Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author劉祐碩zh_TW
dc.contributor.authorYu-Shuo Liuen
dc.date.accessioned2025-07-09T16:14:18Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-26-
dc.identifier.citation[1] Fabbrizzi, L. Strange Case of Signor Volta and Mister Nicholson: How Electrochemistry Developed as a Consequence of an Editorial Misconduct. Angew. Chem. Int. Ed. 2019, 58, 5810–5822.
[2] May, G. J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018, 15, 145–157.
[3] Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456.
[4] Whittingham, M. S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem. Soc. 1976, 123, 315–320.
[5] Whittingham, M. S. Lithium Titanium Disulfide Cathodes. Nat. Energy 2021, 6, 214.
[6] Thompson, A. H. Electron-Electron Scattering in TiS2. Phys. Rev. Lett. 1975, 35, 1786–1789.
[7] Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. A High Capacity Thiospinel Cathode for Mg Batteries. Energy Environ. Sci. 2016, 9, 2273–2277.
[8] Whittingham, M. S. Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide Hosts. Prog. Solid State Chem. 1978, 12, 41–99.
[9] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x≤1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
[10] Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800.
[11] Armstrong, G. The Li-Ions Share. Nat. Chem. 2019, 11, 1076.
[12] Tomaszewska, A.; Chu, Z.; Feng, X.; O'Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; Li, Y.; Zheng, S.; Vetterlein, S.; Gao, M.; Du, J.; Parkes, M.; Ouyang, M.; Marinescu, M.; Offer, G.; Wu, B. Lithium-Ion Battery Fast Charging: A Review. eTransportation 2019, 1, 100011.
[13] Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A Perspective on Sustainable Energy Materials for Lithium Batteries. SusMat 2021, 1, 38–50.
[14] Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J. D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium‐Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917.
[15] Wu, X.; Ji, G.; Wang, J.; Zhou, G.; Liang, Z. Toward Sustainable All Solid-State Li-Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Adv. Mater. 2023, 35, e2301540.
[16] Zhang, L.; Li, X.; Yang, M.; Chen, W. High-Safety Separators for Lithium-Ion Batteries and Sodium-Ion Batteries: Advances and Perspective. Energy Storage Mater. 2021, 41, 522–545.
[17] Goodenough, J. B.; Park, K. S. The Li-ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
[18] Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603.
[19] Qiu, C.; He, G.; Shi, W.; Zou, M.; Liu, C. The Polarization Characteristics of Lithium-Ion Batteries under Cyclic Charge and Discharge. J. Solid State Electrochem. 2019, 23, 1887–1902.
[20] Besenhard, J. O. The Electrochemical Preparation and Properties of Ionic Alkali Metal-and NR4-Graphite Intercalation Compounds in Organic Electrolytes. Carbon 1976, 14, 111–115.
[21] Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561.
[22] Huang, Z.; Deng, Z.; Zhong, Y.; Xu, M.; Li, S.; Liu, X.; Zhou, Y.; Huang, K.; Shen, Y.; Huang, Y. Progress and Challenges of Prelithiation Technology for Lithium‐Ion Battery. Carbon Energy 2022, 4, 1107–1132.
[23] Saurel, D.; Orayech, B.; Xiao, B.; Carriazo, D.; Li, X.; Rojo, T. From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization. Adv. Energy Mater. 2018, 8, 1703268.
[24] Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nat. Nanotechnol. 2016, 11, 626–632.
[25] Shen, Y.; Qian, J.; Yang, H.; Zhong, F.; Ai, X. Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. Small 2020, 16, 1907602.
[26] Choi, J. W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nat. Rev. Mater. 2016, 1, 1.
[27] Xie, J.; Lu, Y. C. A Retrospective on Lithium-Ion Batteries. Nat. Commun. 2020, 11, 2499.
[28] Toki, G. F. I.; Hossain, M. K.; Rehman, W. U.; Manj, R. Z. A.; Wang, L.; Yang, J. Recent Progress and Challenges in Silicon-Based Anode Materials for Lithium-Ion Batteries. Ind. Chem. Mater. 2024, 2, 226–269.
[29] Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206.
[30] Santhosha, A. L.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P. The Indium−Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries Supercaps 2019, 2, 524–529.
[31] Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y. M.; Yoon, W. S. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2020, 59, 2578–2605.
[32] Golubkov, A. W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-Runaway Experiments on Consumer Li-Ion Batteries with Metal-Oxide and Olivin-Type Cathodes. RSC Adv. 2014, 4, 3633–3642.
[33] Fisher, C. A. J.; Hart Prieto, V. M.; Islam, M. S. Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior. Chem. Mater. 2008, 20, 5907–5915.
[34] Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. CoO2, The End Member of the LixCoO2 Solid Solution. J. Electrochem. Soc. 1996, 143, 1114–1123.
[35] Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li Diffusion in Li-Intercalation Compounds. Acc. Chem. Res. 2013, 46, 1216–1625.
[36] Ding, W.; Ren, H.; Li, Z.; Shang, M.; Song, Y.; Zhao, W.; Chang, L.; Pang, T.; Xu, S.; Yi, H.; Zhou, L.; Lin, H.; Zhao, Q.; Pan, F. Tuning Surface Rock‐Salt Layer as Effective O Capture for Enhanced Structure Durability of LiCoO2 at 4.65 V. Adv. Energy Mater. 2024, 14, 2303926.
[37] Yan, J.; Huang, H.; Tong, J.; Li, W.; Liu, X.; Zhang, H.; Huang, H.; Zhou, W. Recent Progress on the Modification of High Nickel Content NCM: Coating, Doping, and Single Crystallization. Interdiscip. Mater. 2022, 1, 330–353.
[38] Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. J. Mater. Chem. 2007, 17, 3112–3125.
[39] Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K. Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries. J. Power Sources 2013, 233, 121–130.
[40] de Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, J.; Ehrenberg, H. Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries. Adv. Mater. 2019, 31, e1900985.
[41] Streich, D.; Erk, C.; Guéguen, A.; Müller, P.; Chesneau, F.-F.; Berg, E. J. Operando Monitoring of Early Ni-mediated Surface Reconstruction in Layered Lithiated Ni–Co–Mn Oxides. J. Phys. Chem. C 2017, 121, 13481–13486.
[42] Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K. Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3̄m and P4332. Chem. Mater. 2004, 16, 906–914.
[43] Kojima, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Oka, H.; Horibuchi, K.; Ukyo, Y. Degradation Analysis of a Ni-Based Layered Positive-Electrode Active Material Cycled at Elevated Temperatures Studied by Scanning Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy. J. Power Sources 2011, 196, 7721–7727.
[44] Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V. S. Correlation Between Dissolution Behavior and Electrochemical Cycling Performance for LiNi1/3Co1/3Mn1/3O2-Based Cells. J. Power Sources 2012, 207, 134–140.
[45] Zhu, X.; Huang, A.; Martens, I.; Vostrov, N.; Sun, Y.; Richard, M. I.; Schulli, T. U.; Wang, L. High-Voltage Spinel Cathode Materials: Navigating the Structural Evolution for Lithium-Ion Batteries. Adv. Mater. 2024, 36, e2403482.
[46] Liang, G.; Didier, C.; Guo, Z.; Pang, W. K.; Peterson, V. K. Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction. Adv. Mater. 2020, 32, e1904528.
[47] Pasero, D.; Reeves, N.; Pralong, V.; West, A. R. Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4−δ. J. Electrochem. Soc. 2008, 155, A282.
[48] Liu, H.; Liang, G.; Gao, C.; Bi, S.; Chen, Q.; Xie, Y.; Fan, S.; Cao, L.; Pang, W. K.; Guo, Z. Insight into the Improved Cycling Stability of Sphere-Nanorod-Like Micro-Nanostructured High Voltage Spinel Cathode for Lithium-Ion Batteries. Nano Energy 2019, 66, 104100.
[49] Sharma, N.; Yu, D.; Zhu, Y.; Wu, Y.; Peterson, V. K. Non-equilibrium Structural Evolution of the Lithium-Rich Li1+yMn2O4 Cathode within a Battery. Chem. Mater. 2013, 25, 754–760.
[50] Gustafsson, O.; Schökel, A.; Brant, W. R. Mind the Miscibility Gap: Cation Mixing and Current Density Driven Non-equilibrium Phase Transformations in Spinel Cathode Materials. Front. Energy Res. 2022, 10, 1056260.
[51] Kraytsberg, A.; Ein‐Eli, Y. Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries. Adv. Energy Mater. 2012, 2, 922–939.
[52] Xia, Y.; Zhou, Y.; Yoshio, M. Capacity Fading on Cycling of 4 V Li / LiMn2O4 Cells. J. Electrochem. Soc. 1997, 144, 2593.
[53] Thackeray, M. M. Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries. J. Electrochem. Soc. 1995, 142, 2558–2563.
[54] Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117, 7190–7239.
[55] Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T. Lithium Salts for Advanced Lithium Batteries: Li–Metal, Li–O2, and Li–S. Energy Environ. Sci. 2015, 8, 1905–1922.
