Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃俊郎zh_TW
dc.contributor.advisorJiun-Lang Huangen
dc.contributor.author劉育誠zh_TW
dc.contributor.authorYu-Cheng Liuen
dc.date.accessioned2025-07-09T16:12:09Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-30-
dc.identifier.citation[1] Das, Debayan & Nath, Mayukh & Chatterjee, Baibhab & Ghosh, Santosh & Sen, Shreyas. "STELLAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-cause Analysis, " 2019.
[2] M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin and M. Tehranipoor, "RTL-PSC: Automated Power Side-Channel Leakage Assessment at Register-Transfer Level," IEEE 37th VLSI Test Symposium (VTS), 2019.
[3] Y. Yao, T. Kathuria, B. Ege and P. Schaumont, "Architecture Correlation Analysis (ACA): Identifying the Source of Side-channel Leakage at Gate-level," 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, CA, USA, 2020.
[4] Goodwill G., Jun B., Jaffe J., Rohatgi P., A testing methodology for side-channel resistance validation, NIAT2011, 2011.
[5] Tena-Sánchez, E.; Potestad-Ordóñez, F.E.; Jiménez-Fernández, C.J.; Acosta, A.J.; Chaves, R. Gate-Level Hardware Countermeasure Comparison against Power Analysis Attacks. Appl. Sci. 2022.
[6] K. Tiri and I. Verbauwhede, "A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation," Proceedings Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 2004.
[7] Suzuki, D.; Saeki, M.; Ichikawa, T. Random Switching Logic: A Countermeasure against DPA based on Transition Probability. IACR Cryptology ePrint Archive. 2004.
[8] Kathuria, Tarun. “Gate-level Leakage Assessment and Mitigation,” 2019.
[9] Tarek Darwish, Magdy Bayoumi, in The Electrical Engineering Handbook, 2005.
[10] Atsushi Miyamoto, Naofumi Homma, Takafumi Aoki and Akashi Satoh, "Enhanced power analysis attack using chosen message against RSA hardware implementations," 2008 IEEE International Symposium on Circuits and Systems (ISCAS), Seattle, WA, USA, 2008.
[11] Fujino, Takeshi & Kubota, Takaya & Shiozaki, Mitsuru. Tamper-resistant cryptographic hardware. IEICE Electronics Express, 2017.
[12] Yu-Shian Lai. "Impact of Biased Random Mask Generation on Correlation Power Analysis." Master's Thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2023.
[13] J. Park and A. Tyagi, "Security metrics for power based SCA resistant hardware implementation", Proc. 29th Int. Conf. VLSI Design 15th Int. Conf. Embedded Syst. (VLSID), pp. 541-546, Jan. 2016.
[14] N. Pundir, J. Park, F. Farahmandi and M. Tehranipoor, "Power Side-Channel Leakage Assessment Framework at Register-Transfer Level," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 9, pp. 1207-1218, Sept. 2022.
[15] T. Zhang, J. Park, M. Tehranipoor and F. Farahmandi, "PSC-TG: RTL Power Side-Channel Leakage Assessment with Test Pattern Generation," 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2021.
[16] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets of smart cards, vol. 31. Springer Science & Business Media, 2018.
[17] Keyser, Michael and Gauchi, Roman and Gaillardon, Pierre-Emmanuel, “An Energy-Efficient Three-Independent-Gate FET Cell Library for Low-Power Edge Computing”, {IFIP}/{IEEE} International Conference on Very Large Scale Integration ({VLSI-SoC}), 2022.
[18] Arsath, Muhammad & Ganesan, Vinod & Bodduna, Rahul & Rebeiro, Chester. PARAM: A Microprocessor Hardened for Power Side-Channel Attack Resistance. (2019).
[19] Miteloudi, Konstantina, et al. "Plan your defense: A comparative analysis of leakage detection methods on RISC-V cores." Cryptology ePrint Archive (2024).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97641-
dc.description.abstract近年來,隨著嵌入式系統和物聯網設備的廣泛應用,其安全性面臨日益嚴峻的挑戰。旁通道攻擊 (Side-Channel Attack, SCA) 作為一種強大的物理攻擊手段,能夠利用加密設備在運行過程中產生的物理洩漏信息(如功耗、電磁輻射、時間延遲等)來推斷敏感數據,對系統安全構成嚴重威脅。
本研究提出一個在邏輯閘層級自動化執行旁通道洩漏檢測與選擇性抑制的整合式框架。該框架透過計算晶片電路在運算過程中的功耗因不同密鑰所造成的差異,以評估洩漏程度並找出對密鑰資訊敏感的邏輯閘。針對檢測出的洩漏邏輯閘,本研究設計一種具有功耗隱藏特性的複合暫存器,並選擇性地替換原始電路中洩漏嚴重的暫存器,從而在降低晶片額外成本的前提下實現有效的洩漏抑制。
實驗結果顯示,相較於對整個電路進行全面防禦,本研究提出的選擇性防禦策略能夠在僅增加少量的面積開銷的同時,有效降低AES和PRESENT加密演算法硬體實作的旁通道洩漏風險。
zh_TW
dc.description.abstractIn recent years, with the widespread application of embedded systems and Internet of Things (IoT) devices, their security has faced increasingly severe challenges. Side-Channel Attacks (SCAs), as a potent physical attack method, can deduce sensitive data by exploiting physical leakage information (such as power consumption, electromagnetic radiation, timing delays, etc.) generated by cryptographic devices during operation, posing a serious threat to system security.
