請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97671完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅立 | zh_TW |
| dc.contributor.advisor | Li Lo | en |
| dc.contributor.author | 吳立芃 | zh_TW |
| dc.contributor.author | Li-Peng Wu | en |
| dc.date.accessioned | 2025-07-09T16:20:18Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-24 | - |
| dc.identifier.citation | Adkins, J. F., McIntyre, K., & Schrag, D. P. (2002). The salinity, temperature, and delta18O of the glacial deep ocean. Science, 298(5599), 1769-1773. https://doi.org/10.1126/science.1076252
Alonso-Garcia, M., Sierro, F. J., & Flores, J. A. (2011). Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800–400ka) and their implications for ocean circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3), 268-280. https://doi.org/https://doi.org/10.1016/j.palaeo.2011.09.004 Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., & Burckle, L. H. (2009). Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2. Science, 323(5920), 1443-1448. https://doi.org/10.1126/science.1167441 Anderson, R. F., Chase, Z., Fleisher, M. Q., & Sachs, J. (2002). The Southern Ocean's biological pump during the last glacial maximum. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9-10), 1909-1938. Bard, E., & Rickaby, R. E. M. (2009). Migration of the subtropical front as a modulator of glacial climate. Nature, 460(7253), 380-383. https://doi.org/10.1038/nature08189 Barker, S., & Elderfield, H. (2002). Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO<sub>2</sub>. Science, 297(5582), 833-836. https://doi.org/10.1126/science.1072815 Barker, S., Elderfield, H., & Greaves, M. (2003). A study of cleaning procedure used for foraminiferal Mg/Ca Paleothermometry. Geochem. Geophys. Geosyst., 4. https://doi.org/10.1029/2003GC000559 Bartoli, G., Hönisch, B., & Zeebe, R. E. (2011). Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4). https://doi.org/https://doi.org/10.1029/2010PA002055 Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., & Lea, D. W. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237(1), 33-44. https://doi.org/https://doi.org/10.1016/j.epsl.2005.06.020 Bé, A. W. (1969). Planktonic foraminifera. Antarctic Map Folio Series, American Geographical Society, 9-12. Beichner, R. J., & Serway, R. (2000). Physics for scientists and engineers with modern physics. In: Orlando, FL: Saunders College Publishing. Bemis, B. E., Spero, H. J., Lea, D. W., & Bijma, J. (2000). Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera). Marine Micropaleontology, 38(3), 213-228. https://doi.org/https://doi.org/10.1016/S0377-8398(00)00006-2 Berger, W. H. (1970). Planktonic foraminifera: selective solution and the lysocline. Marine Geology, 8(2), 111-138. Berggren, W. A. (1972). Late Pliocene-Pleistocene glaciation. Initial Reports of the Deep Sea Drilling Project, 12, 953-963. Boyer, T. P., Antonov, J. I., Baranova, O. K., Garcia, H. E., Johnson, D. R., Mishonov, A. V., O'Brien, T. D., Seidov, D., Smolyar, I., & Zweng, M. M. (2009). World ocean database 2009. Boyer, T. P., Antonov, J. I., Garcia, H., Johnson, D., Locarnini, R., Mishonov, A., Pitcher, M., Baranova, O., & Smolyar, I. (2006). NOAA atlas NESDIS 60. World ocean database 2005. Broecker, W. S., Sutherland, S., & Peng, T.-H. (1999). A possible 20th-century slowdown of Southern Ocean deep water formation. Science, 286(5442), 1132-1135. Caballero‐Gill, R., Herbert, T. D., & Dowsett, H. (2019). 100‐kyr paced climate change in the Pliocene warm period, Southwest Pacific. Paleoceanography and Paleoclimatology, 34(4), 524-545. Caldeira, K., & Duffy, P. B. (2000). The Role of the Southern Ocean in Uptake and Storage of Anthropogenic Carbon Dioxide. Science, 287(5453), 620-622. https://doi.org/10.1126/science.287.5453.620 Cande, S. C., & Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100(B4), 6093-6095. https://doi.org/https://doi.org/10.1029/94JB03098 Carter, L., Bostock-Lyman, H., & Bowen, M. (2022). Water masses, circulation and change in the modern Southern Ocean. In Antarctic climate evolution (pp. 165-197). Elsevier. Chandler, D., & Langebroek, P. (2021). Southern Ocean sea surface temperature synthesis: Part 1. Evaluation of temperature proxies at glacial-interglacial time scales. Quaternary Science Reviews, 271. https://doi.org/10.1016/j.quascirev.2021.107191 Chang, Y.-P., Wang, W.-L., Yokoyama, Y., Matsuzaki, H., Kawahata, H., & Chen, M.-T. (2008). Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough). Terrestrial Atmospheric and Oceanic Sciences, 19(4), 389-401. Consortium*†, T. C. C. P. I. P., Hönisch, B., Royer, D. L., Breecker, D. O., Polissar, P. J., Bowen, G. J., Henehan, M. J., Cui, Y., Steinthorsdottir, M., McElwain, J. C., Kohn, M. J., Pearson, A., Phelps, S. R., Uno, K. T., Ridgwell, A., Anagnostou, E., Austermann, J., Badger, M. P. S., Barclay, R. S.,…Zhang, L. (2023). Toward a Cenozoic history of atmospheric CO<sub>2</sub>. Science, 382(6675), eadi5177. https://doi.org/10.1126/science.adi5177 Cortese, G., Gersonde, R., Hillenbrand, C.