[56] Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Publisher Correction: Advances and Issues in Developing Salt-Concentrated Battery Electrolytes. Nat. Energy 2019, 4, 427–427.
[57] Kim, J.-H.; Pieczonka, N. P. W.; Li, Z.; Wu, Y.; Harris, S.; Powell, B. R. Understanding the Capacity Fading Mechanism in LiNi0.5Mn1.5O4/Graphite Li-Ion Batteries. Electrochim. Acta 2013, 90, 556–562.
[58] Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781.
[59] Buschmann, H.; Berendts, S.; Mogwitz, B.; Janek, J. Lithium Metal Electrode Kinetics and Ionic Conductivity of the Solid Lithium Ion Conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with Garnet-Type Structure. J. Power Sources 2012, 206, 236–244.
[60] Kuganathan, N.; Rushton, M. J. D.; Grimes, R. W.; Kilner, J. A.; Gkanas, E. I.; Chroneos, A. Self-Diffusion in Garnet-Type Li7La3Zr2O12 Solid Electrolytes. Sci. Rep. 2021, 11, 451.
[61] Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rublo, G.; Mo, Y. F.; Thangadurai, V.; Wachsman, E. D.; Hu, L. B. Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries. Nat. Mater. 2017, 16, 572–579.
[62] Kihira, Y.; Ohta, S.; Imagawa, H.; Asaoka, T. Effect of Simultaneous Substitution of Alkali Earth Metals and Nb in Li7La3Zr2O12 on Lithium-Ion Conductivity. ECS Electrochem. Lett. 2013, 2, A56–A59.
[63] Wang, T.; Ock, J.; Chen, X. C.; Wang, F.; Li, M. J.; Chambers, M. S.; Veith, G. M.; Shepard, L. B.; Sinnott, S. B.; Borisevich, A.; Chi, M. F.; Bhattacharya, A.; Clément, R. J.; Sokolov, A. P.; Dai, S. Flux Synthesis of A-site Disordered Perovskite La0.5M0.5TiO3 (M=Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes. Adv. Sci. 2024, 2408805.
[64] Wang, J.-C.; Zhao, L.-L.; Zhang, N.; Wang, P.-F.; Yi, T.-F. Interfacial Stability between Sulfide Solid Electrolytes and Lithium Anodes: Challenges, Strategies and Perspectives. Nano Energy 2024, 123, 109361.
[65] Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Adv. Mater. 2005, 17, 918–921.
[66] Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A Sulphide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 627–631.
[67] Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A Lithium Superionic Conductor. Nat. Mater. 2011, 10, 682–686.
[68] Wenzel, S.; Randau, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chem. Mater. 2016, 28, 2400–2407.
[69] Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids with an Unusually High Li+ Mobility. Angew. Chem. Int. Ed. 2008, 47, 755–758.
[70] Wang, S.; Zhang, Y. B.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L. L.; Nan, C. W. High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285.
[71] Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 33296–33306.
[72] Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Lett. 2019, 4, 2418–2427.
[73] Li, W.; Wu, G.; Araújo, C. M.; Scheicher, R. H.; Blomqvist, A.; Ahuja, R.; Xiong, Z.; Feng, Y.; Chen, P. Li+ Ion Conductivity and Diffusion Mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 2010, 3, 1524–1530.
[74] Li, W.; Li, M.; Wang, S.; Chien, P. H.; Luo, J.; Fu, J.; Lin, X.; King, G.; Feng, R.; Wang, J.; Zhou, J.; Li, R.; Liu, J.; Mo, Y.; Sham, T. K.; Sun, X. Superionic Conducting Vacancy-Rich β-Li3N Electrolyte for Stable Cycling of All-Solid-State Lithium Metal Batteries. Nat. Nanotechnol. 2024, 20, 265–275.
[75] Nie, X.; Hu, J.; Li, C. Halide‐Based Solid Electrolytes: The History, Progress, and Challenges. Interdiscip. Mater. 2023, 2, 365–389.
[76] Du, B.; Zhou, H.; He, P. Halide Lithium Conductors: From Design and Synthesis to Application for All-Solid-State Batteries. ACS Appl. Energy Mater. 2025, 8, 723–745.
[77] Zhang, Y.; Sun, J.; Li, L.; Long, Z.; Meng, P.; Ang, E. H.; Liang, Q. Advancements in the Emerging Rare-Earth Halide Solid Electrolytes for Next-Generation All-Solid-State Lithium Batteries. Coord. Chem. Rev. 2025, 528, 216432.
[78] Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X. Progress and Perspectives on Halide Lithium Conductors for All-Solid-State Lithium Batteries. Energy Environ. Sci. 2020, 13, 1429–1461.
