請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97680完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳家麟 | zh_TW |
| dc.contributor.advisor | Ja-Ling Wu | en |
| dc.contributor.author | 賴政霖 | zh_TW |
| dc.contributor.author | Cheng-Lin Lai | en |
| dc.date.accessioned | 2025-07-11T16:09:19Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-02 | - |
| dc.identifier.citation | [1] V. Asnani, X. Yin, T. Hassner, S. Liu, and X. Liu. Proactive image manipulation detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 15386–15395, 2022.
[2] V. Asnani, X. Yin, T. Hassner, and X. Liu. Malp: Manipulation localization using a proactive scheme. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12343–12352, 2023. [3] S. Baluja. Hiding images in plain sight: Deep steganography. Advances in neural information processing systems, 30, 2017. [4] N. Beuve, W. Hamidouche, and O. Déforges. Waterlo: Protect images from deep-fakes using localized semi-fragile watermark. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 393–402, 2023. [5] Censys. The global state of Internet of Healthcare Things (IoHT) exposures on public-facing networks. https://censys.com/blog/state-of-internet-of-healthcare-things, 2024. Censys Blog, Mar. 26, 2024. [Online]. [6] L. Chen, X. Chu, X. Zhang, and J. Sun. Simple baselines for image restoration. In European conference on computer vision, pages 17–33. Springer, 2022. [7] P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon. The stable signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22466–22477, 2023. [8] J. Fridrich, M. Goljan, and R. Du. Detecting LSB steganography in color, and gray-scale images. IEEE multimedia, 8(4):22–28, 2001. [9] J. Jing, X. Deng, M. Xu, J. Wang, and Z. Guan. Hinet: Deep image hiding by invertible network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4733–4742, 2021. [10] Z. Kuş and M. Aydin. Medsegbench: A comprehensive benchmark for medical image segmentation in diverse data modalities. Scientific Data, 11(1):1283, 2024. [11] J. Li, G. Zhu, C. Hua, M. Feng, B. Bennamoun, P. Li, X. Lu, J. Song, P. Shen, X. Xu, et al. A systematic collection of medical image datasets for deep learning. ACM Computing Surveys, 56(5):1–51, 2023. [12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft Coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, part V 13, pages 740–755. Springer, 2014. [13] G. Litjens, R. Toth, W. Van De Ven, C. Hoeks, S. Kerkstra, B. Van Ginneken, G. Vincent, G. Guillard, N. Birbeck, J. Zhang, et al. Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. Medical image analysis, 18(2):359–373, 2014. [14] S.-P. Lu, R. Wang, T. Zhong, and P. L. Rosin. Large-capacity image steganography based on invertible neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10816–10825, 2021. [15] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693, 1989. [16] McAfee. McAfee researchers find poor security exposes medical data to cyber-criminals. https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/, 2018. McAfee Blog, 2018. [Online]. [17] Y. Mirsky, T. Mahler, I. Shelef, and Y. Elovici. {CT-GAN}: Malicious tampering of 3d medical imagery using deep learning. In 28th USENIX Security Symposium (USENIX Security 19), pages 461–478, 2019. [18] S. P. Morozov, A. E. Andreychenko, I. A. Blokhin, P. B. Gelezhe, A. P. Gonchar, A. E. Nikolaev, N. A. Pavlov, V. Y. Chernina, and V. A. Gombolevskiy. MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic. Digital Diagnostics, 1(1):49–59, 2020. [19] C. Mou, Y. Xu, J. Song, C. Zhao, B. Ghanem, and J. Zhang. Large-capacity and flexible video steganography via invertible neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22606–22615, 2023. [20] P. Neekhara, S. Hussain, X. Zhang, K. Huang, J. McAuley, and F. Koushanfar. Facesigns: semi-fragile watermarks for media authentication. ACM Transactions on Multimedia Computing, Communications and Applications, 20(11):1–21, 2024. [21] E. C. Norris, C. Halaska, P. B. Sachs, C.-T. Lin, K. Sanfilippo, and J. M. Honce. Understanding patient experiences, opinions, and actions taken after viewing their own radiology images online: web-based survey. JMIR Formative Research, 6(4):e29496, 2022. [22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695, 2022. [23] N. Ruiz, S. A. Bargal, and S. Sclaroff. Disrupting deepfakes: Adversarial attacks against conditional image translation networks and facial manipulation systems. In Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pages 236–251. Springer, 2020. [24] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. Advances in neural information processing systems, 35:36479–36494, 2022. [25] A. M. Tahir, M. E. Chowdhury, A. Khandakar, T. Rahman, Y. Qiblawey, U. Khurshid, S. Kiranyaz, N. Ibtehaz, M. S. Rahman, S. Al-Maadeed, et al. COVID-19 infection localization and severity grading from chest x-ray images. Computers in biology and medicine, 139:105002, 2021. [26] M. Tancik, B. Mildenhall, and R. Ng. Stegastamp: Invisible hyperlinks in physical photographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2117–2126, 2020. [27] R. Wang, F. Juefei-Xu, M. Luo, Y. Liu, and L. Wang. Faketagger: Robust safeguards against deepfake dissemination via provenance tracking. In Proceedings of the 29th ACM International Conference on Multimedia, pages 3546–3555, 2021. [28] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros. CNN-generated images are surprisingly easy to spot… for now. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8695–8704, 2020. [29] X. Weng, Y. Li, L. Chi, and Y. Mu. High-capacity convolutional video steganography with temporal residual modeling. In Proceedings of the 2019 on International Conference on Multimedia Retrieval, pages 87–95, 2019. [30] X. Wu, X. Liao, and B. Ou. Sepmark: Deep separable watermarking for unified source tracing and deepfake detection. In Proceedings of the 31st ACM International Conference on Multimedia, pages 1190–1201, 2023. [31] R. Xu, M. Hu, D. Lei, Y. Li, D. Lowe, A. Gorevski, M. Wang, E. Ching, and A. Deng. Invismark: Invisible and robust watermarking for AI-generated image provenance. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 909–918. IEEE, 2025. [32] C.-Y. Yeh, H.-W. Chen, H.-H. Shuai, D.-N. Yang, and M.-S. Chen. Attack as the best defense: Nullifying image-to-image translation GANs via limit-aware adversarial attack. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16188–16197, 2021. [33] X. Zhang, R. Li, J. Yu, Y. Xu, W. Li, and J. Zhang. Editguard: Versatile image watermarking for tamper localization and copyright protection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11964–11974, 2024. [34] Y. Zhao, B. Liu, M. Ding, B. Liu, T. Zhu, and X. Yu. Proactive deepfake defence via identity watermarking. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 4602–4611, 2023. [35] Y. Zhao, B. Liu, T. Zhu, M. Ding, X. Yu, and W. Zhou. Proactive image manipulation detection via deep semi-fragile watermark. Neurocomputing, 585:127593, 2024. [36] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 657–672, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97680 | - |
| dc.description.abstract | 隨著醫療系統的數位化,醫療設備曝露於網際網路上已成為嚴重的資安風險。再加上生成式模型的快速進展,攻擊者如今能夠進行高度擬真的醫療影像竄改,甚至連放射科醫師也難以察覺,嚴重威脅病人安全與臨床信任。為因應此問題,本研究聚焦於醫療影像真實性的兩大面向:來源識別(ownership identification)與內容保護中的竄改定位(tampering localization)。過往的浮水印技術多採取全圖嵌入雙重浮水印來同時達成這兩項目標,但識別浮水印與定位浮水印之間會互相干擾,導致影像品質明顯下降,尤其影響診斷區域。為解決此問題,本研究利用醫療影像中感興趣區域(ROI)與非感興趣區域(RONI)的結構差異,提出區域可控的浮水印嵌入機制:將具高破壞性的識別浮水印限制嵌入於RONI,並將高品質的脆弱定位浮水印覆蓋整張影像。實驗結果顯示,即使面對先進的深度學習型竄改,本方法仍能有效維持ROI品質,同時達成高準確度的病灶級竄改定位。在理論上,本研究提出的區域感知浮水印嵌入機制提升了醫療浮水印的控制性;在實務上,則可於不影響診斷可用性的前提下,強化遠距醫療與醫院影像系統的資訊完整性,促進如遠距照護與病患影像安全分享等應用的實現。 | zh_TW |
