請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97630完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富 | zh_TW |
| dc.contributor.advisor | Jean-Fu Kiang | en |
| dc.contributor.author | 王通晟 | zh_TW |
| dc.contributor.author | Tung-Cheng Wang | en |
| dc.date.accessioned | 2025-07-09T16:08:56Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | [1] M. Alford et al. “The formation and fate of internal waves in the South China Sea,” Nature, vol. 521, no. 7550, pp. 65-69, May, 2015.
[2] X. Huang, Z. Chen, W. Zhao, Z. Zhang, C. Zhou, Q. Yang and J. Tian, “An extreme internal solitary wave event observed in the northern South China Sea,” Sci. Rep., vol. 6, no. 1, pp. 1–10, Jul. 2016. [3] J. Li, Q. Zhang and T. Chen, “Numerical investigation of internal solitary wave forces on submarines in continuously stratified fluids,” J. Mar. Sci. Eng., vol. 9, no. 12, pp. 1–20, Dec. 2021. [4] T. Wang, X. Huang, W. Zhao, S. Zheng, Y. Yang and J. Tian, “Internal solitary wave activities near the Indonesian submarine wreck site inferred from satellite images,” J. Mar. Sci. Eng., vol. 10, no. 2, pp. 1–12, Feb. 2022. [5] T. Jia, J. Liang, X.-M. Li and K. Fan, “Retrieval of internal solitary wave amplitude in shallow water by tandem spaceborne SAR,” Remote Sens., vol. 11, no. 14, p. 1706, Jul. 2019. [6] X. Zhang, Z.-S. Wu and X. Su, “Electromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient Gardner model,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 11, no. 2, pp. 355-366, Feb. 2018. [7] L. Ostrovsky and Y. Stepanyants, “Do internal solitons exist in the ocean?” Revs. Geophys., vol. 27, no. 3, pp. 293–310, Aug. 1989. [8] R. Romeiser and H. Graber, “Advanced remote sensing of internal waves by spaceborne along-track InSAR–A demonstration with TerraSAR-X,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6735-6751, Dec. 2015. [9] M. Zhang, J. Wang, Z. Li, K. Liang and X. Chen, “Laboratory study of the impact of the surface solitary waves created by the internal solitary waves on optical imaging,” J. Geophys. Res.: Oceans, vol. 127, no. 2, pp. 1–17, Feb. 2022. [10] F. Dias and A. Il’ichev, “Interfacial waves with free-surface boundary conditions: An approach via a model equation,” Phys. D, Nonlinear Phenomena, vol. 150, nos. 3–4, pp. 278–300, Apr. 2001. [11] A. Santos-Ferreira, J. da Silva and J. Magalhaes, “SAR-mode altimetry observations of internal solitary waves in the tropical ocean Part 1: Case studies,” Remote Sens., vol. 10, no. 4, p. 644, Apr. 2018. [12] C. Jackson and J. Apel. “Synthetic aperture radar marine user’s manual,” National Environmental Satellite, Data, and Information Service, Silver Spring, MD, USA, Tech. Rep., 2004, pp. 189–206. Accessed: Jun. 1, 2022. [Online]. Available: http:// www.sarusersmanual.com [13] J. Farrar, C. Zappa, R. Weller and A. Jessup, “Sea surface temperature signatures of oceanic internal waves in low winds,” J. Geophys. Res., vol. 112, no. C6, pp. 1–9, Jun. 2007. [14] A. Donato, D. Peregrine and J. Stocker, “The focusing of surface waves by internal waves,” J. Fluid Mech., vol. 384, pp. 27–58, Apr. 1999. [15] W. Kong, J. Chong and H. Tan, “Performance analysis of ocean surface topography altimetry by Ku-band near-nadir interferometric SAR,” Remote Sens., vol. 9, no. 9, p. 933, Sep. 2017. [16] Q. Zheng, Y. Yuan, V. Klemas, and X. H. Yan, “Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width,” J. Geophys. Res., Oceans, vol. 106, 867 no. C12, pp. 31415–31423, Dec. 2001. [17] B. Liu, H. Yang, Z. Zhao, and X. Li, “Internal solitary wave propagation observed by tandem satellites,” Geophys. Res. Lett., vol. 41, no. 6, pp. 2077-2085, Mar. 2014. [18] J. Magalhaes, I. Lapa, A. Santos-Ferreira, José da Silva, F. Piras et al. “Using a tandem flight configuration between Sentinel-6 and Jason-3 to compare SAR and conventional altimeters in sea surface signatures of internal solitary waves,” Remote Sens., vol. 15, no. 2, p. 392, Jan. 2023. [19] P. Rosen, S. Hensley, I. Joughin, F. Li, S. Madsen, E. Rodriguez, and R. Goldstein, “Synthetic aperture radar interferometry,” Inverse Problems, vol. 14, no. 4, pp. R1– R54, Aug. 1998. [20] M. Richards, “A beginner’s guide to interferometric SAR concepts and signal processing,” IEEE A&E Syst. Mag., vol. 21, no.6, pp. 5-29, Jun. 2006. [21] Z. Qiu, C. Ma, Y. Wang, F. Yu, C. Zhao, H. Sun, S. Zhao, L. Yang, J. Tang, and G. Chen, “Improving sea surface height reconstruction by simultaneous Ku- and Ka-band near-nadir single-pass interferometric SAR altimeter,” IEEE Trans. Geosci. Remote Sens., vol. 61, Art. no. 5209614, 2023. [22] S.-H. Hong, S. Wdowinski, F. Amelung, H.-C. Kim, J.-S. Won, and S.-W. Kim, “Using TanDEM-X pursuit monostatic observations with a large perpendicular baseline to extract glacial topography,” Remote Sens., vol. 10, no. 11, pp. 1–19, Nov. 2018. [23] S. Leinss and P. Bernhard, “TanDEM-X: Deriving InSAR height changes and velocity dynamics of Great Aletsch Glacier,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 14, pp. 4798–4815, 2021. [24] A. Elyouncha, L. Eriksson, R. Romeiser, and L. Ulander, “Measurements of sea surface currents in the Baltic Sea region using spaceborne along-track SAR,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 8584-8599, Nov. 2019. [25] T. Farr et al., “The shuttle radar topography mission,” Rev. Geophys., vol. 45, no. 2, May 2007, Art. no. RG2004. [26] W. Kong, B. Liu, X. Sui, R. Zhang, and J. Sun, “Ocean surface topography altimetry by large baseline cross-interferometry from satellite formation,” Remote Sens., vol. 12, no. 21, p. 3519, Oct. 2020. [27] H. Zhang, C. Fan, J. Meng, S. Li, and L. Sun, “Research on internal solitary wave detection and analysis based on interferometric imaging radar altimeter onboard the Tiangong-2 space laboratory,” Remote Sens., vol. 14, no. 1, p. 174, Dec. 2021. [28] R. Fjørtoft, J.-M. Gaudin, N. Pourthié, J.-C. Lalaurie, A. Mallet, J.-F. Nouvel, J. Martinot-Lagarde, H. Oriot, P. Borderies, C. Ruiz, and S. Daniel, “KaRIn on SWOT: Characteristics of near-nadir Ka-band interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2172-2185, Apr. 2014. [29] G. Chen, J. Tang, C. Zhao, S. