請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97668完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇炫榮 | zh_TW |
| dc.contributor.advisor | Hsuan-Jung Su | en |
| dc.contributor.author | 李聚佑 | zh_TW |
| dc.contributor.author | Chu-Yu Lee | en |
| dc.date.accessioned | 2025-07-09T16:19:31Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | [1] K. Rambach, “Direction of arrival estimation using a multiple-input-multiple-output radar with applications to automobiles,” 2017.
[2] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE signal processing magazine, vol. 24, no. 5, pp. 106–114, 2007. [3] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 98–117, 2020. [4] S. Rao, “Intro to mmWave sensing: FMCW radars,” 2024. [5] Texas Instruments, “MIMO Radar Application Report - SWRA554A ,” 2017. [6] P.-Y. Lin, H.-Y. Chang, R. Y. Chang, and W.-H. Chung, “Wireless Multi-Target Vital Sign Detection Using SIMO-FMCW Radar in Multipath Propagation Environments,” in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–7. [7] R. Prophet, J. Martinez, J.-C. F. Michel, R. Ebelt, I. Weber, and M. Vossiek, “Instantaneous ghost detection identification in automotive scenarios,” in 2019 IEEE Radar Conference (RadarConf). IEEE, 2019, pp. 1–6. [8] F. Engels, M. Wintermantel, and P. Heidenreich, “Automotive MIMO radar angle estimation in the presence of multipath,” in 2017 European Radar Conference (EURAD). IEEE, 2017, pp. 82–85. [9] Y. Li and X. Shang, “Multipath ghost target identification for automotive MIMO radar,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). IEEE, 2022, pp. 1–5. [10] C. Liu, S. Liu, C. Zhang, Y. Huang, and H. Wang, “Multipath propagation analysis and ghost target removal for FMCW automotive radars,” in IET International Radar Conference (IET IRC 2020), vol. 2020, 2020, pp. 330–334. [11] L. Zheng, J. Long, M. Lops, F. Liu, X. Hu, and C. Zhao, “Detection of Ghost Targets for Automotive Radar in the Presence of Multipath,” IEEE Transactions on Signal Processing, 2024. [12] R. Feng, E. De Greef, M. Rykunov, H. Sahli, S. Pollin, and A. Bourdoux, “Multipath ghost recognition for indoor MIMO radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2021. [13] J. L. Seybold, Introduction to RF Propagation. Hoboken, NJ: John Wiley & Sons, 2005. [14] J. Miranda, R. Abrishambaf, T. Gomes, P. Gon¸calves, J. Cabral, A. Tavares, and J. Monteiro, “Path loss exponent analysis in Wireless Sensor Networks: Experimental evaluation,” in 2013 11th IEEE International Conference on Industrial Informatics (INDIN), 2013, pp. 54–58. [15] H. Luo, Z. Zhu, M. Jiang, S. Guo, and G. Cui, “An effective multipath ghost recognition method for sparse MIMO radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023. [16] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010. [17] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586, 2010. [18] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar,” Digital Signal Processing, vol. 61, pp. 26–34, 2017. [19] E. BouDaher, F. Ahmad, and M. G. Amin, “Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1628–1632, 2015. [20] X. Xu and Z. Ye, “Two-dimensional direction of arrival estimation by exploiting the symmetric configuration of uniform rectangular array,” IET Radar, Sonar & Navigation, vol. 6, no. 5, pp. 307–313, 2012. [21] H. Xu, D. Wang, B. Ba, W. Cui, and Y. Zhang, “Direction-of-arrival estimation for both uncorrelated and coherent signals in coprime array,” IEEE Access, vol. 7, pp. 18 590–18 600, 2019. [22] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969. [23] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986. [24] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on acoustics, speech, and