-D., & Kuhn, G. (2004). Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters, 224(3-4), 509-527. Crueger, T., Roeckner, E., Raddatz, T., Schnur, R., & Wetzel, P. (2008). Ocean dynamics determine the response of oceanic CO 2 uptake to climate change. Climate dynamics, 31, 151-168. de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., & Foster, G. L. (2020). Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67154-8 Eagles, G. (2006). Deviations from an ideal thermal subsidence surface in the southern Pacific Ocean. Frontiers in Antarctic Earth Sciences, Terra Antart. Rep, 12, 109-118. Ehlers, J., Gibbard, P. L., & Hughes, P. D. (2018). Chapter 4 - Quaternary Glaciations and Chronology. In J. Menzies & J. J. M. van der Meer (Eds.), Past Glacial Environments (Second Edition) (pp. 77-101). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100524-8.00003-8 Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., & Piotrowski, A. M. (2012). Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition. Science, 337(6095), 704-709. https://doi.org/10.1126/science.1221294 Elderfield, H., & Ganssen, G. (2000). Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405(6785), 442-445. https://doi.org/10.1038/35013033 Erez, J. (2003). The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in mineralogy and geochemistry, 54(1), 115-149. Fine, R. A. (2011). Observations of CFCs and SF6 as Ocean Tracers. Annual Review of Marine Science, 3(Volume 3, 2011), 173-195. https://doi.org/https://doi.org/10.1146/annurev.marine.010908.163933 Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J.,…Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO<sub>2</sub> emissions scenarios. Science, 349(6243), aac4722. https://doi.org/10.1126/science.aac4722 Gordon, A. L. (2009). Bottom water formation. Ocean currents, 263, 269. Gottschalk, J., Skinner, L. C., & Waelbroeck, C. (2015). Contribution of seasonal sub-Antarctic surface water variability to millennial-scale changes in atmospheric CO2 over the last deglaciation and Marine Isotope Stage 3. Earth and Planetary Science Letters, 411, 87-99. https://doi.org/10.1016/j.epsl.2014.11.051 Grant, G. R., Williams, J. H. T., Naeher, S., Seki, O., McClymont, E. L., Patterson, M. O., Haywood, A. M., Behrens, E., Yamamoto, M., & Johnson, K. (2023). Amplified surface warming in the south-west Pacific during the mid-Pliocene (3.3–3.0 Ma) and future implications. Climate of the Past, 19(7), 1359-1381. https://doi.org/10.5194/cp-19-1359-2023 Groeneveld, J., & Chiessi, C. M. (2011). Mg/Ca of Globorotalia inflata as a recorder of permanent thermocline temperatures in the South Atlantic. Paleoceanography, 26(2). https://doi.org/https://doi.org/10.1029/2010PA001940 Groeneveld, J., Hathorne, E. C., Steinke, S., DeBey, H., Mackensen, A., & Tiedemann, R. (2014). Glacial induced closure of the Panamanian Gateway during Marine Isotope Stages (MIS) 95–100 (∼2.5 Ma). Earth and Planetary Science Letters, 404, 296-306. https://doi.org/https://doi.org/10.1016/j.epsl.2014.08.007 Gruber, N. (1998). Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochemical Cycles, 12(1), 165-191. Haddam, N. A., Michel, E., Siani, G., Cortese, G., Bostock, H. C., Duprat, J. M., & Isguder, G. (2016). Improving past sea surface temperature reconstructions from the Southern Hemisphere oceans using planktonic foraminiferal census data. Paleoceanography, 31(6), 822-837. https://doi.org/https://doi.org/10.1002/2016PA002946 Hain, M. P., Sigman, D. M., & Haug, G. H. (2010). Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model. Global Biogeochemical Cycles, 24(4). https://doi.org/https://doi.org/10.1029/2010GB003790 Hain, M. P., Sigman, D. M., & Haug, G. H. (2014). 8.18 - The Biological Pump in the Past. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (Second Edition) (pp. 485-517). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-095975-7.00618-5 Hathorne, E. C., James, R. H., & Lampitt, R. S. (2009). Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula. Paleoceanography, 24(4). https://doi.org/https://doi.org/10.1029/2009PA001742 Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J., Gruber, N., Hashioka, T., John, J., Quéré, C. L., Lima, I. D., Nakano, H., Séférian, R., & Totterdell, I. (2015). On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 29(9), 1451-1470. https://doi.org/https://doi.org/10.1002/2015GB005140 Haug, G. H., Ganopolski, A., Sigman, D. M., Rosell-Mele, A., Swann, G. E. A., Tiedemann, R., Jaccard, S. L., Bollmann, J., Maslin, M. A., Leng, M. J., & Eglinton, G. (2005). North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433(7028), 821-825. https://doi.org/10.1038/nature03332 Haug, G. H., & Tiedemann, R. (1998). Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393(6686), 673-676. https://doi.org/10.1038/31447 Haywood, A. M., Dowsett, H. J., & Dolan, A. M. (2016). Integrating geological archives and climate models for the mid-Pliocene warm period. Nature Communications, 7(1), 10646. Herbert, T. D., Peterson, L. C., Lawrence, K. T., & Liu, Z. (2010). Tropical ocean temperatures over the past 3.5 million years. Science, 328(5985), 1530-1534. Hodell, D. A., Williams, D. F., & Kennett, J. P. (1985). Late Pliocene reorganization of deep vertical water-mass structure in the western South Atlantic: Faunal and isotopic evidence. Geological Society of America Bulletin, 96(4), 495-503. Hoffman, D. W., & Rasmussen, C. (2022). Absolute Carbon Stable Isotope Ratio in the Vienna Peedee Belemnite Isotope Reference Determined by 1H NMR Spectroscopy. Analytical Chemistry, 94(13), 5240-5247. https://doi.org/10.1021/acs.analchem.1c04565 Jian, Z., Dang, H., Yu, J., Wu, Q., Gong, X., Stepanek, C., Colin, C., Hu, L., Lohmann, G., & Zhou, X. (2023). Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition. Earth and Planetary Science Letters, 605, 118020. Kennett, J., & Srinivasan, M. (1983). Neogene planktonic foraminifera. A phylogenetic atlas, 265. King, A. L., & Howard, W. R. (2005). δ18O seasonality of planktonic foraminifera from Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions. Marine Micropaleontology, 56(1), 1-24. https://doi.org/https://doi.org/10.1016/j.marmicro.2005.02.008 Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., & Walsh, I. D. (1996). Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography, 11(6), 679-699. https://doi.org/https://doi.org/10.1029/96PA02617 Lamy, F. (2024). Age model information for IODP Site 383-U1541 (PANGAEA. https://doi.org/10.1594/PANGAEA.965435 Lamy, F., Winckler, G., Arz, H. W., Farmer, J. R., Gottschalk, J., Lembke-Jene, L., Middleton, J. L., van der Does, M., Tiedemann, R., Alvarez Zarikian, C., Basak, C., Brombacher, A., Dumm, L., Esper, O. M., Herbert, L. C., Iwasaki, S., Kreps, G., Lawson, V. J., Lo, L.,…Zhao, X. (2024). Five million years of Antarctic Circumpolar Current strength variability. Nature, 627(8005), 789-796. https://doi.org/10.1038/s41586-024-07143-3 Lang, D. C., Bailey, I., Wilson, P. A., Beer, C. J., Bolton, C. T., Friedrich, O., Newsam, C., Spencer, M. R., Gutjahr, M., Foster, G. L., Cooper, M. J., & Milton, J. A. (2014). The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quaternary Science Reviews, 93, 125-141. https://doi.org/10.1016/j.quascirev.2014.04.005 Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1), 261-285. Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., & Haywood, A. M. (2009). High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography, 24(2). Le, J., & Shackleton, N. J. (1992). Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary. Paleoceanography, 7(1), 21-42. Lin, H.-T., Yang, J.-I., Wu, Y.-T., Shiau, Y.-J., Lo, L., & Yang, S.-H. (2025). The spatiotemporal variations of marine nematode populations may serve as indicators of changes in marine ecosystems. Marine Pollution Bulletin, 211, 117373. https://doi.org/https://doi.org/10.1016/j.marpolbul.2024.117373 Lin, L., Khider, D., Lisiecki, L. E., & Lawrence, C. E. (2014). Probabilistic sequence alignment of stratigraphic records. Paleoceanography, 29(10), 976-989. https://doi.org/https://doi.org/10.1002/2014PA002713 Lindsey, R. (2020). Climate change: atmospheric carbon dioxide. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). https://doi.org/10.1029/2004pa001071 Lo, L., Shen, C.-C., Lu, C.-J., Chen, Y.-C., Chang, C.-C., Wei, K.-Y., Qu, D., & Gagan, M. K. (2014). Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry. Journal of Asian Earth Sciences, 81, 115-122. https://doi.org/10.1016/j.jseaes.2013.11.016 Lund, D. C., Chase, Z., Kohfeld, K. E., & Wilson, E. A. (2021). Tracking Southern Ocean Sea Ice Extent With Winter Water: A New Method Based on the Oxygen Isotopic Signature of Foraminifera. Paleoceanography and Paleoclimatology, 36(6), e2020PA004095. https://doi.org/https://doi.org/10.1029/2020PA004095 Marcks, B. A., Dos Santos, T. P., Lessa, D. V. O., Cartagena-Sierra, A., Berke, M. A., Starr, A., Hall, I. R., Kelly, R. P., & Robinson, R. S. (2023). Glacial Southern Ocean Expansion Recorded in Foraminifera-Bound Nitrogen Isotopes From the Agulhas Plateau During the Mid-Pleistocene Transition. Paleoceanography and Paleoclimatology, 38(6), e2022PA004482. https://doi.org/https://doi.org/10.1029/2022PA004482 Martinez-Boti, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P., & Schmidt, D. N. (2015). Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 518(7537), 49-54. https://doi.org/10.1038/nature14145 Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R., & Haug, G. H. (2010). Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science, 328(5985), 1550-1553. Mashiotta, T. A., Lea, D. W., & Spero, H. J. (1999). Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth and Planetary Science Letters, 170(4), 417-432. Maslin, M. A., Li, X. S., Loutre, M. F., & Berger, A. (1998). THE CONTRIBUTION OF ORBITAL FORCING TO THE PROGRESSIVE INTENSIFICATION OF NORTHERN HEMISPHERE GLACIATION. Quaternary Science Reviews, 17(4), 411-426. https://doi.org/https://doi.org/10.1016/S0277-3791(97)00047-4 Mayewski, P. A., Meredith, M. P., Summerhayes, C. P., Turner, J., Worby, A., Barrett, P. J., Casassa, G., Bertler, N. A. N., Bracegirdle, T., Naveira Garabato, A. C., Bromwich, D., Campbell, H., Hamilton, G. S., Lyons, W. B., Maasch, K. A., Aoki, S., Xiao, C., & van Ommen, T. (2009). State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics, 47(1). https://doi.org/https://doi.org/10.1029/2007RG000231 McClymont, E. L., Ho, S.-L., Ford, H., Bailey, I., Berke, M. A., Bolton, C. T., De Schepper, S., Grant, G., Groeneveld, J., & Inglis, G. (2023). Climate evolution through the onset and intensification of Northern Hemisphere Glaciation. Reviews of Geophysics, 61(3), e2022RG000793. McKay, R., Naish, T., Carter, L., Riesselman, C., Dunbar, R., Sjunneskog, C., Winter, D., Sangiorgi, F., Warren, C., & Pagani, M. (2012). Antarctic and Southern Ocean influences on Late Pliocene global cooling. Proceedings of the National Academy of Sciences, 109(17), 6423-6428. Middleton, J. L., Gottschalk, J., Winckler, G., Hanley, J., Knudson, C., Farmer, J. R., Lamy, F., & Lisiecki, L. E. (2024). Evaluating manual versus automated benthic foraminiferal δ18O alignment techniques for developing chronostratigraphies in marine sediment records. Geochronology, 6(2), 125-145. https://doi.org/10.5194/gchron-6-125-2024 Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., & Sosdian, S. (2012). High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology, 40(5), 407-410. https://doi.org/10.1130/g32869.1 Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., & Lückge, A. (2014). North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80. Moy, A. D., Howard, W. R., Bray, S. G., & Trull, T. W. (2009). Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience, 2(4), 276-280. https://doi.org/10.1038/ngeo460 Muratli, J., Chase, Z., Mix, A., & McManus, J. (2010). Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geoscience, 3(1), 23-26. Naafs, B. D. A., Voelker, A., Karas, C., Andersen, N., & Sierro, F. (2020). Repeated near‐collapse of the Pliocene sea surface temperature gradient in the North Atlantic. Paleoceanography and Paleoclimatology, 35(5), e2020PA003905. Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G.,…Williams, T. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-328. https://doi.org/10.1038/nature07867 Nürnberg, D. (1995). Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes. The Journal of Foraminiferal Research, 25(4), 350-368. https://doi.org/10.2113/gsjfr.25.4.350 Orsi, A. H., Whitworth III, T., & Nowlin Jr, W. D. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42(5), 641-673. Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., & Benitez-Nelson, C. R. (2019). Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem. Nature Geoscience, 13(1), 43-49. https://doi.org/10.1038/s41561-019-0499-z Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., & Slater, R. D. (2010). Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation. Biogeosciences, 7(11), 3549-3568. https://doi.org/10.5194/bg-7-3549-2010 Passchier, S. (2018). Chapter 16 - Ice Sheets and Climate: The Marine Geological Record. In J. Menzies & J. J. M. van der Meer (Eds.), Past Glacial Environments (Second Edition) (pp. 565-584). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100524-8.00017-8 Patterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J., Raymo, M. E., Meyers, S. R., Tauxe, L., & Brinkhuis, H. (2014). Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience, 7(11), 841-847. https://doi.org/10.1038/ngeo2273 Pena, L. D., Calvo, E., Cacho, I., Eggins, S., & Pelejero, C. (2005). Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions. Geochemistry, Geophysics, Geosystems, 6(9). https://doi.org/https://doi.org/10.1029/2005GC000930 Ramaswamy, V., & Gaye, B. (2006). Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 53(2), 271-293. https://doi.org/https://doi.org/10.1016/j.dsr.2005.11.003 Raymo, M. E. (1994). The initiation of Northern Hemisphere glaciation. Annual Review Of Earth And Planetary Sciences, Volume 22, pp. 353-383., 22(Volume 22, 1994), 353-383. https://doi.org/https://doi.org/10.1146/annurev.ea.22.050194.002033 Raymo, M. E. (1998). Glacial Puzzles. Science, 281(5382), 1467-1468. https://doi.org/10.1126/science.281.5382.1467 Raymo, M. E., Mitrovica, J. X., O’Leary, M. J., DeConto, R. M., & Hearty, P. J. (2011). Departures from eustasy in Pliocene sea-level records. Nature Geoscience, 4(5), 328-332. Rintoul, S. R. (2018). The global influence of localized dynamics in the Southern Ocean. Nature, 558(7709), 209-218. https://doi.org/10.1038/s41586-018-0182-3 Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508(7497), 477-482. https://doi.org/10.1038/nature13230 Russell, J., Dixon, K., Gnanadesikan, A., Ronald, S., & Toggweiler, J. R. (2006). The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean. Journal of Climate - J CLIMATE, 19. https://doi.org/10.1175/JCLI3984.1 Sabine, C., Key, R., Johnson, K., Millero, F., Poisson, A., Sarmiento, J. L., Wallace, D. W., & Winn, C. (1999). Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochemical Cycles, 13(1), 179-198. Saenko, O. A., Schmittner, A., & Weaver, A. J. (2002). On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation. Journal of Physical Oceanography, 32(12), 3376-3395. https://doi.org/https://doi.org/10.1175/1520-0485(2002)032<3376:OTROWD>2.0.CO;2 Sánchez-Montes, M. L., McClymont, E. L., Lloyd, J. M., Müller, J., Cowan, E. A., & Zorzi, C. (2020). Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures. Climate of the Past, 16(1), 299-313. Sarmiento, J. L., & Gruber, N. (2002). Sinks for anthropogenic carbon. Physics Today, 55(8), 30-36. Schiebel, R., & Hemleben, C. (2017). Planktic foraminifers in the modern ocean (Vol. 358). Springer. Schlitzer, R. (2022). Ocean data view. Schneider, C. E., & Kennett, J. P. (1996). Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella. Paleobiology, 22(2), 282-303. https://doi.org/10.1017/S0094837300016225 Schrag, D. P., Hampt, G., & Murray, D. W. (1996). Pore Fluid Constraints on the Temperature and Oxygen Isotopic Composition of the Glacial Ocean. Science, 272(5270), 1930-1932. https://doi.org/10.1126/science.272.5270.1930 Scott, G. H., Kennett, J. P., Wilson, K. J., & Hayward, B. W. (2007). Globorotalia puncticulata: Population divergence, dispersal and extinction related to Pliocene–Quaternary water masses. Marine Micropaleontology, 62(4), 235-253. https://doi.org/10.1016/j.marmicro.2006.08.007 Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., & Pancost, R. D. (2010). Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 292(1-2), 201-211. https://doi.org/10.1016/j.epsl.2010.01.037 Shackleton, N. (1974). Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Shen, C.-C., Chiu, H.-Y., Chiang, H.-W., Chu, M.-F., Wei, K.-Y., Steinke, S., Chen, M.-T., Lin, Y.-S., & Lo, L. (2007). High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chemical Geology, 236(3), 339-349. https://doi.org/https://doi.org/10.1016/j.chemgeo.2006.10.010 Shen, C.-C., Hastings, D. W., Lee, T., Chiu, C.-H., Lee, M.-Y., Wei, K.-Y., & Edwards, R. L. (2001). High precision glacial–interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean Sea. Earth and Planetary Science Letters, 190(3), 197-209. https://doi.org/https://doi.org/10.1016/S0012-821X(01)00391-0 Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren, H., & Haug, G. H. (2021). The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quaternary Science Reviews, 254, 106732. https://doi.org/https://doi.org/10.1016/j.quascirev.2020.106732 Sigman, D. M., Hain, M. P., & Haug, G. H. (2010). The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466(7302), 47-55. https://doi.org/10.1038/nature09149 Simmons, G. (1990). Subsidence history of basement sites and sites along a carbonate dissolution profile. Proceedings of the ODP (Ocean Drilling Program), Scientific Results, Leg 115, College Station, TX, 123-126. Sokolov, S., & Rintoul, S. R. (2002). Structure of Southern Ocean fronts at 140°E. Journal of Marine Systems, 37(1), 151-184. https://doi.org/https://doi.org/10.1016/S0924-7963(02)00200-2 Speer, K., Rintoul, S. R., & Sloyan, B. (2000). The diabatic Deacon cell. Journal of Physical Oceanography, 30(12), 3212-3222. https://doi.org/10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2 Spezzaferri, S., Coxall, H. K., Olsson, R. K., & Hemleben, C. (2018). Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella N. Gen. Starr, A., Hall, I. R., Barker, S., Nederbragt, A., Owen, L., & Hemming, S. R. (2025). Shifting Antarctic Circumpolar Current south of Africa over the past 1.9 million years. Science Advances, 11(1), eadp1692. https://doi.org/10.1126/sciadv.adp1692 Sverdrup, H. U. (1933). On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. (No Title). Sykes, T., & Ramsay, A. (1995). Calculation of mass accumulation rates in the absence of density or porosity measurements. Marine Geology, 122(3), 173-179. Talley, L. D. (2013). Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26(1), 80-97. Tapia, R., Nürnberg, D., Ho, S. L., Lamy, F., Ullermann, J., Gersonde, R., & Tiedemann, R. (2019). Glacial differences of Southern Ocean Intermediate Waters in the Central South Pacific. Quaternary Science Reviews, 208, 105-117. https://doi.org/10.1016/j.quascirev.2019.01.016 Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T., & Otto‐Bliesner, B. L. (2019). Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophysical Research Letters, 46(15), 9136-9144. https://doi.org/10.1029/2019gl083802 Toggweiler, J. R. (2009). Shifting Westerlies. Science, 323(5920), 1434-1435. https://doi.org/10.1126/science.1169823 Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21(2). https://doi.org/https://doi.org/10.1029/2005PA001154 Vervoort, P., Kirtland Turner, S., Rochholz, F., & Ridgwell, A. (2024). Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks. Paleoceanography and Paleoclimatology, 39(3), e2023PA004826. https://doi.org/https://doi.org/10.1029/2023PA004826 Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., & Labracherie, M. (2002). Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1), 295-305. https://doi.org/https://doi.org/10.1016/S0277-3791(01)00101-9 Wara, M. W., Ravelo, A. C., & Delaney, M. L. (2005). Permanent El Niño-like conditions during the Pliocene warm period. Science, 309(5735), 758-761. Waugh, D. W. (2014). Changes in the ventilation of the southern oceans. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2019), 20130269. https://doi.org/10.1098/rsta.2013.0269 Waugh, D. W., Haine, T. W. N., & Hall, T. M. (2004). Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), 1475-1491. https://doi.org/https://doi.org/10.1016/j.dsr.2004.06.011 Waugh, D. W., Primeau, F., DeVries, T., & Holzer, M. (2013). Recent Changes in the Ventilation of the Southern Oceans. Science, 339(6119), 568-570. https://doi.org/10.1126/science.1225411 Wei, K.-Y. (1994a). Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella. Paleobiology, 20(1), 66-84. Wei, K.-Y. (1994b). Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: a case study of the late Neogene planktic foraminifera Globoconella clade. Paleobiology, 20(1), 52-65. Williams, G. P., & Bryan, K. (2006). Ice age winds: An aquaplanet model. Journal of Climate, 19(9), 1706-1715. Winckler, G., Lamy, F., Alvarez Zarikian, C. A., Arz, H. W., Basak, C., Brombacher, A., Esper, O. M., Farmer, J. R., Gottschalk, J., Herbert, L. C., Iwasaki, S., Lawson, V. J., Lembke-Jene, L., Lo, L., Malinverno, E., Michel, E., Middleton, J. L., Moretti, S., Moy, C. M.,…Foucher McColl, N. (2021). Site U1541. In Volume 383: Dynamics of the Pacific Antarctic Circumpolar Current (DYNAPACC). https://doi.org/10.14379/iodp.proc.383.105.2021 Woodard, S. C., Rosenthal, Y., Miller, K. G., Wright, J. D., Chiu, B. K., & Lawrence, K. T. (2014). Antarctic role in Northern Hemisphere glaciation. Science, 346(6211), 847-851. https://doi.org/10.1126/science.1255586 Zeebe, R. E., & Wolf-Gladrow, D. (2001). CO2 in seawater: equilibrium, kinetics, isotopes(Vol. 65). Gulf Professional Publishing. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97671 | - |
| dc.description.abstract | 在過去幾十年內,由於工業化社會的不斷發展,全球大氣中二氧化碳濃度顯著提升,並且對地球氣候系統造成了深遠的影響。除了作為溫室氣體對全球顯著升溫的影響以外,二氧化碳濃度的變化也與全球碳循環的調節息息相關。因此,了解地球系統與全球碳循環的調節是急迫且重要的議題。根據調查,南大洋地區為現今人類活動產生的二氧化碳的主要匯集之處,與全球氣候系統的變化密切相關。南極地區受西風帶控制的南極繞極流(Antarctic Circumpolar Current, ACC),與全球經向翻轉流(Global Meridional Overturning Circulation, GMOC) 共同連接全球各大洋盆,將熱量、物質與海水中儲存的二氧化碳傳輸至不同緯度與深度的海洋中。因而,探討地質時期南極繞極流的演變,對於理解未來氣候系統中海氣互動與全球碳循環的潛在變化具有關鍵意義。
為了評估南極繞極流的上層水體對氣候系統變化的反應以及在氣候變遷時其針對水團與碳循環的調節,我在研究中選擇分析國際大洋發現計劃(InternationalOcean Discovery Program) 在太平洋副南極區所採的沉積物岩芯樣本。研究所使用的樣本年代範圍橫跨了上新世(Pliocene) 中期至更新世(Pleistocene) 早期,在這段時期全球氣候系統在北半球冰蓋擴張的影響下經歷了由暖變冷的顯著變化。此事件目前被認為主要透過巴拿馬地峽關閉影響GMOC 變化、全球二氧化碳下降以及北半球水氣增加,進而導致北半球陸地冰蓋逐漸形成。但針對此事件中大氣二氧化碳如何被海洋儲存,以及南大洋在此事件中的角色卻仍缺乏相關研究。 我利用浮游性有孔蟲生物群落分析以及針對浮游性有孔蟲與沉積物樣本的地球化學分析來探討該區上層水團與碳酸鈣系統的變化。本研究中主要的浮游性有孔蟲可以分為以下幾種環境指示種:Neogloboquadrina pachyderma (冷水環境)、Globoconella spp. (溫躍層;G. puncticulata 與G. inflata)、以及Globigerina bulloides (湧升流及富集營養鹽)。 在本研究中我觀察到溫躍層指示種的豐度在過去330 至240 萬年間共下降了近90%,取而代之的則是冷水指示種N. pachyderma(增加了85%)。浮游性有孔蟲生物群落分析結果指示了海水分層被破壞以及冷水團增強的證據。而地球化學分析的結果則透過有孔蟲δ18O 的增加、Mg/Ca(有孔蟲所居棲之水體溫度)的降低、以及次表層與表層δ13C 梯度的增加指示了海冰擴張、冷水團形成、以及湧升的富含12C 的深層水所帶來的影響在過去330–240 萬年間有所提升。而綜合副南極區主導時期(270 萬年前) 有孔蟲破片比的下降與當時碳酸鈣產量的大量增加而言,顯示了此時深海的碳酸鈣保存能力上升。 除了長期變化的趨勢外,本研究的生物群落分析、地球化學分析、以及沉積物元素分析結果都在260 萬年前過後顯示了隨著4 萬1 千年週期冰期–間冰期的變化。而在這段期間地球化學的分析結果更是透過大幅度的冰期–間冰期變化指示了中部南太平洋的水團性質開始由全球冰期–間冰期旋迴所主導。 本研究結果指出中部南太平洋副極區的上層海水結構在經歷了由全球氣候持續的冷卻以及南極海冰擴張的影響所主導的南大洋鋒面北移後,由明顯層化(well-stratified) 的副熱帶型態轉變成去分層化(destratified) 的副南極型態。分層結構被破壞的上層海水以及顯著增加的表層海水初級生產力使大氣中更多的二氧化碳得以被光合作用與下沉之水團捕捉並且傳輸至海洋內部及海水更深層。除此之外,提升的碳酸鈣保存能力以及下沉之水團的產率增強使海洋對於二氧化碳的儲存能力以及深海的碳酸鈣封存能力也有所提升。而這些南大洋的變化則直接或間接地為接下來的更新世全球冷卻趨勢提供貢獻。 | zh_TW |