| dc.description.abstract | With the digitization of healthcare systems, the exposure of medical devices on the internet has become a severe cybersecurity risk. Coupled with recent advances in generative models, attackers can now perform highly realistic manipulations of medical images that even radiologists fail to detect, threatening patient safety and clinical trust. This study addresses the dual dimensions of medical image authenticity: ownership identification and tampering localization for content protection. Prior watermarking approaches embed dual watermarks globally to tackle this dual problem. However, the interference between identification and localization watermarks leads to significant image quality degradation, especially in diagnostic regions. To overcome this, we leverage the structural distinction between Regions of Interest (ROI) and Regions of Non-Interest (RONI) in medical images. By proposing a region-controllable mechanism, we successfully control the robust identification watermarks to be embedded only in RONI, while the high-quality fragile localization watermarks cover the full image. Experiments show our method preserves ROI quality while achieving superior lesion-level tamper localization, even under advanced deep learning-based manipulations. Theoretically, our region-aware embedding mechanism improves controllability in medical watermarking. Practically, it enhances the integrity of telemedicine applications and hospital imaging systems without sacrificing diagnostic usability, enabling real-world applications such as remote healthcare and secure patient image sharing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:09:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:09:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iv List of Figures vii List of Tables x Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Defenses Against AI-Generated Misinformation 4 2.2 Deep Learning-Based Data Hiding: Watermarking vs. Steganography 5 2.3 Watermarking Applications for Tamper Detection/Localization 6 Chapter 3 Proposed Method 9 3.1 Overview 9 3.1.1 Objective 9 3.1.2 Properties of the Two Types of Watermarks 10 3.1.3 Framework Design and Forensic Process 11 3.2 Network Architecture 13 3.2.1 Localization Watermark Embedder/Extractor 13 3.2.2 Identification Watermark Embedder/Extractor 15 3.3 Region-Controllable Identification Watermark Embedding via Multi-level Masking 17 3.4 Constructing the Training Pipeline 20 3.4.1 Identification Watermark Embedder/Extractor Training 20 3.4.2 Localization Watermark Embedder/Extractor Training 22 3.4.3 Inference Pipeline 23 Chapter 4 Experiment 24 4.1 Experiment Setup 24 4.2 Visual Quality Assessment 26 4.3 Effectiveness of the Proposed Region-Controllable Identification Watermark Embedding via Multilevel Masking 30 4.3.1 Purpose and the Evaluation 30 4.3.2 Visualizing the Embedding Pattern 31 4.4 Tampering Localization 32 4.4.1 Tampering Scenarios 32 4.4.2 Performance Evaluation in Tampering Localization 34 4.5 Robustness Evaluation of the Identification Watermark Embedder 37 4.5.1 Training for Robustness Enhancement 40 4.5.2 Robustness Evaluation 42 Chapter 5 Conclusions 43 References 44 Appendix A — Impact of Template Color on Visual Quality and Tamper Localization Performance 50 A.1 Visual Quality Performance 51 A.2 Tamper Localizaiton Performance 51 | - |
| dc.language.iso | en | - |
| dc.subject | 區域可控浮水印嵌入 | zh_TW |
| dc.subject | 身份驗證 | zh_TW |
| dc.subject | 篡改定位 | zh_TW |
| dc.subject | 醫學影像 | zh_TW |
| dc.subject | Region-Controllable Watermark Embedding | en |
| dc.subject | Medical Imaging | en |
| dc.subject | Tamper Localization | en |
| dc.subject | Ownership Identification | en |
| dc.title | 用於醫學影像的雙重浮水印機制:擁有者識別與篡改定位 | zh_TW |
| dc.title | Dual Watermarking Scheme for Ownership Identification and Tamper Localization in Medical Images | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡敏君;陳文進;許超雲 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Chun Hu;Wen-Chin Chen;Chau-Yun Hsu | en |
| dc.subject.keyword | 醫學影像,篡改定位,身份驗證,區域可控浮水印嵌入, | zh_TW |
| dc.subject.keyword | Medical Imaging,Tamper Localization,Ownership Identification,Region-Controllable Watermark Embedding, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202501422 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