[79] Kendall, J.; Crittenden, E. D.; Miller, H. K. A Study of the Factors Influencing Compound Formation and Solubility in Fused Salt Mixture. J. Am. Chem. Soc. 1923, 45, 963–996.
[80] Ginnings, D. C.; Phipps, T. E. Temperature-Conductance Curves of Solid Salts. III. Halides of Lithium. J. Am. Chem. Soc. 1930, 52, 1340–1345.
[81] Schlaikjer, C. R.; Liang, C. C. Ionic Conduction in Calcium Doped Polycrystalline Lithium Iodide. J. Electrochem. Soc. 1971, 118, 1447–1450.
[82] Kanno, R.; Takeda, Y.; Yamamoto, O. Ionic Conductivity of Solid Lithium Ion Conductors with the Spinel Structure: Li2MCl4 (M = Mg, Mn, Fe, Cd). Mater. Res. Bull. 1981, 16, 999–1005.
[83] Lutz, H. D.; Pfitzner, A. Li2ZnI4, the First Olivine Type Iodide. Zeitschrift für Naturforschung B 1989, 44, 1047–1049.
[84] He, B.; Zhang, F.; Xin, Y.; Xu, C.; Hu, X.; Wu, X.; Yang, Y.; Tian, H. Halogen Chemistry of Solid Electrolytes in All-Solid-State Batteries. Nat. Rev. Chem. 2023, 7, 826–842.
[85] Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv. Mater. 2018, 30, e1803075.
[86] Wang, C.; Liang, J.; Luo, J.; Liu, J.; Li, X.; Zhao, F.; Li, R.; Huang, H.; Zhao, S.; Zhang, L.; Wang, J.; Sun, X. A Universal Wet-Chemistry Synthesis of Solid-State Halide Electrolytes for All-Solid-State Lithium-Metal Batteries. Sci. Adv. 2021, 7, eabh1896.
[87] Ito, H.; Shitara, K.; Wang, Y.; Fujii, K.; Yashima, M.; Goto, Y.; Moriyoshi, C.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Kinetically Stabilized Cation Arrangement in Li3YCl6 Superionic Conductor during Solid-State Reaction. Adv. Sci. 2021, 8, e2101413.
[88] Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y. J.; Nam, K.-W.; Jung, Y. S. Heat Treatment Protocol for Modulating Ionic Conductivity via Structural Evolution of Li3-xYb1-xMxCl6 (M = Hf4+, Zr4+) New Halide Superionic Conductors for All-Solid-State Batteries. Chem. Eng. J. 2021, 425, 130630.
[89] Li, F.; Cheng, X.; Lu, L. L.; Yin, Y. C.; Luo, J. D.; Lu, G.; Meng, Y. F.; Mo, H.; Tian, T.; Yang, J. T.; Wen, W.; Liu, Z. P.; Zhang, G.; Shang, C.; Yao, H. B. Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes. Nano Lett. 2022, 22, 2461–2469.
[90] Ishiguro, Y.; Ueno, K.; Nishimura, S.; Iida, G.; Igarashib, Y. TaCl5-Glassified Ultrafast Lithium Ion-Conductive Halide Electrolytes for High-Performance All-Solid-State Lithium Batteries. Chem. Lett. 2023, 52, 237–241.
[91] Yin, Y. C.; Yang, J. T.; Luo, J. D.; Lu, G. X.; Huang, Z.; Wang, J. P.; Li, P.; Li, F.; Wu, Y. C.; Tian, T.; Meng, Y. F.; Mo, H. S.; Song, Y. H.; Yang, J. N.; Feng, L. Z.; Ma, T.; Wen, W.; Gong, K.; Wang, L. J.; Ju, H. X.; Xiao, Y.; Li, Z.; Tao, X.; Yao, H. B. A LaCl3-Based Lithium Superionic Conductor Compatible with Lithium Metal. Nature 2023, 616, 77–83.
[92] Steiner, H.-J.; Lutz, H. D. Novel Fast Ion Conductors of the Type MI 3MIIICl6 (MI = Li, Na, Ag; MIII = In, Y). Z. Anorg. Allg. Chem. 1992, 613, 26–30.
[93] Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Adair, K. R.; Sun, X. Air-Stable Li3InCl6 Electrolyte with High Voltage Compatibility for All-Solid-State Batteries. Energy Environ. Sci. 2019, 12, 2665–2671.
[94] Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier, W. G. Exploring Aliovalent Substitutions in the Lithium Halide Superionic Conductor Li3–xIn1–xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 2021, 33, 4773–4782.
[95] Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Sun, X. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 16427–16432.