| dc.description.abstract | In recent years, Earth’s climate system has been profoundly affected by rising atmospheric CO2 due to industrial activities. The global elevated CO2 levels not only drive temperature rise via the greenhouse effect but also alter the global carbon cycle. Therefore, understanding how Earth responds to CO2 fluctuations is important and urgent for assessing climate system dynamics and carbon cycle regulation. According to the investigations, the Southern Ocean (SO) is highly correlated with the variations of the global climate system as it is a major anthropogenic CO2 sink. The Antarctic Circumpolar Current (ACC) and the Global Meridional Overturning Circulation connect the water basins and transport heat and the ventilated CO2 over the ocean interior. Hence, interpreting the variations of the ACC during geological periods is crucial to evaluating the changes in the ocean, atmosphere, and the global carbon cycle of the future climate system.
In order to evaluate how the upper SO of the ACC responds to climate changes and generates the water masses and the carbon cycle, I analyze the sediment core samples from the International Ocean Discovery Program (IODP) Expedition 383 Site U1541 at the central South Pacific during the warm-to-cold Plio-Pleistocene transition (3.30-2.40 Ma) dominated by the Northern Hemisphere Glaciation (NHG) using planktonic foraminiferal assemblages and geochemical proxies. Key planktonic foraminiferal groups include Neogloboquadrina pachyderma (cold-water indicator), Globoconella spp. (thermocline indicators, G. puncticulata and G. inflata), and Globigerina bulloides (nutrientenrichment indicator). Through the closure of the Panama Gateway and its link to the GMOC variations, the NHG is mainly considered to drive the global decline of the CO2 and the gradual growth of the Northern Hemisphere continental ice sheet due to the increase in the water vapour. However, how the CO2 is stored in the ocean and the role of the SO in this event are still lacking research. I find that the thermocline species abundance has exhibited a 90% decrease throughout 3.30-2.40 Ma, while the cold-water indicator N. pachyderma (increasing over 85%) takes place afterward. Planktonic faunal assemblage records reveal evidence of the destratification and the enhanced formation of the cold water masses. The geochemical results indicate the increased influence of the sea ice extension, cold surface water formation, and the upwelled nutrient-rich deep water through the rising δ18O, decreasing Mg/Ca, and the increased δ13C gradient between the subsurface and surface oceans. The decreased fragmentation index indicates that the calcite preservation ability has increased when the research site is dominated by the Subantarctic water after 2.70 Ma, accompanied by increased calcite production. Besides the long-term variations, I also find that the faunal, geochemical, and sedimentary records have exhibited significant variations following the 41-kyr glacial-interglacial (G/IG) periods after 2.6 Ma. The geochemical proxies show large-amplitude fluctuations, suggesting the dominance of the G/IG cycles in the water mass properties during this interval. This research suggests that the upper ocean has transitioned from a well-stratified subtropical pattern into a destratified Subantarctic pattern after the northward migration of the SO frontal system due to the gradual global cooling and Antarctic sea ice extension. The destratified upper ocean and the increased surface productivity allow more CO2 to be captured and transported into the ocean interior. Moreover, the increased calcite preservation ability and the strengthened sinking water mass formation increase the efficiency of CO2 storage and deep ocean calcite sequestration. These variations of the SO likely contribute to the ongoing Pleistocene global cooling trend. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:20:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:20:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要iv Abstract vii Contents x List of Figures xiv List of Tables xvi Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Southern Ocean Oceanography . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Southern Ocean Circulation . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Southern Ocean Frontal System . . . . . . . . . . . . . . . . . . . . 6 2.2 The Role of the Southern Ocean and the Antarctic in the Climate System 8 2.2.1 Relationships with the Climate System . . . . . . . . . . . . . . . . 8 2.2.2 Contribution to the Global Carbon Cycle . . . . . . . . . . . . . . . 9 2.3 Climatic Background . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Mid-Piacenzian Warm Period . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Northern Hemisphere Glaciation . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Materials and Methods 19 3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Study Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Temperature and Salinity Conditions of the Central South Pacific . . 20 3.1.3 Age Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Census Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Planktonic Foraminifera Faunal Assemblages . . . . . . . . . . . . 28 3.2.2 Foraminiferal Accumulation Rate . . . . . . . . . . . . . . . . . . . 30 3.2.3 Fragmentation Index and Ice-rafted Debris Accumulation . . . . . . 30 3.3 Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Planktonic Foraminiferal Mg/Ca Paleothermometry . . . . . . . . . 31 3.3.1.1 Cleaning Procedure . . . . . . . . . . . . . . . . . . . 31 3.3.1.2 Measurement . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1.3 Temperature Conversion . . . . . . . . . . . . . . . . . 33 3.3.1.4 Uncertainty Analysis for Mg/Ca Paleothermometry . . 34 3.3.2 Stable Isotope Analysis . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2.1 Cleaning Procedure . . . . . . . . . . . . . . . . . . . 34 3.3.2.2 Measurement . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2.3 Seawater Stable Oxygen Isotope . . . . . . . . . . . . 35 3.3.3 Elemental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4 Measurement of the Weight of Globigerina bulloides . . . . . . . . 38 Chapter 4 Results 39 4.1 Foraminiferal Faunal Assemblages . . . . . . . . . . . . . . . . . . . 39 4.1.1 Planktonic Foraminiferal Relative Abundance . . . . . . . . . . . . 39 4.1.2 Foraminiferal Accumulation Rate . . . . . . . . . . . . . . . . . . . 43 4.1.2.1 Planktonic Foraminiferal Accumulation Rate . . . . . . 43 4.1.2.2 Benthic Foraminiferal Accumulation Rate . . . . . . . 47 4.1.3 Fragmentation Index and Ice-rafted Debris Accumulation . . . . . . 47 4.2 Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 Planktonic Foraminiferal Mg/Ca Paleothermometry . . . . . . . . . 50 4.2.2 Planktonic Foraminiferal Stable Isotopes . . . . . . . . . . . . . . . 54 4.2.2.1 Stable Oxygen Isotopes . . . . . . . . . . . . . . . . . 54 4.2.2.2 Stable Carbon Isotopes . . . . . . . . . . . . . . . . . 56 4.2.3 Seawater Stable Oxygen Isotope . . . . . . . . . . . . . . . . . . . 58 4.2.4 Elemental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.4.1 Sedimentary Composition . . . . . . . . . . . . . . . . 62 4.2.4.2 Sedimentary Mass Accumulation Rate . . . . . . . . . 64 4.3 Variations in the Weight of Globigerina bulloides . . . . . . . . . . . 66 Chapter 5 Discussions 67 5.1 Central South Pacific Frontal Shifts . . . . . . . . . . . . . . . . . . 67 5.1.1 Planktonic Faunal Assemblage Evidence . . . . . . . . . . . . . . . 67 5.1.2 Geochemical Proxy Interpretations . . . . . . . . . . . . . . . . . . 71 5.1.3 Integrative Reconstruction of Frontal System Evolution . . . . . . . 76 5.2 Central South Pacific Calcite Preservation . . . . . . . . . . . . . . . 78 5.2.1 Calcite Production and Dissolution . . . . . . . . . . . . . . . . . . 78 5.2.2 Central South Pacific Productivity . . . . . . . . . . . . . . . . . . 83 5.2.3 Synthesis and Implications . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Comparisons within Globoconella puncticulata and G. inflata . . . . 86 5.3.1 Morphological Identifications . . . . . . . . . . . . . . . . . . . . . 86 5.3.2 Geochemical Variations . . . . . . . . . . . . . . . . . . . . . . . 88 Chapter 6 Conclusions 91 References 94 Appendix 1 — Raw data 115 1.1 Age Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 1.2 Foraminiferal Faunal Assemblages . . . . . . . . . . . . . . . . . . . 119 1.3 Elemental Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 1.4 Geochemical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.4.1 Mg/Ca Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.4.2 Stable Isotope Ratios . . . . . . . . . . . . . . . . . . . . . . . . . 146 1.5 Supplementary Data . . . . . . . . . . . . . . . . . . . . . . . . . . 153 | - |
| dc.language.iso | en | - |
| dc.subject | 碳酸鹽封存 | zh_TW |
| dc.subject | 去分層化 | zh_TW |
| dc.subject | 南大洋 | zh_TW |
| dc.subject | 北半球冰蓋擴張 | zh_TW |
| dc.subject | carbonate sequestration | en |
| dc.subject | Northern Hemisphere Glaciation | en |
| dc.subject | Southern Ocean | en |
| dc.subject | destratification | en |
| dc.title | 以浮游性有孔蟲群落與地球化學代用指標重建中部南太平洋在330至240萬年前的古海洋環境變化 | zh_TW |
| dc.title | Reconstructing the Paleoceanographic Changes of the Central South Pacific during 3.3-2.4 Million Years Ago Using Planktonic Foraminifera Assemblage and Geochemical Proxies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賀詩琳;何亞倫 | zh_TW |
| dc.contributor.oralexamcommittee | Sze Ling Ho;Jeroen Groeneveld | en |
| dc.subject.keyword | 北半球冰蓋擴張,南大洋,去分層化,碳酸鹽封存, | zh_TW |
| dc.subject.keyword | Northern Hemisphere Glaciation,Southern Ocean,destratification,carbonate sequestration, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202501280 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 20.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
