請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97652
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡璧合 | zh_TW |
dc.contributor.advisor | Pi-Ho Hu | en |
dc.contributor.author | 陳玠霖 | zh_TW |
dc.contributor.author | Chieh-Lin Chen | en |
dc.date.accessioned | 2025-07-09T16:15:08Z | - |
dc.date.available | 2025-07-10 | - |
dc.date.copyright | 2025-07-09 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-06-23 | - |
dc.identifier.citation | 1. Ryckaert, J., et al., The Complementary FET (CFET) for CMOS scaling beyond N3, in 2018 IEEE Symposium on VLSI Technology. 2018. p. 141-142.
2. Jiang, L., et al., Complementary FET Device and Circuit Level Evaluation Using Fin-Based and Sheet-Based Configurations Targeting 3nm Node and Beyond, in 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2020. p. 323-326. 3. Liu, H.-H., et al., CFET SRAM DTCO, Interconnect Guideline, and Benchmark for CMOS Scaling. IEEE Transactions on Electron Devices, 2023. 70(3): p. 883-890. 4. Jourdain, A., et al., Buried Power Rails and Nano-Scale TSV: Technology Boosters for Backside Power Delivery Network and 3D Heterogeneous Integration, in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). 2022. p. 1531-1538. 5. Mathur, R., et al., Buried Bitline for sub-5nm SRAM Design, in 2020 IEEE International Electron Devices Meeting (IEDM). 2020. p. 20.2.1-20.2.4. 6. Chen, R., et al., Design and Optimization of SRAM Macro and Logic Using Backside Interconnects at 2nm node, in 2021 IEEE International Electron Devices Meeting (IEDM). 2021. p. 22.4.1-22.4.4. 7. Zhu, X., et al., A Combined N/PFET CFET-Based Design and Logic Technology Framework for CMOS Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023. 42(12): p. 4999-5005. 8. Yang, X., et al., 3-D Modeling of Fringe Gate Capacitance in Complementary FET (CFET). IEEE Transactions on Electron Devices, 2022. 69(11): p. 5978-5984. 9. Jung, S.-G., et al., Performance Analysis on Complementary FET (CFET) Relative to Standard CMOS With Nanosheet FET. IEEE Journal of the Electron Devices Society, 2022. 10: p. 78-82. 10. Gupta, M.K., et al., The Complementary FET (CFET) 6T-SRAM. IEEE Transactions on Electron Devices, 2021. 68(12): p. 6106-6111. 11. Zhu, X., et al., CFET 6T HD SRAM Designs with 3nm Design Rule, in 2022 China Semiconductor Technology International Conference (CSTIC). 2022. p. 1-4. 12. Di, Z., et al., Virtual Fab Coupled Physics-Based Simulation Design of Sub-2nm Node 3D Heterogeneous Si/IGZO 6T SRAM, in 2024 2nd International Symposium of Electronics Design Automation (ISEDA). 2024. p. 1-5. 13. Lee, M., et al., Energy-and Area-Efficient 8T SRAM Cell with FEOL CFETs and BEOL-Compatible Transistors, in 2022 International Electron Devices Meeting (IEDM). 2022. p. 15.2.1-15.2.4. 14. Lu, Y.-C., M.-L. Wu, and M.-L. Wu, Conflict-Free and Area-Efficient 4N4P CFET 8T SRAM with Double-Sided Signal Routing for Multibit Compute-in-Memory in AI Edge Devices, in 2024 International Electron Devices Meeting (IEDM). 2024. 15. Baig, M.A., et al., 3-D Monolithic Stacking of Complementary-FET on CMOS for Next Generation Compute-In-Memory SRAM. IEEE Journal of the Electron Devices Society, 2023. 11: p. 107-113. 16. Lin, Y.-W., et al., 3-D Self-Aligned Stacked Ge Nanowire pGAAFET on Si nFinFET of Single Gate CFET. IEEE Journal of the Electron Devices Society, 2023. 11: p. 480-484. 17. Kim, S.K., et al., Heterogeneous 3-D Sequential CFETs With Ge (110) Nanosheet p-FETs on Si (100) Bulk n-FETs. IEEE Transactions on Electron Devices, 2024. 71(1): p. 393-399. 18. Vega-Gonzalez, V., et al., Integration of a Stacked Contact MOL for Monolithic CFET, in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). 2023. p. 1-2. 19. Park, E. and T. Song, Complementary FET (CFET) Standard Cell Design for Low Parasitics and Its Impact on VLSI Prediction at 3-nm Process. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023. 31(2): p. 177-187. 20. Park, J., et al., First demonstration of 3-dimensional stacked FET with top/bottom source-drain isolation and stacked n/p metal gate, in 2023 International Electron Devices Meeting (IEDM). 2023. p. 1-4. 21. Luo, Y., et al., Investigation of Novel Hybrid Channel Complementary FET Scaling Beyond 3-nm Node From Device to Circuit. IEEE Transactions on Electron Devices, 2022. 69(7): p. 3581-3588. 22. I.R. Committee, "International Technology Road map for Semiconductors, "2022 Edition. Semiconductor Industry Association. 23. S. S. Sapatnekar, "RC Interconnect Optimization under the Elmore Delay Model," 31st Design Automation Conference, San Diego, CA, USA, 1994, pp. 387-391. 24. Global TCAD Solutions. Accessed: Mar. 5, 2023. [Online]. Available: https://www.globaltcad.com/. 25. Wang, J., S. Nalam, and B.H. Calhoun, Analyzing static and dynamic write margin for nanometer SRAMs, in Proceeding of the thirteenth international symposium on Low power electronics and design - ISLPED '08. 2008. 26. Y. Zorian, "Embedded memory test and repair: infrastructure IP for SOC yield," Proceedings. International Test Conference, Baltimore, MD, USA, 2002, pp. 340-349. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97652 | - |
dc.description.abstract | 隨著技術節點的不斷推進和製程技術的進步,積體電路中的電晶體數量持續增加,從而提升操作速度和整體效能。隨著這些變化,電晶體的閘極長度也在逐步縮小。互補式場效電晶體(Complementary Field-Effect Transistor, CFET)被廣泛認為是一種具有重大潛力的前瞻技術,該技術通過將NFET和PFET垂直堆疊的方式來實現。然而,對於NFET和PFET的最佳配置仍然沒有一個公認的標準答案。鑒於此,本論文旨在從電路設計的角度出發,探討CFET結構中的最佳配置方式。
本文共分為三個主要部分。第一部分詳細介紹了互補式場效電晶體的元件結構,並詳細說明了CFET垂直結構N/P(NFET在上,PFET在下)和P/N(PFET在上,NFET在下)兩種配置的技術參數和性質。第二部分則聚焦於這兩種配置在邏輯電路設計中的實際應用,研究的電路包括反向器 ( Inverter )、二輸入反或閘 (Two-input NOR, NOR2)、三輸入反或閘(Three-input NOR, NOR3),並分析了佈局設計與三維結構如何影響電路特性。第三部分則探討了N/P和P/N配置在16KB SRAM記憶體及其周邊電路設計中的應用,包括SRAM 記憶體單元 ( SRAM Bitcell )、感測放大器、預充電路、讀寫電路、列解碼器和行解碼器與多工器。本論文不僅分析了N/P及P/N每種配置的設計優勢和對電路穩定性的影響,還在實際應用中提供了數據和性能比較。研究結果顯示,在各種應用場景中,N/P和P/N配置各自具有獨特的優勢,N/P 配置在讀寫時間(Read/Write Time)上相對於 P/N 配置具有12.29%和15.37%的優勢,在讀寫能量(Read/Write Energy)上也分別領先2.03%和8.34%。然而,P/N 配置在面積方面表現出色,比 N/P 配置縮小了28.9%,並且在讀寫功耗(Read/Write Power)上也有1.39%和1.45%的優勢,因此可以根據具體應用選擇最佳架構。這項研究將為埃米世代及先進技術節點微縮方面提供重要的見解。 | zh_TW |
dc.description.abstract | As technology nodes continue to scale and process technologies advance, the number of transistors integrated into a single chip increases significantly to enhance system performance and efficiency. To support this trend, transistor gate lengths are continuously reduced. Among emerging device architectures, Complementary Field-Effect Transistors (CFETs), which vertically stack NFET and PFET devices, have emerged as a highly promising solution, offering a new direction in semiconductor design. This novel structure aims to overcome the performance limitations encountered by traditional FET technologies at deeply scaled nodes. However, the optimal stacking configuration of NFET and PFET within CFETs remains undetermined. This thesis investigates the impact of CFET configurations from a circuit-level perspective, with the goal of identifying optimal design strategies for improved circuit performance.
This work is divided into three parts. The first part introduces the CFET device structure and provides a detailed comparison of the electrical characteristics of two stacking configurations: N/P (NFET over PFET) and P/N (PFET over NFET). The second part explores the implications of these configurations in logic circuit design, analyzing key elements such as inverters, two-input NOR gates, and three-input NOR gates. It further examines how layout constraints and three-dimensional integration affect performance and area efficiency. The third part applies both N/P and P/N configurations to the design of a 16KB SRAM and its peripheral circuitry, including bitcells, sense amplifiers, precharge circuits, read/write paths, and row/column decoders. This section evaluates the design trade-offs associated with each configuration, including performance, energy efficiency, stability, and area. Experimental results reveal that compared to the P/N configuration, the N/P configuration offers superior speed and energy performance, achieving improvements of 12.29% and 15.37% in read/write latency and 2.03% and 8.34% in read/write energy, respectively. In contrast, the P/N configuration demonstrates better area efficiency, reducing layout area by 28.9%, and exhibits slight advantages in read/write power consumption (1.39% and 1.45%, respectively). These findings suggest that each configuration offers distinct benefits depending on the target application, and the selection should be guided by system-level priorities such as speed, power, and area. This study provides valuable insights into CFET-based design and offers circuit-level guidelines for future technology scaling in advanced nodes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:15:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-07-09T16:15:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 xii Chapter 1 第一章 導論 1 1.1 背景與相關研究 1 1.2 研究動機與目標 3 1.3 研究方法 4 Chapter 2 第二章 研究內容與發現 6 2.1 互補式場效電晶體(CFET)結構與模擬參數 6 2.2 CFET N/P與P/N之邏輯電路設計 12 2.2.1 反向器(Inverter) 12 2.2.2 二輸入反或閘(NOR2) 14 2.2.3 三輸入反或閘(NOR3) 16 2.2.4 CFET邏輯設計電路結果與討論 18 2.3 CFET N/P與P/N之16KB SRAM Macro之電路設計 22 2.3.1 6T SRAM 22 2.3.2 感測放大器(Sensing Amplifier, SA) 30 2.3.3 預充電電路(Precharge) 36 2.3.4 讀寫電路(Read/Write Circuit)、列解碼器(Row Decoder)、行解碼器與多工器(Column Decoder & Ymux)等周邊電路 38 2.3.5 CFET SRAM Macro之周邊電路結果與討論 42 2.3.6 CFET N/P、P/N與P/Ncompact 16KB SRAM Macro結果與討論 47 Chapter 3 第三章 結論與未來展望 56 參考資料 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 0.5奈米技術下之互補式場效電晶體NFET堆疊PFET 與 PFET堆疊NFET配置的16KB SRAM巨集分析 | zh_TW |
dc.title | Analysis of 16KB SRAM Macro Using NFET-over-PFET and PFET-over-NFET A5 CFET Technology | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃柏蒼;楊皓義 | zh_TW |
dc.contributor.oralexamcommittee | Po-Tsang Huang;Hao-I Yang | en |
dc.subject.keyword | 互補式場效電晶體,SRAM巨集,邏輯電路,周邊電路設計,感測放大器,解碼器, | zh_TW |
dc.subject.keyword | Complementary Field-Effect Transistor (CFET),SRAM macro,logic circuit,peripheral circuit,sensing amplifier,decoder, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202500896 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-06-24 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
dc.date.embargo-lift | 2030-06-22 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 目前未授權公開取用 | 4.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。