[96] Wen, S.; Sheng, H.; Zhang, Y.; Zheng, S.; Wang, Z. The Effect of HCl on Achieving Pure Li3InCl6 by Water-Mediated Synthesis Process. J. Alloys Compd. 2024, 984, 173973.
[97] Xiong, R.; Yuan, L.; Song, R.; Hao, S.; Ji, H.; Cheng, Z.; Zhang, Y.; Jiang, B.; Shao, Y.; Li, Z.; Huang, Y. Solvent-Mediated Synthesis and Characterization of Li3InCl6 Electrolytes for All-Solid-State Li-Ion Battery Applications. ACS Appl. Mater. Interfaces 2024, 16, 36281–36288.
[98] Huang, J. Y.; Iputera, K.; Lin, Y. T.; Hung, Y. T.; Liu, Y. S.; Chang, Y. P.; Bazri, B.; Liu, B. H.; Wei, D. H.; Jin, B. Y.; Liu, R. S. Exploring Dehydration Mechanisms and Conductivity Optimization in Li3InCl6·xH2O via in situ Synchrotron Techniques. J. Mater. Chem. A 2025, 13, 2895–2901.
[99] Zhang, S.; Zhao, F.; Wang, S.; Liang, J.; Wang, J.; Wang, C.; Zhang, H.; Adair, K.; Li, W.; Li, M.; Duan, H.; Zhao, Y.; Yu, R.; Li, R.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sham, T. K.; Mo, Y.; Sun, X. Advanced High‐Voltage All‐Solid‐State Li‐Ion Batteries Enabled by a Dual‐Halogen Solid Electrolyte. Adv. Energy Mater. 2021, 11, 2100836.
[100] Wang, Q.; Ma, X.; Liu, Q.; Sun, D.; Zhou, X. Fluorine-Doped Li3InCl6 to Enhance Ionic Conductivity and Air Stability. J. Alloys Compd. 2023, 969, 172479.
[101] Chen, X.; Jia, Z.; Lv, H.; Wang, C.; Zhao, N.; Guo, X. Improved Stability against Moisture and Lithium Metal by Doping F into Li3InCl6. J. Power Sources 2022, 545, 231939.
[102] Jiang, Z.; Liu, C.; Yang, J.; Li, X.; Wei, C.; Luo, Q.; Wu, Z.; Li, L.; Li, L.; Cheng, S.; Yu, C. Designing F-Doped Li3InCl6 Electrolyte with Enhanced Stability for All-Solid-State Lithium Batteries in a Wide Voltage Window. Chin. Chem. Lett. 2024, 109741.
[103] Luo, Q.; Liu, C.; Li, L.; Jiang, Z.; Yang, J.; Chen, S.; Chen, X.; Zhang, L.; Cheng, S.; Yu, C. O-Doping Strategy Enabling Enhanced Chemical/Electrochemical Stability of Li3InCl6 for Superior Solid-State Battery Performance. J. Energy Chem. 2024, 99, 484–494.
[104] Wang, K.; Ren, Q.; Gu, Z.; Duan, C.; Wang, J.; Zhu, F.; Fu, Y.; Hao, J.; Zhu, J.; He, L.; Wang, C. W.; Lu, Y.; Ma, J.; Ma, C. A Cost-Effective and Humidity-Tolerant Chloride Solid Electrolyte for Lithium Batteries. Nat. Commun. 2021, 12, 4410.
[105] Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S. H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S. T.; Nam, K. W.; Jung, Y. S. New Cost‐Effective Halide Solid Electrolytes for All‐Solid‐State Batteries: Mechanochemically Prepared Fe3+‐Substituted Li2ZrCl6. Adv. Energy Mater. 2021, 11, 2003190.
[106] Usami, T.; Tanibata, N.; Takeda, H.; Nakayama, M. Analysis of Ion Conduction Behavior of Nb- and Zr-doped Li3InCl6-Based Materials via Material Simulation. APL Mater. 2023, 11, 121107.
[107] Rosa, C.; Ravalli, M.; Pianta, N.; Mustarelli, P.; Ferrara, C.; Quartarone, E.; Malavasi, L.; Sheptyakov, D.; Tealdi, C. Aliovalent Substitution in Li3InCl6: A Combined Experimental and Computational Investigation of Structure and Ion Diffusion in Lithium-Halide Solid State Electrolytes. ACS Appl. Energy Mater. 2024, 7, 4314–4323.
[108] Kwak, H.; Han, D.; Son, J. P.; Kim, J. S.; Park, J.; Nam, K.-W.; Kim, H.; Jung, Y. S. Li+ Conduction in Aliovalent-Substituted Monoclinic Li2ZrCl6 for All-Solid-State Batteries: Li2+xZr1-xMxCl6 (M = In, Sc). Chem. Eng. J. 2022, 437, 135413.