signal processing, vol. 37, no. 7, pp. 984–995, 1989. [25] J. Shi, G. Hu, X. Zhang, F. Sun, and H. Zhou, “Sparsity-based two-dimensional DOA estimation for coprime array: From sum–difference coarray viewpoint,” IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 5591–5604, 2017. [26] W. Zheng, X. Zhang, and H. Zhai, “Generalized coprime planar array geometry for 2-D DOA estimation,” IEEE Communications Letters, vol. 21, no. 5, pp. 1075–1078, 2017. [27] A. B. Baral and M. Torlak, “Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 980–995, 2021. [28] N. C. Currie and C. E. Brown, Eds., Principles and Applications of Millimeter-Wave Radar. Dedham, MA: Artech House, 1987. [29] P. Z. Peebles, Radar Principles. New York: John Wiley & Sons, 1998, pp. 198–199. [30] Texas Instruments, “Imaging radar using cascaded mmwave sensor reference design,” http://www.ti.com/lit/ug/tiduen5a/tiduen5a.pdf, 2020. [31] S. Loyka and A. Kouki, “Using two ray multipath model for microwave link budget analysis,” IEEE Antennas and Propagation Magazine, vol. 43, no. 5, pp. 31–36, 2001. [32] J. Gambrych, “Mitigating of received signal power loss caused by multipath effect in phased array radars,” in 2021 Signal Processing Symposium (SPSympo), 2021, pp. 76–80. [33] M. I. Skolnik et al., Introduction to radar systems. McGraw-hill New York, 1980, vol. 3. [34] G.-T. Gil, J. Y. Lee, and D.-H. Cho, “Estimation of Path Loss Parameters of a Sub-Terahertz Wireless Channel Using Monostatic Radar,” IEEE Access, vol. 9, pp. 52 654–52 663, 2021. [35] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast Fourier transform and its applications,” IEEE Transactions on Education, vol. 12, no. 1, pp. 27–34, 1969. [36] J. Bechter, F. Roos, and C. Waldschmidt, “Compensation of motion-induced phase errors in TDM MIMO radars,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1164–1166, 2017. [37] J. Kim, J. Chun, and S. Song, “Joint range and angle estimation for FMCW MIMO radar and its application,” arXiv preprint arXiv:1811.06715, 2018. [38] G. Gennarelli and F. Soldovieri, “Multipath ghosts in radar imaging: Physical insight and mitigation strategies,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 3, pp. 1078–1086, 2014. [39] Z. Zhong, S. Liu, M. Mathew, and A. Dubey, “Camera radar fusion for increased reliability in ADAS applications,” Electronic Imaging, vol. 30, pp. 1–4, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97668 | - |
| dc.description.abstract | 時分複用多輸入多輸出雷達系統在現代雷達應用中廣泛使用,具備高角度解析度的優勢。然而,在目標具有速度的情況下,速度會引起相位失真,因此需事先進行相位補償,以確保二維到達角度的估測不受影響。在實際操作中,雷達系統經常面臨多路徑效應的挑戰,這種效應會導致接收信號中出現複雜的直射和反射現象,從而降低信號性能與定位準確度,進一步影響雷達對目標的精確定位與追蹤能力。
本論文首先建立一套多路徑信號模型,以模擬多路徑效應對複雜車用環境中雷達性能的影響。該模型考慮了經由不同路徑返回雷達的多重信號、因傳播距離變化所造成的路徑損耗,以及目標反射對接收訊號的影響。此外,亦納入造成多路徑效應之反射物體的特性。為進一步提升角度解析度,本研究結合時分複用多輸入多輸出雷達與稀疏天線陣列。在此基礎上,我們提出一套新的目標分類與識別方法框架,包括:用於區分直視與非直視目標的分類方法,以及分別針對多角度反射與平面反射情境所設計的真實與虛假目標識別方法。相較於現有技術,本方法具備更高的可靠性,無需進行複雜運算,亦能準確分類與識別真實目標與虛假目標,並有效利用所提取之資訊,提升雷達後續處理的準確性與可靠性,增進對周遭環境的整體理解能力。 | zh_TW |
| dc.description.abstract | Time-Division Multiplexing Multiple-Input Multiple-Output (TDM MIMO) radar systems are widely used in modern radar applications due to their advantage of high angular resolution. However, when the target has velocity, the motion induces phase distortion, necessitating phase compensation in advance to ensure the accuracy of two-dimensional direction-of-arrival estimation. In practical operations, radar systems often face the challenge of multipath effects, which result in complex direct and reflected signals in the received data. These effects degrade signal performance and positioning accuracy, further impacting the radar's ability to precisely locate and track targets.
This thesis first establishes a multipath signal model to simulate the impact of multipath effects on radar performance in complex automotive environments. The model considers multiple signals returning to the radar via different paths, path loss caused by variations in propagation distance, and the influence of the target's reflection on the received signals. In addition, the characteristics of reflecting objects that cause multipath effects are also taken into account. To further improve angular resolution, this study combines TDM MIMO radar with sparse antenna arrays. Based on this, a new target classification and identification framework is proposed, including a classification method to distinguish between line-of-sight (LoS) and non-line-of-sight (NLoS) targets, as well as true and ghost target identification methods designed for both multi-angle and planar reflection scenarios. Compared to existing techniques, the proposed method offers higher reliability, requires no complex computation, and is capable of accurately classifying and identifying true and ghost targets. It also effectively utilizes the extracted information to improve the accuracy and reliability of subsequent radar processing and enhance the overall understanding of the surrounding environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:19:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:19:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment i
Abstract (Traditional Chinese) ii Abstract (English) iii Contents iv List of Figures vii List of Tables x List of Abbreviations xi 1 Introduction 1 1.1 Background 1 1.2 Related Works 3 1.3 Contributions 7 1.4 Overview of the Thesis 9 1.5 Notations 10 2 System Model and Problem Statement 11 2.1 MIMO Radar Configuration 11 2.2 Co-Prime Planar Array 16 2.3 Signal Model for TDM-MIMO Radar 19 2.4 Analysis of Reflective Environments 21 2.5 Multipath Signal Propagation Model 26 2.6 Problem Statement 39 3 True and Ghost Target Estimation, Classification and Identification 40 3.1 Range, Doppler, and 2D-DoA Estimation 41 3.1.1 Range and Doppler Estimation 41 3.1.2 2D Direction of Arrival Estimation 44 3.2 LoS and NLoS Target Classification 46 3.3 True and Ghost Target Identification under Multi-Angle Reflection 50 3.4 True and Ghost Target Identification under Planar Reflection 54 4 Simulation Results 57 4.1 Comparison of 2D-DoA Performance Between MUSIC and MPIAA 62 4.2 Performance Evaluation of True and Ghost Target Classification and Identification 66 5 Conclusion and Future Works 78 5.1 Conclusion 78 5.2 Future Works 79 Bibliography 81 A Derivation of the Multipath Iterative Adaptive Approach 87 | - |
| dc.language.iso | en | - |
| dc.subject | 二維到達角估計 | zh_TW |
| dc.subject | 真實目標與虛假目標的分類與識別 | zh_TW |
| dc.subject | 多路徑效應 | zh_TW |
| dc.subject | 稀疏天線陣列 | zh_TW |
| dc.subject | 時分複用多輸入多輸出雷達 | zh_TW |
| dc.subject | Classification and identification of true and ghost targets | en |
| dc.subject | TDM MIMO radar | en |
| dc.subject | Sparse antenna arrays | en |
| dc.subject | Multipath effects | en |
| dc.subject | 2D-DoA estimation | en |
| dc.title | 基於多輸入多輸出雷達在多路徑環境中的二維到達角估計及真實目標與虛假目標識別 | zh_TW |
| dc.title | Two-Dimensional Direction-of-Arrival Estimation and Identification of True and Ghost Targets in Multipath Environments Based on MIMO Radar | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉俊麟;黃彥銘;蔡尚澕 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Lin Liu;Yenming Huang;Shang-Ho Tsai | en |
| dc.subject.keyword | 時分複用多輸入多輸出雷達,稀疏天線陣列,多路徑效應,二維到達角估計,真實目標與虛假目標的分類與識別, | zh_TW |
| dc.subject.keyword | TDM MIMO radar,Sparse antenna arrays,Multipath effects,2D-DoA estimation,Classification and identification of true and ghost targets, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202501379 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2030-06-27 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-06-27 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
