 1. Introduction 1 1.1 Overview of Asian cultivated rice and Vietnamese rice landraces 1 1.2 What is pangenome? 4 1.3 Pangenome development methods 9 1.3.1 Gene-Based Pangenome Approaches 13 1.3.2 Whole Genome Sequence-Based Pangenomes 15 1.3.2.1 Linear Pangenomes 16 1.3.3 Graph-Based Pangenomes 19 1.4 Comparison of strategies used in constructing plant pangenomes 22 1.5 Application of iterative assembly pangenome approach in different plant species 24 1.6 Pangenome annotation and challenges 30 1.7 Gene PAV analysis and Implications of the pangenome 32 1.8 Factors which influence pangenome analysis 37 1.9 Research objectives 39 Chapter 2. Materials and Methods 40 2.1 Materials 40 2.2 Methods 42 2.2.1 Overview of the pangenome construction pipeline 42 2.2.2 Data collection 44 2.2.3 Quality control and data preprocessing 45 2.2.4 Aligner selection for read mapping to the reference 45 2.2.5 Assembler selection for de novo assembly of unmapped reads into novel contigs 46 2.2.6 Contamination detection and Removal from novo contigs 47 2.2.7 Validation of assembly by read remapping to the updated reference genome 49 2.2.8 Evaluation of pangenome assembly statistics 49 2.2.9 Gene prediction and annotation of the pangenome 50 2.2.10 Gene present and absent variation analysis 53 2.2.11 Identification of unique genomic among 20 Vietnamese rice landrace accessions 55 2.2.12 Functional annotation and GO enrichment analysis 58 Chapter 3. Results 62 3.1 Quality control and data preprocessing results 62 3.2 Aligner selection and mapping the reads to the reference genome 65 3.3 Assembler selection and de novo assembly performance 67 3.4 Mapping paired-end reads to the reference genome and extraction of unmapped reads 69 3.5 De novo assembly of unmapped reads into novel contigs and assembly validation 72 3.6 Contamination detection and removal from novel contigs results 74 3.7 Expansion of the pangenome results 78 3.8 Repeat identification in the rice pangenome and non-reference contigs 81 3.9 Gene prediction and annotation results 84 3.10 Gene presence and absence variation and pangenome classification results 89 3.11 Functional classification and GO enrichment analysis for the Core, Dispensable, Unique genes and genes detected within non-reference sequences 93 Core genes 93 Dispensable genes 101 Unique genes 106 Genes annotated within non-reference sequences 108 3.12 Functional classification and GO enrichment analysis for unique and conserved genes among 20 Vietnamese rice landrace accessions 111 Group 1: Genes conserved across all 20 Vietnamese rice landrace accessions (conserved genes in all landraces) 112 Group 2: Genes conserved specifically in all indica accessions and completely absent in all japonica accessions (indica-specific conserved genes) 118 Group 3: Genes conserved specifically in all japonica accessions and completely absent in all indica rice accessions (japonica-specific conserved genes) 119 Group 4: Genes present in both indica and japonica groups, but not consistently across all accessions (indica/japonica shared variable genes) 121 Group 5: Genes present in some japonica accessions but completely absent in all indica landrace accessions (japonica accessory genes) 124 Group 6: Genes present in some indica accessions but completely absent in all japonica accessions (indica accessory genes) 127 3.13 Agronomy important traits within each group 130 Group 1: Genes conserved across all 20 Vietnamese rice landrace accessions (conserved genes in all landraces) 130 Group 2: Genes conserved specifically in all indica accessions and completely absent in all japonica accessions (indica-specific conserved genes) 139 Group 3: Genes conserved specifically in all japonica accessions and completely absent in all indica rice accessions (japonica-specific conserved genes) 140 Group 4: Genes present in both indica and japonica groups, but not consistently across all accessions (indica/japonica shared variable genes) 142 Group 5: Genes present in some japonica accessions but completely absent in all indica landrace accessions (japonica accessory genes) 146 Group 6: Genes present in some indica accessions but completely absent in all japonica accessions (indica accessory genes) 147 Statistical comparison of Trait Ontology classes across gene groups 148 Chapter 4. Discussions 152 4.1 Pangenome construction using iterative mapping and assembly approach 152 4.2 Pangenome annotation 161 4.3 Gene presence and absence variation and pangenome gene analysis results 165 4.4 Functional annotation of the core, dispensable and unique genes in the rice pangenome 171 4.4.1 Core genes 171 4.4.2 Dispensable genes 183 4.4.3 Unique genes 189 4.4.4 Non-reference genes 191 4.5 Conserved genomic regions among Vietnamese rice landraces and associated with agronomy important traits 191 4.6 Unique genomic region among Vietnamese rice landraces and function annotation associated with agronomy important traits 196 4.7 Comparison of Agronomy Important traits class among conserved and unique genes in Vietnamese rice landraces 202 Chapter 5. Conclusions and Perspectives 206 References 213 Supplementary 247 | - |
| dc.language.iso | en | - |
| dc.subject | 籼稻 | zh_TW |
| dc.subject | 粳稻 | zh_TW |
| dc.subject | 特有基因 | zh_TW |
| dc.subject | 越南稻作地方品種 | zh_TW |
| dc.subject | 泛基因組 | zh_TW |
| dc.subject | japonica | en |
| dc.subject | Pangenome | en |
| dc.subject | Vietnamese rice landraces | en |
| dc.subject | unique genes | en |
| dc.subject | indica | en |
| dc.title | Pangenome Analysis of Vietnamese Rice Landraces: Towards the Identification of Unique Genomic Regions for Rice Improvement | zh_TW |
| dc.title | Pangenome Analysis of Vietnamese Rice Landraces: Towards the Identification of Unique Genomic Regions for Rice Improvement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林耀正;熊谷真彥 | zh_TW |
| dc.contributor.oralexamcommittee | Yao-Cheng Lin;Masahiko Kumagai | en |
| dc.subject.keyword | 泛基因組,越南稻作地方品種,特有基因,籼稻,粳稻, | zh_TW |
| dc.subject.keyword | Pangenome,Vietnamese rice landraces,unique genes,indica,japonica, | en |
| dc.relation.page | 259 | - |
| dc.identifier.doi | 10.6342/NTU202501377 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
| dc.date.embargo-lift | 2025-07-12 | - |
| 顯示於系所單位: | 全球農業科技與基因體科學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