This research proposes an integrated framework for automated gate-level side-channel leakage detection and selective mitigation. The framework evaluates the degree of leakage and identifies logic gates sensitive to key information by calculating the power consumption differences in the chip circuit caused by different secret keys during computation. To address the detected leaking logic gates, this study designs a composite register with power-hiding characteristics and selectively replaces high-leakage registers in the original circuit. This approach achieves effective leakage suppression while minimizing additional chip costs.
The experimental results indicate that, compared to a comprehensive defense of the entire circuit, the selective defense strategy proposed in this study can effectively reduce the side-channel leakage risk in hardware implementations of AES and PRESENT encryption algorithms while incurring only a small area overhead.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:12:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:12:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables ix
Chapter 1 序論 1
1.1 旁通道攻擊簡介 1
1.2 先前研究 2
1.3 研究動機 3
1.4 貢獻 4
1.5 論文架構 6
Chapter 2 背景知識 7
2.1 旁通道攻擊原理 7
2.2 旁通道攻擊概述 8
2.2.1 簡單功率分析 8
2.2.2 差分功率分析 10
2.2.3 相關功率分析 11
2.3 旁通道洩漏評估指標 13
2.3.1 測試向量洩漏評估 13
2.3.2 庫爾貝克-萊布勒散度 14
2.3.3 旁通道漏洞因子 16
2.3.4 洩漏評估指標比較 17
2.4 相關研究: 在暫存器轉換層級進行洩漏評估 18
2.4.1 兩把密鑰的選擇方式 20
2.4.2 洩漏檢測在晶片製造後的驗證 22
2.5 相關研究: 在邏輯閘層級對旁通道洩漏進行抑制 23
2.5.1 簡單動態差分邏輯介紹 25
2.5.2 波動態差分邏輯介紹 26
2.5.3 複合邏輯閘的暫存器設計方式 27
2.5.4 在邏輯閘層級對旁通道洩漏進行抑制的成本 29
Chapter 3 提出的檢測與修復系統架構 30
3.1 洩漏檢測概述 30
3.2 驗證功耗模型的準確性 30
3.3 邏輯閘層級進行洩漏檢測及防禦的系統整體架構 32
3.4 自動洩漏檢測 33
3.4.1 產生功耗軌跡流程 34
3.4.2 洩漏分析流程 35
3.4.3 適合用於洩漏檢測的功耗軌跡數量 37
3.4.4 有效率地找出密鑰資訊敏感的邏輯閘的方法 39
3.5 選擇性防禦 42
3.5.1 洩漏抑制暫存器介紹 43
3.5.2 邏輯閘延遲對洩漏抑制暫存器的影響與解決方法 44
3.5.3 邏輯閘延遲影響未受防護的邏輯閘的問題與對策 46
3.6 防禦能力評估 48
Chapter 4 實驗結果 49
4.1 實驗設定 49
4.2 對AES電路的實驗結果 49
4.2.1 AES加密介紹 50
4.2.2 AES洩漏檢測結果與選擇性防禦成本 51
4.2.3 AES防禦能力評估結果 52
4.3 對PRESENT電路的實驗結果 53
4.3.1 PRESENT加密介紹 54
4.3.2 PRESENT洩漏檢測結果與選擇性防禦成本 55
4.3.3 PRESENT防禦能力評估結果 56
4.4 電路在每個週期防禦前後的KL散度變化分析 57
4.5 討論 58
Chapter 5 結論 61
5.1 論文總結 61
5.2 未來工作 62
References 63
-
dc.language.isozh_TW-
dc.subject旁通道攻擊zh_TW
dc.subject自動硬體安全評估zh_TW
dc.subject選擇性防禦zh_TW
dc.subject洩漏抑制zh_TW
dc.subject洩漏檢測zh_TW
dc.subject資訊安全zh_TW
dc.subjectLeakage Mitigationen
dc.subjectLeakage Detectionen
dc.subjectSide-Channel Attacken
dc.subjectInformation Securityen
dc.subjectAutomated Hardware Security Assessmenten
dc.subjectSelective Countermeasureen
dc.title基於功耗軌跡分析的旁通道洩漏自動檢測與抑制zh_TW
dc.titleAutomated Side-Channel Vulnerability Detection and Mitigation with Power Trace Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂學坤;陳信樹zh_TW
dc.contributor.oralexamcommitteeShyue-Kung Lu;Hsin-Shu Chenen
dc.subject.keyword資訊安全,旁通道攻擊,洩漏檢測,洩漏抑制,選擇性防禦,自動硬體安全評估,zh_TW
dc.subject.keywordInformation Security,Side-Channel Attack,Leakage Detection,Leakage Mitigation,Selective Countermeasure,Automated Hardware Security Assessment,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202501359-
dc.rights.note未授權-
dc.date.accepted2025-07-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved