請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97640完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭欽玉 | zh_TW |
| dc.contributor.advisor | Chin-Yu Hsiao | en |
| dc.contributor.author | 蔡以心 | zh_TW |
| dc.contributor.author | Yi-Hsin Tsai | en |
| dc.date.accessioned | 2025-07-09T16:11:48Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-01 | - |
| dc.identifier.citation | [ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics. Cambridge University Press, 2007.
[AS68] Michael Francis Atiyah and Isadore Manuel Singer. The index of elliptic operators: I. Annals of Mathematics, 87(3):484–530, 1968. [Bai57] Walter Lewis Baily. On the imbedding of v-manifolds in projective space. American Journal of Mathematics, 79(2):403–430, 1957. [BBS08] Robert Berman, Bo Berndtsson, and Johannes Sjöstrand. A direct approach to Bergman kernel asymptotics for positive line bundles. Arkiv för Matematik, 46(2):197 – 217, 2008. [BdMS75] Louis Boutet de Monvel and Johannes Sjöstrand. Sur la singularité des noyaux de bergman et de szegö. Journées équations aux dérivées partielles, pages 123–164, 1975. [Ber22] Stefan Bergman. Über die entwicklung der harmonischen funktionen der ebene und des raumes nach orthogonalfunktionen. Mathematische Annalen, 86:238–271, 1922. [Ber95] Bo Berndtsson. L2-methods for the dbar-equation. KASS UNIVERSITY PRESS - JOHANNEBERG - MASTHUGGET - SISJÖN, 1995. [Ber04] Robert Berman. Bergman kernels and local holomorphic morse inequalities. Mathematische Zeitschrift, 248:325–344, 2004. [BG07] Charles Boyer and Krzysztof Galicki. Sasakian Geometry. Oxford University Press, 10 2007. [Bou90] Thierry Bouche. Convergence de la métrique de fubini-study d’un fibré linéaire positif. Annales de l’institut Fourier, 40(1):117–130, 1990. [Bou96] Thierry Bouche. Asymptotic results for hermitian line bundles over complex manifolds: the heat kernel approach. Higher-dimensional complex varieties, pages 67–81, 1996. [Cat99] David Catlin. The Bergman Kernel and a Theorem of Tian, pages 1–23. Birkhäuser Boston, Boston, MA, 1999. [CS01] So-Chin Chen and Mei-Chi Shaw. Partial Differential Equations in Several Complex Variables. AMS/IP studies in advanced mathematics. American Mathematical Society, 2001. [Dav95] Edward Brian Davies. Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1995. [Dem82] Jean-Pierre Demailly. Estimations {L}2 pour l’opérateur ¯{∂} d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète. Annales scientifiques de l’École Normale Supérieure, 15(3):457–511, 1982. [Dem97] Jean-Pierre Demailly. Complex Analytic and Differential Geometry. Université de Grenoble I, 1997. [Dem12] Jean-Pierre Demailly. Analytic methods in algebraic geometry, volume 1. International Press Somerville, MA, 2012. [DLM06] Xianzhe Dai, Kefeng Liu, and Xiaonan Ma. On the asymptotic expansion of Bergman kernel. Journal of Differential Geometry, 72(1):1 – 41, 2006. [Don01] Simon Kirwan Donaldson. Scalar Curvature and Projective Embeddings, I. Journal of Differential Geometry, 59(3):479 – 522, 2001. [Fin10] Joel Fine. Calabi flow and projective embeddings. Journal of Differential Geometry, 84(3):489 – 523, 2010. [GS94] Alain Grigis and Johannes Sjöstrand. Microlocal Analysis for Differential Operators: An Introduction. Lecture note series / London mathematical society. Cambridge University Press, 1994. [Hin] Peter Hintz. AN INTRODUCTION TO MICROLOCAL ANALYSIS. [HKSX16] Hamid Hezari, Casey Kelleher, Shoo Seto, and Hang Xu. Asymptotic expansion of the bergman kernel via perturbation of the bargmann–fock model. The Journal of Geometric Analysis, 26(4):2602–2638, Oct 2016. [HM14] Chin-Yu Hsiao and George Marinescu. Asymptotics of spectral function of lower energy forms and bergman kernel of semi-positive and big line bundles. Communications in Analysis and Geometry, 22(1):1–108, 2014. [HM17] Chin-Yu Hsiao and George Marinescu. Berezin–toeplitz quantization for lower energy forms. Communications in Partial Differential Equations, 42(6):895–942, 2017. [Hou22] Yu-Chi Hou. Asymptotic expansion of the bergman kernel via semiclassical symbolic calculus. Bull. Inst. Math. Acad. Sin.(NS), 17(1):1–51, 2022. [Hsi08] Chin-Yu Hsiao. Projections in several complex variables. arXiv preprint arXiv:0810.4083, 2008. [Hsi12] Chin-Yu Hsiao. On the coefficients of the asymptotic expansion of the kernel of berezin–toeplitz quantization. Annals of Global Analysis and Geometry, 42(2):207–245, Aug 2012. [Hsi15] Chin-Yu Hsiao. Bergman kernel asymptotics and a pure analytic proof of the kodaira embedding theorem. In Complex Analysis and Geometry, pages 161–173, Tokyo, 2015. Springer Japan. [Huy05] Daniel Huybrechts. Complex Geometry: An Introduction. Universitext (Berlin. Print). Springer, 2005. [Hö65a] Lars Hörmander. L2 estimates and existence theorems for the ¯∂ operator. Acta Mathematica, 113(none):89 – 152, 1965. [Hö65b] Lars Hörmander. Pseudo-differential operators. Communications on Pure and Applied Mathematics, 18(3):501–517, 1965. [Hö66] Lars Hörmander. An introduction to complex analysis in several variables. University series in higher mathematics. D. Van Nostrand Company, Princeton, N.J., 1966. Includes index. [Hö03] Lars Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer Berlin Heidelberg, 2003. [Hö07] Lars Hörmander. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Classics in Mathematics. Springer Berlin Heidelberg, 2007. [KN65] Joseph John Kohn and Louis Nirenberg. An algebra of pseudo-differential operators. Communications on Pure and Applied Mathematics, 18(1-2):269–305, 1965. [Kod54] Kunihiko Kodaira. On kahler varieties of restricted type an intrinsic characterization of algebraic varieties. Annals of Mathematics, 60(1):28–48, 1954. [Kon03] Maxim Kontsevich. Deformation quantization of poisson manifolds. Letters in Mathematical Physics, 66(3):157–216, Dec 2003. [Lu00] Zhiqin Lu. On the lower order terms of the asymptotic expansion of tian-yau-zelditch. American Journal of Mathematics, 122(2):235–273, 2000. [MM06] Xiaona Ma and George Marinescu. The first coefficients of the asymptotic expansion of the bergman kernel of the spinc dirac operator. International Journal of Mathematics, 17(06):737–759, 2006. [MM07] Xiaona Ma and George Marinescu. Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics. Birkhäuser Basel, 2007. [MM11] Xiaonan Ma and George Marinescu. Berezin–toeplitz quantization on kähler manifolds. Journal für die reine und angewandte Mathematik (Crelles Journal), October 2011. [MM12] Xiaonan Ma and George Marinescu. Berezin-toeplitz quantization and its kernel expansion, 2012. [MPG55] Jr. Matthew P. Gaffney. Hilbert space methods in the theory of harmonic integrals. Transactions of the American Mathematical Society, 78:426– 444, 1955. [MS75] Anders Melin and Johannes Sjöstrand. Fourier integral operators with complex-valued phase functions. In Jacques Chazarain, editor, Fourier Integral Operators and Partial Differential Equations, pages 120–223, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg. [Puc18] Martin Puchol. Holomorphic morse inequalities for orbifolds. Mathematische Zeitschrift, 289(3):1237–1260, Aug 2018. [RT11a] Julius Ross and Richard Thomas. Weighted Bergman Kernels on Orbifolds. Journal of Differential Geometry, 88(1):87 – 107, 2011. [RT11b] Julius Ross and Richard Thomas. Weighted Projective Embeddings, Stability of Orbifolds, and Constant Scarla Curvature Kär Metrics. Journal of Differential Geometry, 88(1):109 – 159, 2011. [Sat56] Ichiro Satake. On a generalization of the notion of manifold. Proceedings of the National Academy of Sciences, 42(6):359–363, 1956. [Sat57] Ichiro Satake. The Gauss-Bonnet Theorem for V-manifolds. Journal of the Mathematical Society of Japan, 9(4):464 – 492, 1957. [Sch10] Martin Schlichenmaier. Berezin-toeplitz quantization for compact kähler manifolds. a review of results. Advances in Mathematical Physics, 2010(1):927280, 2010. [Set15] Shoo Seto. On the Asymptotic Expansion of the Bergman Kernel. PhD thesis, UC Irvine, 2015. [Tay10a] Michael Eugene Taylor. Partial Differential Equations I: Basic Theory. Applied Mathematical Sciences. Springer New York, 2010. [Tay10b] Michael Eugene Taylor. Partial Differential Equations II: Qualitative Studies of Linear Equations. Applied Mathematical Sciences. Springer New York, 2010. [Thu79] William Paul Thurston. The Geometry and Topology of Three-manifolds. Princeton University, 1979. [Thu82] William Paul Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bulletin (New Series) of the American Mathematical Society, 6(3):357 – 381, 1982. [Thu97] William Paul Thurston. Three-Dimensional Geometry and Topology, Volume 1: Volume 1. Princeton University Press, 1997. [Tia90] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. Journal of Differential Geometry, 32(1):99 – 130, 1990. [Xu12] Hao Xu. A closed formula for the asymptotic expansion of the bergman kernel. Communications in Mathematical Physics, 314(3):555–585, August 2012. [Zel98] Steve Zelditch. Szegö kernels and a theorem of Tian. International Mathematics Research Notices, 1998(6):317–331, 01 1998. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97640 | - |
| dc.description.abstract | 在本論文中,我們引入了具有局部性光譜間隙的複流形並利用縮放方法研究其伯格曼核和譜核且得到其漸近。 透過這些漸近,我們給出了滿足局部譜間隙條件的全純厄米軌線叢的伯格曼核的漸近行為。並且,我們透過對縮放伯格曼核的觀察及靜相公式建立了一個伯格曼核及拓譜立茲量化算子全漸近展開。 此外,我們建立了有關擬微分算子的拓譜立茲算子的變形量化。 | zh_TW |
| dc.description.abstract | In this thesis, we introduce complex manifolds with local spectral gap and study their asymptotic behavior by using scaling method. With these asymptotic, we obtain an asymptotic expansion for the Bergman kernel of a Hermitian holomorphic orbifold line bundle satisfying the local spectral gap condition. Furthermore, we establish the full asymptotic expansion of both the Bergman kernel and the Toeplitz operator, using the observations of the scaled Bergman kernel and the stationary phase formula. In addition, we establish the deformation quantization for Toeplitz operators with pseudodifferential operators. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:11:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:11:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii Chapter I Introduction 1 I.1 Main Results and Applications . . . . . . . . . . . . . . . . . . . 6 Chapter II Preliminaries 17 II.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II.2 Complex Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 18 II.3 Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . 23 II.4 Bergman Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II.5 Stationary Phase Formula . . . . . . . . . . . . . . . . . . . . . . 31 Chapter III Asymptotic Behavior of Bergman Kernels on Complex Manifolds 35 III.1 Euclidean Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 III.2 Compact Manifold Case . . . . . . . . . . . . . . . . . . . . . . . 44 III.3 Manifold Case Without Spectral Gap . . . . . . . . . . . . . . . . 54 Chapter IV Asymptotic Behavior of Bergman Kernels on Complex Orbifold 61 IV.1 Notation and Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 62 IV.2 Proof of Theorem IV.4 . . . . . . . . . . . . . . . . . . . . . . . . 68 IV.3 Kodaira Baily Embedding Theorem . . . . . . . . . . . . . . . . . 72 IV.4 Toeplitz Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Chapter V Full Expansion 79 V.1 Bergman Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 V.1.1 Euclidean Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 V.1.2 Manifold Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 V.2 Toeplitz Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 88 V.3 Toeplitz Operator with Pseudodifferential Operator . . . . . . . . 94 V.3.1 Euclidean Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 V.3.2 Manifold Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 References 107 | - |
| dc.language.iso | en | - |
| dc.subject | 複幾何 | zh_TW |
| dc.subject | 變形量化 | zh_TW |
| dc.subject | 軌形 | zh_TW |
| dc.subject | 擬微分算子 | zh_TW |
| dc.subject | 半古典分析 | zh_TW |
| dc.subject | 拓譜立茲算子 | zh_TW |
| dc.subject | 伯格曼核 | zh_TW |
| dc.subject | Toeplitz Operator | en |
| dc.subject | Bergman Kernel | en |
| dc.subject | Complex Geometry | en |
| dc.subject | Deformation Quantization | en |
| dc.subject | Orbifold | en |
| dc.subject | Pseudodifferential Operator | en |
| dc.subject | Semi-Classical Analysis | en |
| dc.title | 複流形及軌形上的拓譜立茲量化之半經典漸近 | zh_TW |
| dc.title | Semi-Classical Asymptotic Expansions for Toeplitz Quantizations on Complex Manifolds and Orbifolds | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王金龍;黃榮宗 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Lung Wang;Rung-Tzung Huang | en |
| dc.subject.keyword | 伯格曼核,複幾何,變形量化,軌形,擬微分算子,半古典分析,拓譜立茲算子, | zh_TW |
| dc.subject.keyword | Bergman Kernel,Complex Geometry,Deformation Quantization,Orbifold,Pseudodifferential Operator,Semi-Classical Analysis,Toeplitz Operator, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202501014 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2025-07-10 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 533 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