[109] van der Maas, E.; Famprikis, T.; Pieters, S.; Dijkstra, J. P.; Li, Z.; Parnell, S. R.; Smith, R. I.; van Eck, E. R. H.; Ganapathy, S.; Wagemaker, M. Re-Investigating the Structure-Property Relationship of the Solid Electrolytes Li3-xIn1-xZrxCl6 and the Impact of In-Zr(IV) Substitution. J. Mater. Chem. A 2023, 11, 4559–4571.
[110] Jang, J.; Chen, Y.-T.; Deysher, G.; Cheng, D.; Ham, S.-Y.; Cronk, A.; Ridley, P.; Yang, H.; Sayahpour, B.; Han, B.; Li, W.; Yao, W.; Wu, E. A.; Doux, J.-M.; Nguyen, L. H. B.; Oh, J. A. S.; Tan, D. H. S.; Meng, Y. S. Enabling a Co-Free, High-Voltage LiNi0.5Mn1.5O4 Cathode in All-Solid-State Batteries with a Halide Electrolyte. ACS Energy Lett. 2022, 7, 2531–2539.
[111] Li, X.; Ye, Q.; Wu, Z.; Zhang, W.; Huang, H.; Xia, Y.; Gan, Y.; He, X.; Xia, X.; Zhang, J. High-Voltage All-Solid-State Lithium Batteries with Li3InCl6 Electrolyte and LiNbO3 Coated Lithium-Rich Manganese Oxide Cathode. Electrochim. Acta 2023, 453, 142361.
[112] Morino, Y.; Kanada, S. Degradation Analysis by X-ray Absorption Spectroscopy for LiNbO3 Coating of Sulfide-Based All-Solid-State Battery Cathode. ACS Appl. Mater. Interfaces 2023, 15, 2979–2984.
[113] Pope, C. G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129–131.
[114] Thompson, A.; Attwood, D.; Gullikson, E.; Kim, K.-J.; Kirz, J.; Kortright, J.; Lindau, I.; Liu, Y.; Pianetta, P.; Robinson, A.; Scofield, J.; Underwood, J.; Williams, G.; Winick, H. X-Ray Data Booklet; Lawrence Berkeley National Laboratory: Berkeley, CA, 2009.
[115] Dewey, P.; George, S.; Gray, A. (i) Ionising Radiation and Orthopaedics. Current Orthopaedics 2005, 19, 1–12.
[116] Harada, J. The Role of Development of the Rotating Anode X-ray Generator and the Use of Imaging Plates in Powder Diffractometer Instrumentation. J. Chem. Educ. 2001, 78, 607–612.
[117] Paroli, B.; Potenza, M. A. C. Radiation Emission Processes and Properties: Synchrotron, Undulator and Betatron Radiation. Adv. Phys.: X 2017, 2, 978–1004.
[118] Winick, H.; Brown, G.; Halbach, K.; Harris, J. Wiggler and Undulator Magnets. Phys. Today 1981, 34, 50–63.
[119] Liss, K.-D.; Hunter, B.; Hagen, M.; Noakes, T.; Kennedy, S. Echidna—The New High-Resolution Powder Diffractometer being Built at OPAL. Physica B 2006, 385, 1010–1012.
[120] Avdeev, M.; Hester, J. R. ECHIDNA: A Decade of High-Resolution Neutron Powder Diffraction at OPAL. J. Appl. Crystallogr. 2018, 51, 1597–1604.
[121] Zhou, W.; Wang, Z. L. Scanning Microscopy for Nanotechnology; Springer New York: New York, NY, 2007.
[122] Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Springer New York: New York, NY, 2009.
[123] Kas, J. J.; Vila, F. D.; Tan, T. S.; Rehr, J. J. Green’s Function Methods for Excited States and X-Ray Spectra of Functional Materials. Electron. Struct. 2022, 4, 033001.
[124] Iwasawa, Y.; Asakura, K.; Tada, M. XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; 2017.
[125] Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13.
[126] Lazanas, A. C.; Prodromidis, M. I. Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193.
[127] Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71.
[128] He, X.; Zhu, Y.; Mo, Y. Origin of Fast Ion Diffusion in Super-Ionic Conductors. Nat. Commun. 2017, 8, 15893.
[129] Wang, M.; Chen, K.; Liu, J.; He, Q.; Li, G.; Li, F. Efficiently Enhancing Electrocatalytic Activity of α-MnO2 Nanorods/N-Doped Ketjenblack Carbon for Oxygen Reduction Reaction and Oxygen Evolution Reaction Using Facile Regulated Hydrothermal Treatment. Catalysts 2018, 8, 138.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97649-
dc.description.abstract隨科技之進步,電動車與數位產品之普及,鋰離子二次電池之需求急速上升。為提升鋰離子二次電池之能量密度與安全性,鹵化物固態電解質為不可或缺之選項。其相對液態電解質可大幅提升安全性,且其匹配高電壓陰極可顯著增加鋰離子二次電池之能量密度。
本研究重點於鹵化物型固態電解質鋰銦氯(Li3InCl6)中摻雜高價數鉭(Ta)離子,以增加結構中之鋰空位(lithium vacancy),以提升離子導電度(ionic conductivity)。故本研究使用針對鉭離子進行Li3−2xIn1−xTaxCl6系列之合成,於其中Li2.8In0.9Ta0.1Cl6作為電解質具最佳離子導電度於室溫達1.27 mS/cm,此說明鉭摻雜可增加鋰空位,並降低活化能(activation energy)。其中最優化之條件為前驅物經球磨法後並於200°C條件下真空燒結4 h,產物之固態電解質活化能僅0.293 eV,並證實其熱穩定性達410°C。本研究亦藉中子繞射與X光吸收光譜鑑定Li3−2xIn1−xTaxCl6系列,使用結構之精修證明鉭摻雜不僅可增加鋰空位,且可提升Li2之位置佔有率,提升鋰離子遷移能力,並說明過多之鉭摻雜將使結構扭曲破壞,使Li3之四面體為鋰離子之遷移瓶頸,而降低離子導電度。並藉理論計算證明鉭摻雜有助於降低二維遷移之活化能,提升離子導電度。
同時為解決陰極與固態電解質之電位不匹配,本研究使用鈮酸鋰(LiNbO3)塗層保護鎳錳酸鋰(LiNi0.5Mn1.5O4; LNMO)。本研究亦說明鈮酸鋰塗層可保護鎳錳酸鋰陰極,避免鎳錳酸鋰陰極與固態電解質發生反應。並揭示無鈮酸鋰塗層將使Li2.8In0.9Ta0.1Cl6之In3+與Ta5+還原且鎳錳酸鋰之Mn3+氧化。
最後本研究組裝Li2.8In0.9Ta0.1Cl6之鈷酸鋰(LiCoO2; LCO)全固態電池,其首次放電電容量可達135.6 mAh/g,於第50次循環之放電電容量達121.8 mAh/g,其保持率(retention rate)於50次循環後達90%。其中Li2.8In0.9Ta0.1Cl6之LNMO全固態電池首次放電電容量可達111.6 mAh/g。
zh_TW
dc.description.abstractAs technology progresses, electric vehicles (EVs) and other products spread throughout our lives, and the demand for lithium secondary batteries increases. Halide solid-state electrolytes (HSSEs) are the best candidates for pursuing safety and energy density. Compared to liquid electrolytes (LE), HSSEs are not flammable and show high energy density. Moreover, their compatibility with high-voltage cathodes is extraordinary.
This research focuses on doping high-valent Ta in HSSEs Li3InCl6 to increase the vacancy in the structure, increasing in ionic conductivity. A series of electrolyte Li3−2xIn1−xTaxCl6 was synthesized. The highest ionic conductivity was Li2.8In0.9Ta0.1Cl6, with an ionic conductivity of 1.27 mS/cm and an activation energy of 0.293 eV. The optimized process was precursors sintered at 200°C for 4 h in a vacuum. The refinements of neutron powder diffraction reveal that the dopant Ta could increase the lithium vacancy in position Li2. On the other hand, redundant dopants result in structure distortion, and the ionic conductivity decreases. Also, the theoretical calculation proves the decrease of activation energy in the 2D conduction pathway.
To solve the incompatibility between the electrolyte and cathode, we use LiNbO3 (LNO) to protect the LiNi0.5Mn1.5O4 (LNMO) cathode. This research demonstrates the effect of LNO, which could avoid the reaction between the halide solid electrolyte and the cathode. The absence of LNO could lead to the oxidation of Mn3+, and the reduction of In3+ and Ta5+.
In the last part of this research, the discharge capacity of the full cell using Li2.8In0.9Ta0.1Cl6 and LiCoO2 (LCO) cathode was 135.6 mAh/g and 121.8 mAh/g at the 1st and 50th cycle, respectively. The discharge capacity of the full cell using the LNMO cathode shows 111.6 mAh/g at the 1st cycle。
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:14:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:14:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xiv
第一章 緒論 1
1.1 電池之原理與發展 1
1.2 鋰離子二次電池 4
1.3 鋰離子電池之構造與原理 8
1.3.1 鋰離子電池之構造 8
1.3.2 常見之鋰離子電池參數 10
1.3.3 鋰離子電池之原理 10
1.4 鋰離子二次電池之陽極材料 12
1.4.1 碳陽極材料 12
1.4.2 矽陽極材料 13
1.4.3 鋰金屬與鋰合金 14
1.5 鋰離子二次電池之陰極材料 17
1.5.1 磷酸鐵鋰 18
1.5.2 鈷酸鋰 18
1.5.3 鎳鈷錳三元材料 20
1.5.4 鎳錳酸鋰 21
1.6 液態電解質 24
1.7 固態電解質 25
1.7.1 氧化物固態電解質 25
1.7.2 硫化物固態電解質 27
1.7.3 氮化物固態電解質 30
1.7.4 鹵化物固態電解質 31
1.7.5 鋰銦氯固態電解質 38
1.8 固態電解質摻雜 41
1.8.1 陰離子摻雜 41
1.8.2 陽離子摻雜 42
1.9 固態電解質之鋰離子遷移機制 44
1.10 研究動機與目的 45
第二章 實驗步驟與分析儀器 46
2.1 化學藥品列表 46
2.2 實驗步驟 47
2.2.1 鉭摻雜鹵化物固態電解質之合成 47
2.2.2 鈮酸鋰包覆於鎳錳酸鋰陰極之合成 48
2.2.3 全固態鋰離子電池之組裝 49
2.3 分析儀器 50
2.3.1 X光繞射儀 50
2.3.2 中子粉末繞射 55
2.3.3 掃描式電子顯微鏡 57
2.3.4 穿透式電子顯微鏡 59
2.3.5 X光吸收光譜儀 60
2.3.6 X光光電子能譜儀 63
2.3.7 電化學阻抗交流儀 64
2.3.8 線性伏安儀 68
2.3.9 對稱電池測試儀 69
2.3.10 充電放電測試儀 70
第三章 結果與討論 71
3.1 Li3−2xIn1−xTaxCl6之合成鑑定 71
3.1.1 Li3−2xIn1−xTaxCl6之X光繞射圖譜鑑定 71
3.1.2 Li3−2xIn1−xTaxCl6之掃描式電子顯微鏡鑑定 75
3.1.3 Li3−2xIn1−xTaxCl6之電化學阻抗鑑定 76
3.1.4 Li3−2xIn1−xTaxCl6之活化能鑑定 79
3.1.5 Li3−2xIn1−xTaxCl6之中子繞射鑑定 82
3.1.6 Li3−2xIn1−xTaxCl6之X光吸收光譜鑑定 89
3.1.7 Li3−2xIn1−xTaxCl6之理論計算 95
3.1.8 Li3−2xIn1−xTaxCl6之線性伏安法與對電極電位量測 97
3.1.9 Li3−2xIn1−xTaxCl6之對稱循環測試 99
3.2 鈮酸鋰塗層包覆於鎳錳酸鋰陰極之鑑定 100
3.2.1 X光繞射圖譜鑑定 100
3.2.2 穿透式電子顯微鏡鑑定 101
3.2.3 X光光電子能譜鑑定 101
3.3 全固態電池鑑定 107
3.3.1 應用於鈷酸鋰陰極充電放電循環測試 107
第四章 結論 111
參考文獻 112
-
dc.language.isozh_TW-
dc.subject鹵化物型固態電解質zh_TW
dc.subject鋰離子全固態電池zh_TW
dc.subject鉭摻雜zh_TW
dc.subjectall-solid-state lithium batteryen
dc.subjecttantalum dopingen
dc.subjecthalide solid-state electrolyteen
dc.title鉭摻雜之鹵化物型固態電解質應用於鋰離子電池zh_TW
dc.titleTantalum-Doped Halide Solid-State Electrolyte for Lithium-Ion Batteriesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王建隆;陳錦明;洪太峰;廖譽凱zh_TW
dc.contributor.oralexamcommitteeChien-Lung Wang;Jin-Ming Chen;Tai-Feng Hung;Yu-Kai Liaoen
dc.subject.keyword鉭摻雜,鹵化物型固態電解質,鋰離子全固態電池,zh_TW
dc.subject.keywordtantalum doping,halide solid-state electrolyte,all-solid-state lithium battery,en
dc.relation.page127-
dc.identifier.doi10.6342/NTU202501329-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-30-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-07-10-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf10.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved