Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97651
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬zh_TW
dc.contributor.advisorHsueh-Fen Juanen
dc.contributor.author李蒔青zh_TW
dc.contributor.authorShih-Ching Leeen
dc.date.accessioned2025-07-09T16:14:53Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-02-
dc.identifier.citation1. Demoulin JB KO, Rorsman F. Scleroderma. N Engl J Med. 2009;361(8):826.
2. Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685-99.
3. Mouawad JE, Feghali-Bostwick C. The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci. 2023;24(3).
4. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N Engl J Med. 2019;380(26):2518-28.
5. Khanna D, Lin CJF, Furst DE, Wagner B, Zucchetto M, Raghu G, et al. Long-Term Safety and Efficacy of Tocilizumab in Early Systemic Sclerosis-Interstitial Lung Disease: Open-Label Extension of a Phase 3 Randomized Controlled Trial. Am J Respir Crit Care Med. 2022;205(6):674-84.
6. Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, et al. Myeloablative Autologous Stem-Cell Transplantation for Severe Scleroderma. N Engl J Med. 2018;378(1):35-47.
7. Qiu M, Nian X, Pang L, Yu P, Zou S. Prevalence and risk factors of systemic sclerosis-associated interstitial lung disease in East Asia: A systematic review and meta-analysis. Int J Rheum Dis. 2021;24(12):1449-59.
8. Herzog EL, Mathur A, Tager AM, Feghali-Bostwick C, Schneider F, Varga J. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthritis Rheumatol. 2014;66(8):1967-78.
9. Maria ATJ, Partouche L, Goulabchand R, Riviere S, Rozier P, Bourgier C, et al. Intriguing Relationships Between Cancer and Systemic Sclerosis: Role of the Immune System and Other Contributors. Front Immunol. 2018;9:3112.
10. Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol. 2018;9:1177.
11. Melissaropoulos K, Iliopoulos G, Sakkas LI, Daoussis D. Pathogenetic Aspects of Systemic Sclerosis: A View Through the Prism of B Cells. Front Immunol. 2022;13:925741.
12. Cortese-Krott MM, Koning A, Kuhnle GGC, Nagy P, Bianco CL, Pasch A, et al. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal. 2017;27(10):684-712.
13. Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F, et al. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension. Antioxidants (Basel). 2017;6(3).
14. Baroni SS SM, Bevilacqua F, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. NEJM. 2006;354:2667–76.
15. Zimmer A, Teixeira RB, Constantin RL, Campos-Carraro C, Aparicio Cordero EA, Ortiz VD, et al. The progression of pulmonary arterial hypertension induced by monocrotaline is characterized by lung nitrosative and oxidative stress, and impaired pulmonary artery reactivity. Eur J Pharmacol. 2021;891:173699.
16. Poyatos P, Gratacos M, Samuel K, Orriols R, Tura-Ceide O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants (Basel). 2023;12(5).
17. Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, et al. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid Med Cell Longev. 2016;2016:3907147.
18. Kondoh M, Ohga N, Akiyama K, Hida Y, Maishi N, Towfik AM, et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One. 2013;8(11):e80349.
19. Servettaz A, Goulvestre C, Kavian N, Nicco C, Guilpain P, Chereau C, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol. 2009;182(9):5855-64.
20. Henault J, Robitaille G, Senecal JL, Raymond Y. DNA topoisomerase I binding to fibroblasts induces monocyte adhesion and activation in the presence of anti-topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum. 2006;54(3):963-73.
21. Rosa I, Romano E, Fioretto BS, Manetti M. Autoantibodies as putative biomarkers and triggers of cell dysfunctions in systemic sclerosis. Curr Opin Rheumatol. 2024.
22. Armando Gabrielli EVA, and Thomas Krieg. Scleroderma. N Engl J Med. 2009;360:1989-2003.
23. H S. Oxidative stress: frombasic research to clinical application. . AmJMed. 1991; 91:31s−8s.
24. Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol. 2021;12:635021.
25. Servettaz A, Guilpain P, Goulvestre C, Chereau C, Hercend C, Nicco C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis. 2007;66(9):1202-9.
26 L. Jornot AFJ. Response of Human Endothelial Cell Antioxidant Enzymes to Hyperoxia. Am J Respir Cell Mol BioI. 1992;Vol. 6. pp. 107-11.
27 Herrick AL, and M. Matucci Cerinic. The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol. 2001;19: 4–8.
28 Nozoe M, Hirooka, Y., Koga, Y., Araki, S., Konno, S., Kishi, T., et al. Mitochondria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla. J Hypertens. 2008;26, 2176–2184.
29. Doridot L, Jeljeli M, Chene C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Redox Biol. 2019;25:101122.
30. Paolini C, Agarbati S, Benfaremo D, Mozzicafreddo M, Svegliati S, Moroncini G. PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis. Int J Mol Sci. 2022;23(7).
31. Romano E, Rosa I, Fioretto BS, Manetti M. The contribution of endothelial cells to tissue fibrosis. Curr Opin Rheumatol. 2024;36(1):52-60.
32. Sambo P, Jannino L, Candela M, Salvi A, Donini M, Dusi S, et al. Monocytes of patients wiht systemic sclerosis (scleroderma spontaneously release in vitro increased amounts of superoxide anion. J Invest Dermatol. 1999;112(1):78-84.
33. Vona R, Giovannetti A, Gambardella L, Malorni W, Pietraforte D, Straface E. Oxidative stress in the pathogenesis of systemic scleroderma: An overview. J Cell Mol Med. 2018;22(7):3308-14.
34. Manetti M, Romano E, Rosa I, Guiducci S, Bellando-Randone S, De Paulis A, et al. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis. 2017;76(5):924-34.
35. Zolkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res. 2019;311(4):251-63.
36. Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020 Sep 3;383(10):958-968. doi: 10.1056/NEJMra2005230. PMID: 32877584.
37. Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: an updated review with therapeutic implications. Arthritis Res Ther. 2022 May 13;24(1):108. doi: 10.1186/s13075-022-02787-w. PMID: 35562771; PMCID: PMC9102675.
38. Christmann RB, Sampaio-Barros P, Stifano G, Borges CL, de Carvalho CR, Kairalla R, et al. Association of Interferon- and transforming growth factor beta-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 2014;66(3):714-25.
39. Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 2019;54(2).
40. Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollert F, Goldmann T, et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006;173(7):781-92.
41. Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity. 2022;55(9):1564-80.
42. Serezani APM, Pascoalino BD, Bazzano JMR, Vowell KN, Tanjore H, Taylor CJ, et al. Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2022;67(1):50-60.
43. Papazoglou A, Huang M, Bulik M, Lafyatis A, Tabib T, Morse C, et al. Epigenetic Regulation of Profibrotic Macrophages in Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2022;74(12):2003-14.
44. Evolution of Translational Omics: Lessons Learned and the Path Forward. Washington (DC): National Academies Press (US); 2012 Mar 23. 2, Omics-Based Clinical Discovery: Science, Technology, and Applications. Available from: https://www.ncbi.nlm.nih.gov/books/NBK202165/
45. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411-20.
46. Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51(D1):D870-D6.
47. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.
48. Bader GD HC. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;2003 Jan 13;4:2.
49. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141.
50. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):477.
51. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1):1088.
52. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083-6.
53. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D82.
54. Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, et al. Spatially resolved multiomics of human cardiac niches. Nature. 2023;619(7971):801-10.
55. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(D1):D930-D40.
56. Lee SC, Huang CH, Oyang YJ, Huang HC, Juan HF. Macrophages as determinants and regulators of systemic sclerosis-related interstitial lung disease. J Transl Med. 2024 Jun 27;22(1):600. doi: 10.1186/s12967-024-05403-4.
57. Chen Y, Hao X, Li M, Tian Z, Cheng M. UGRP1-modulated MARCO(+) alveolar macrophages contribute to age-related lung fibrosis. Immun Ageing. 2023;20(1):14.
58. Zhang X, Chen J, Wang S. Serum Amyloid A Induces a Vascular Smooth Muscle Cell Phenotype Switch through the p38 MAPK Signaling Pathway. Biomed Res Int. 2017;2017:4941379.
59. de Paula-Silva M, da Rocha GHO, Broering MF, Queiroz ML, Sandri S, Loiola RA, et al. Formyl Peptide Receptors and Annexin A1: Complementary Mechanisms to Infliximab in Murine Experimental Colitis and Crohn's Disease. Front Immunol. 2021;12:714138.
60. Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, et al. Annexin-A1: The culprit or the solution? Immunology. 2022;166(1):2-16.
61. Pang X, Zhang J, He X, Gu Y, Qian BZ, Xie R, et al. SPP1 Promotes Enzalutamide Resistance and Epithelial-Mesenchymal-Transition Activation in Castration-Resistant Prostate Cancer via PI3K/AKT and ERK1/2 Pathways. Oxid Med Cell Longev. 2021;2021:5806602.
62. Trombetti S, Cesaro E, Catapano R, Sessa R, Lo Bianco A, Izzo P, et al. Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci. 2021;22(5).
63. Han PF, Che XD, Li HZ, Gao YY, Wei XC, Li PC. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol. 2020;23(2):96-101.
64. Raschi E, Privitera D, Bodio C, Lonati PA, Borghi MO, Ingegnoli F, et al. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: an early event in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 2020;22(1):265.
65. Liu Y, Zhang Q, Yang L, Tian W, Yang Y, Xie Y, et al. Metformin Attenuates Cardiac Hypertrophy Via the HIF-1alpha/PPAR-gamma Signaling Pathway in High-Fat Diet Rats. Front Pharmacol. 2022;13:919202.
66. Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, et al. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol. 2013;271(2):229-38.
67. Huang S, He T, Yang S, Sheng H, Tang X, Bao F, et al. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl Lung Cancer Res. 2020;9(6):2337-55.
68. Jaeger VK, Wirz EG, Allanore Y, Rossbach P, Riemekasten G, Hachulla E, et al. Incidences and Risk Factors of Organ Manifestations in the Early Course of Systemic Sclerosis: A Longitudinal EUSTAR Study. PLoS One. 2016;11(10):e0163894.
69. Morales-Nebreda L, Misharin AV, Perlman H, Budinger GR. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev. 2015;24(137):505-9.
70. Feghali CA, Bost KL, Boulware DW, Levy LS. Control of IL-6 expression and response in fibroblasts from patients with systemic sclerosis. Autoimmunity. 1994;17(4):309-18.
71. Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS, Watts GFM, et al. Autocrine Loop Involving IL-6 Family Member LIF, LIF Receptor, and STAT4 Drives Sustained Fibroblast Production of Inflammatory Mediators. Immunity. 2017;46(2):220-32.
72. Madala SK, Schmidt S, Davidson C, Ikegami M, Wert S, Hardie WD. MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation. Am J Respir Cell Mol Biol. 2012;46(3):380-8.
73. Rowe GC, Raghuram S, Jang C, Nagy JA, Patten IS, Goyal A, et al. PGC-1alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ Res. 2014;115(5):504-17.
74. Svegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, et al. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem. 2005;280(43):36474-82.
75. Cui L, Chen SY, Lerbs T, Lee JW, Domizi P, Gordon S, et al. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat Commun. 2020;11(1):2795.
76. Matsuda S, Kim JD, Sugiyama F, Matsuo Y, Ishida J, Murata K, et al. Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. Int J Mol Sci. 2020;21(18).
77. Wen Y, Zhou X, Lu M, He M, Tian Y, Liu L, et al. Bclaf1 promotes angiogenesis by regulating HIF-1alpha transcription in hepatocellular carcinoma. Oncogene. 2019;38(11):1845-59.
78. Potteti HR, Noone PM, Tamatam CR, Ankireddy A, Noel S, Rabb H, et al. Nrf2 mediates hypoxia-inducible HIF1alpha activation in kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2021;320(3):F464-F74.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97651-
dc.description.abstract背景:間質性肺炎(ILD)是全身性硬化症(SSc)死亡的主要原因,全身性硬化症是一種以組織纖維化為特徵的自體免疫疾病。全身性硬化症之間質性肺炎較常見於30-55歲的女性,而特發性肺部纖維化 (IPF) 較常見於 60-75歲的男性。 全身性硬化症間質性肺炎發生早於特發性肺部纖維化,且進展迅速。在過去的文獻中已知帶有FCN1、FABP4、SPP1等細胞特徵之巨噬細胞在肺纖維化的發病機轉中扮演重要的角色,而SPP1巨噬細胞在全身性硬化症間質性肺炎和特發性肺部纖維化中均在肺纖維化的致病機轉上扮演重要角色。我們利用單細胞RNA定序分析方法來辨識全身性硬化症間質性肺炎和特發性肺部纖維化之間的差異,並藉此闡明其不同的發病機制,並提出預防和治療的方向。

方法:我們對 NCBI 基因表現綜合 (GEO) 資料庫 GSE159354 和 GSE212109 進行單細胞RNA定序,並分析健康對照組、全身性硬化症間質性肺炎和特發性肺部纖維化的肺組織切片樣本。主要是透過基因分析與批次校正和註釋細胞類型的整合分析,以區分全身性硬化症間質性肺炎和特發性肺部纖維化患者與健康對照組的比較。我們利用細胞-細胞交互作用推論提出了全身性硬化症間質性肺炎發病機制,並利用SCENIC預測了調節標靶基因的轉錄因子。使用DrugBank資料庫進行轉錄因子基因的藥物標靶預測。

結果:自單核球分化而來的一群巨噬細胞在缺氧壓力下活化MAPK信號通路。由於這群巨噬細胞缺乏ANNEXIN的反饋抑制和全身性硬化症的自體免疫特性,導致肺部纖維化比特發性肺部纖維化更早發生。在最初的肺部組織損傷時,纖維母細胞在SPP1肺泡巨噬細胞的影響下開始活化IL6通路,但IL6似乎與其他發炎和免疫細胞無關。這也許可以解釋為什麼Tocilizumab(一種IL6受體抗體藥物)只能對早期全身性硬化症間質性肺炎患者的肺功能有保護作用。最後,我們確定 BCLAF1,NFE2L2及IRF1是巨噬細胞中MAPK活化的影響轉錄因子。二甲雙胍藥物 (Metformin) 能夠下調 NFE2L2,可作為全身性硬化症間質性肺炎早期預防及治療的候選藥物。

結論:SPP1 肺泡巨噬細胞在全身性硬化症間質性肺炎和特發性肺部纖維化的致病機轉中均具有其重要角色之作用。然而,全身性硬化症間質性肺炎受自體免疫疾病特性和疾病特殊缺氧壓力特性的影響,導致自血液單核球分化而來的一群巨噬細胞所執行的MAPK信號通路持續活化。這可能導致全身性硬化症間質性肺炎之肺纖維化比特發性肺部纖維化更早發生。這些差異可以作為早期預防和治療的潛在研究方向。
zh_TW
dc.description.abstractBackground: Interstitial lung disease (ILD) represents the leading cause of death among patients with systemic sclerosis (SSc), a chronic autoimmune disorder marked by progressive tissue fibrosis. In previous reports on the prevalence of systemic sclerosis, women are at much higher risk for scleroderma than men, with a ratio ranging from 3:1 to 14:1. SSc-related interstitial lung disease (SSc-ILD) predominantly affects females between the ages of 30 and 55, whereas idiopathic pulmonary fibrosis (IPF) is more commonly observed in males aged 60 to 75. Compared to IPF, SSc-ILD tends to develop at a younger age and is characterized by a more rapid progression. Specific macrophage subsets-including FCN1, FABP4, and SPP1 macrophages-have been implicated in fibrotic lung pathology. Notably, SPP1-expressing macrophages are upregulated in both SSc-ILD and IPF, suggesting the shared fibrotic mechanism. We aim to elucidate the differential pathogenic mechanisms between SSc-ILD and IPF, which may underlie the earlier onset and faster progression observed in SSc-ILD, and to identify potential drugs or interventions for early prevention and treatment.
Methods: We utilized publicly available single-cell RNA sequencing datasets (GSE159354 and GSE212109) from the NCBI Gene Expression Omnibus (GEO) to analyze lung tissue samples derived from healthy individuals, patients with idiopathic pulmonary fibrosis (IPF), and those with systemic sclerosis-related interstitial lung disease (SSc-ILD). After filtering and batch effect correction, gene expression data were integrated, and cell types were annotated to enable comparison between SSc-ILD and healthy samples. To explore potential mechanisms of SSc-ILD pathogenesis, we inferred cell–cell communication networks and employed SCENIC analysis to identify key transcription factors regulating gene expression. DrugBank Online was used to predict drug–TF interactions, and single-cell level drug repurposing analysis was conducted using the drug2cell Python package, which calculates drug scores based on target gene expression profiles.
Results: Under oxidative stress, a specific subset of macrophages initiates activation of the MAPK signaling pathway. In the context of systemic autoimmunity and insufficient inhibitory regulation by annexin, this contributes to an earlier onset and persistent progression of pulmonary fibrosis in SSc-ILD compared to IPF. During the initial stages of lung injury, fibroblasts begin activating the IL6 pathway under the influence of SPP1-producing alveolar macrophages; however, IL6 appears to be unrelated to other inflammatory and immune cells. This may explain why tocilizumab (an anti-IL6-receptor antibody) only preserves lung function in patients with early SSc-ILD. Additionally, we identified the transcription factors BCLAF1, NFE2L2, and IRF1 as key regulators of MAPK activation in macrophages. Among potential therapeutic options, metformin was found to downregulate NFE2L2 and could serve as a repurposed drug candidate.
Conclusions: SPP1-producing alveolar macrophages are implicated in the profibrotic processes observed in both IPF and SSc-ILD. In SSc-ILD, however, the interplay of autoimmune responses and oxidative stress appears to sustain MAPK signaling activation in macrophages, potentially contributing to an earlier onset and persistent progression of fibrosis compared to IPF. These distinct pathogenic features highlight important avenues for future research into early intervention and therapeutic strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:14:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:14:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝……………………………………………………………………….i
中文摘要………………………………………………………………ii
ABSTRACT………………………………………………………………iv
CONTENTS………………………………………………………….…vi
LIST OF FIGURES……………………………………………viii
LIST OF TABLES………………………………………………xi
Chapter 1. Introduction……………………………………………….……………..... 1
1.1 Systemic sclerosis (SSc) and interstitial lung disease (ILD) ……………… 1
1.2 Oxidative stress and autoimmunity……………………………………. 1
1.3 SSc vasculopathy………………………………………………..………… 3
1.4 Tissue and organ fibrosis………………………………………..………… 3
1.5 Monocyte/macrophage series and SSc vasculopathy……………………… 4
1.6 The pathophysiology of pulmonary fibrosis……………………………….. 4
Chapter 2. Major goal and Specific Aims…………..…………………………….... 6
2.1 Major goal…………………………..…..…………………………………. 6
2.2 Specific Aims…………..…………………………………….……………. 7
Chapter 3. Materials and methods……………...…….………………………….. 9
3.1 Single-cell RNA-sequencing Dataset…………..………………………… 10
3.2 Data Processing Analysis and Clustering with Cell-type Annotation…… 10
3.3 MCODE Component and DEG Analysis…………..…………………… 12
3.4 Trajectory Analysis………...…..………………………………………… 13
3.5 Cell–cell Interaction Analysis…..………..………………………………. 13
3.6 Gene Regulatory Network…………..……………………………………. 14
3.7 Drug-TF Prediction and Drug2cell……...……..………………………… 14
Chapter 4. Results ...……………….……..……………………………………… 16
4.1 ILD Sample Analysis…………..………………………………………… 16
4.2 Lung Macrophages Execute MAPK Signaling Pathway Specific for SSc-ILD 18
4.3 Monocyte-derived Lung Macrophages…………..………………………. 22
4.4 The Alveolar Macrophage Subpopulation in SSc-ILD……………….… 25
4.5 Cell–cell Interaction Inference (Ligand–receptor Interaction) ………… 28
4.6 The Biological Pathway and Pathogenesis of SSc-ILD…………..……… 39
4.7 p38-MAPK and JUN of the MAPK Signaling Pathway in Lung Macrophage 42
4.8 Drug Targeting Prediction of Transcription Factors…………..…………. 44
Chapter 5. Discussion…………………...……..…………………………………… 45
Chapter 6. Conclusions and Future goals…………………...……………………………. 49
References…………………………………………………………………….…… 51
-
dc.language.isoen-
dc.subject全身性硬化症間質性肺炎zh_TW
dc.subject全身性硬化症zh_TW
dc.subject肺纖維化zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectSystemic sclerosisen
dc.subjectlung fibrosisen
dc.subjectmacrophageen
dc.subjectMAPKen
dc.subjectIL6en
dc.subjectSSc-ILDen
dc.title吞噬細胞在全身性硬化症間質性肺炎所扮演決定與協調者之角色及功能zh_TW
dc.titleMacrophages as Determinants and Regulators of Systemic Sclerosis-Related Interstitial Lung Diseaseen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor歐陽彥正zh_TW
dc.contributor.coadvisorYen-Jen Oyangen
dc.contributor.oralexamcommittee黃宣誠;魏安祺;許家郎zh_TW
dc.contributor.oralexamcommitteeHsuan-Cheng Huang;An-Chi Wei;Chia-Lang Hsuen
dc.subject.keyword全身性硬化症,肺纖維化,全身性硬化症間質性肺炎,巨噬細胞,zh_TW
dc.subject.keywordSystemic sclerosis,lung fibrosis,SSc-ILD,macrophage,MAPK,IL6,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202501019-
dc.rights.note未授權-
dc.date.accepted2025-06-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved