Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平(Jen-Ping Chen)
dc.contributor.authorYi-Pin Chenen
dc.contributor.author陳薏蘋zh_TW
dc.date.accessioned2021-05-20T20:40:02Z-
dc.date.available2008-07-26
dc.date.available2021-05-20T20:40:02Z-
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation王寶貫,1997:雲物理學,國立編譯館主編,渤海堂文化事業有限公司。332 pp.
Ackerman, A. S., O. B. Toon, J. P. Taylor, D. Johnson, P. V. Hobbs, and R. J. Ferek, 2000: Effects of Aerosols on cloud Albedo: Evaluation of Twomey’s Parameterization of cloud Susceptibility Using Measurements of Ship Tracks. J. Atmos. Sci., 57, 2684-2695.
Albrecht BA. 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science 245: 1227-1230.
Cooper, W. A., and R. T. Bruintjes, and G. K. Mather, 1997: Some calculations pertaining to hygroscopic seeding with flares. J Appl. Meteor., 36, 1449-1469.
Cotton, W. R., 1986: Testing, implementation, and evolution of seeding concepts—A review. Rainfall enhancement—A Scientific challenge, Meteor. Monogr., 43, Amer. Meteor. Soc., 139-149.
Chen, J.-P., and Dennis Lamb, 1994: Simulation of cloud microphysical and chemical process using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci., 51, 2613-2630.
Chen, J.-P., and Liu, S.-T., 2004: Physically based two-moment bulkwater parameterization for warm-cloud microphysics. Q. J. R. Meteorol. Soc., 130, 57-78.
Cheng, C.-T., Wei-chyung Wang and Jen-Ping Chen, 2007a: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Q. J. R. Meteorol. Soc., 133, 283-297.
Cheng, C.-T., Wang, w.-C., and Chen, J.-P., 2007b: A modelling study of CCN number on cloud microphysics in a deep convection system. 9th WMO Scientific Conference on Weather Modification.
DeMott, P. J., and D. C. Roger, 1990: Freezing nucleation rates of dilute solution droplets measured between -30oC and -40oC in laboratory simulations of natural clouds. J Atmos. Sci., 47, 1056-1064.
Feingold, G., Cotton, W. R., Kreidenweis, S. M., & Davis, J. T. 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. Journal of Geophysical Research, 56, 4100-4177.
Fletcher, N. H.,1962: The physics of rainclouds. Cambridge University Press, 390 pp.
Flossmann , A. I., 1998: Interaction of aerosol particles and clouds. J Atmos. Sci., 55, 879-887.
Georgii, H. W., and e. Kleinjung, 1967: Relations between the chemical composition of atmospherical aerosol particles and the concentration of natural ice nuclei. J. Rech. Atmos., 3, 145-156.
Grell, G. A., J. dudhia, and d. R., Stauffer, 1994: Adescription of the fifth-generation Penn Stat/NCAR mesoscal model (MM5), NCAR Technical Note, NCAR/TN-398+STR, pp.121
Huffman, P. J., 1973: supersaturation spectra of AGI and natural ice nuclei. J. Appl. Meteor., 12, 1080-1081.
Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments, J. Atmos. Sci., 48, 1160-1189.
Khain, a., d. Rosenfeld, and a. Pokrovsky, 2005: aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639-2663.
Lau, M. K., and Wu, H.T., 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290.
Liou, K.-N., and S.-C. Ou, 1989: The Role of Cloud Microphysical Processes in Climate: An Assessment From a One-Dimensional Perspective. J. Geophys. Res., 94(D6), 8599-8607.
Mather, G. K., d. E. Terblanche, F. E. Steffens, and L. Fletcher, 1997: Results of the south African cloud seeding experiments using hygroscopic flares. J. appl. Meteor., 36, 1433-1447.
Orville, R.E., R. Zhang, J. N. Gammon, d. Collins, B. Ely and s. Steiger, 2001: enhancement of cloud-to-ground lightening over Houston, Tesas, Geophys. Res. Lett., 28, 2597-2600.
Reisner, R. M., and Bruintjes, R. T., 1998: Explicit forecasting of supercooled liquid water in winter storm using the MM5 mesocale model. Q. J. Meteorol. Soc., 124, 1071-1107.
Rosenfeld D., and W. L. Woodley, 2000a: Deep convective clouds with sustained supercooled liquid water down to -37.5oC. Nature, 405, 440-442.
Rosenfeld D., 2000b: Suppression of rain and snow by urban and industrial air pollution. Science, 287,1793-1796.
Rosenfeld, D., Lahav, R., Khain, a. P., & Pinsky, M. 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297, 1668-1670.
Rosenfeld, D., Amir Givati, 2006: Evidence of orographic precipitation suppression by air pollution-induced aerosols in the western united states. 45, Amer. Meteor. Soc., 893-911.
Ryan, Brian, F., 2000: A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. atmos. Sci., 57, 1436-1451.
Tao, W., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.
Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 67–80.
Twomey, S. A., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152.
Van Den Heever, S., Gustavo G. Carrió, William R. Cotton, Paul. J DeMott, and Anthony J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulation. J. Atmos. Sci, 63,1752-1775.
Van Den Heever, S. and William R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828–850.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135-159.
Williams, E., D. Rosenfeld, N. Madden, J. Gerlach, N. Gears, L. Atkinson, N. Dunnemann, G. Frostrom, M. Antonio, B. Biazon, R. Camargo, H. Franca, A. Gomes, M. Lima, R. Machado, S. Manhaes, L. Nachtigall, H. Piva, W. Quintiliano, L. Machado, P. Artaxo, G. Roberts, N. Renno, R. Blakeslee, J. Bailey, D. Boccippio, A. Betts, D. Wolff, B. Roy, J. Halverson, T. Rickenbach, J. Fuentes, and E. Avelino, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107(D20), 8082.
Young, T. R., and J. P. Boris, 1977: Anumerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problem. J. Phys. Chem., 81 (25), 2424-2427.
Zhang, L., Michelangeli, D. V., & Taylor, P. A., 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Science, 37, 203-217.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9765-
dc.description.abstract水是人類生活不可或缺的生活要素之一,人類可用水的來源主要來自降水,而探制降水效率的重要關鍵之一為大氣中CCN(Cloud Condensation Nuclei)和IN (Ice Nuclei)的數量濃度。CCN和IN的來源主要為空氣中的懸浮微粒,即是所謂的氣膠。近年來有許多研究著重於CCN和IN對降水的影響,有的研究指出增加CCN或IN有助於降水的形成;但有的些研究結果則否。由於氣膠與雲內動力效應的交互作用的影響相當複雜,再加上對冰相過程的作用所知有限,因此目前對於CCN和IN對降水的影響為何仍未有確切的定論。
故本研究重點將著重在CCN、IN數量濃度的變化對降水的影響。使用的模式為加入C&L-Reisner 2參數法(CLR參數法)的MM5(The Fifth-Generation NCAR/PSU Mesoscale Model)。CLR參數法是結合Chen and Liu (2004)之C&L暖雲參數法與MM5中的Reisner 2冰相過程的參數法,可反映凝結核的數量濃度與氣膠粒徑分佈對暖雲與冷雲過程的影響。
目前選定兩個鋒面個案進行模擬,透過一系列的模擬測試可知,增加或減少氣膠的數量濃度對不同的天氣型態降雨會有不同的影響,在深對流系統的個案裡增加氣膠數量濃度會增加降雨,但對於對流系統較淺的個案而言則是相反的結果,顯示氣膠的數量濃度對降水過程有其重要但非線性的影響。
zh_TW
dc.description.abstractHumans cannot live without water. Due to the influence of increasing populations and degree of industrialization on global climate and environment, human influence on precipitation efficiency became a very important issue. Precipitation is one of the most basic commodities on earth sustaining human life. Its efficiency is strongly influence by aerosol particles that serve as cloud condensation nuclei (CCN) and ice nuclei (IN).
Some past studies indicated that more aerosols may result in more but smaller cloud drops. Smaller cloud drops would suppresses drop coalescence thus inhibit precipitation formation. But there are also studies that shown otherwise. The aerosol effect on clouds remains an unsolved issue and the processes involved are complicated and nonlinear.
The main motivation of this study is to gain a better understanding of the mechanisms involved in this aerosol-cloud interaction, using a non-hydrostatic mesoscale cloud model (MM5) as the main tool. A C&L Reisner 2 scheme that considers the effects of CCN on precipitation is incorporated into this model. The simulation results indicated that different concentration of aerosols has different effect on precipitation depending on the types of cloud system. More aerosols generally produce more and smaller cloud drops and inhibit warm rain formation; it also enhances the deposition growth of ice particles but limits their growth by riming. In the deep convective cloud system that simulated here, increasing aerosol can enhance surface rainfall; but for the shallow convective cloud system the surface precipitation is reduced. Increasing IN not necessary increase or decrease precipitation, and the effect actually depends on the strength of homogeneous nucleation and other nucleation processes. Overall, aerosols play complicated and nonlinear roles in precipitation process.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:40:02Z (GMT). No. of bitstreams: 1
ntu-97-R95229010-1.pdf: 9933924 bytes, checksum: b41e3e8edf3aa7cfc3eb1d2cea3390b0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言1
第二章 模式應用 4
2.1 MM5模式簡介 4
2.2 雲微物理參數法5
2.2.1 Reisner2 參數法 6
2.2.2 C&L 參數法6
2.2.3 C&L Reisner2 參數法 8
2.3 冰核數量與核化速率 9
第三章 實驗設計 11
3.1 模式設定 11
3.2 模擬個案介紹 11
3.2.1 2000年2月20日氣象場分析 12
3.2.2 2003年5月16日氣象場分析 12
3.3 實驗設計 13
第四章 模擬結果 15
4.1 CCN影響2000/02/20個案 15
4.2 IN影響2000/02/20個案 17
4.3 CCN影響2003/05/16個案 19
4.4 IN影響2003/05/16個案 21
第五章 結論 23
參考文獻 25
圖表 30
附錄A:實驗一模擬結果補充 104
附錄B:實驗二模擬結果 107
附錄C:實驗三模擬結果 110
附錄D:實驗四模擬結果 113
dc.language.isozh-TW
dc.title凝結核與冰核數量濃度對降水影響之數值研究zh_TW
dc.titleEffect of the Number Concentrations of Condensation Nuclei and Ice Nuclei on Precipitation Formation: A numerical Studyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉紹臣(Shaw-Chen Liu),王寶貫(Pao-Kuan Wang),洪惠敏(Hui-Ming Hung),楊明仁(Ming-Jen Yang)
dc.subject.keywordCCN,IN,氣膠,降水,CLR參數法,zh_TW
dc.subject.keywordCCN,IN,aerosol,precipitation,CLR-scheme,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf9.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved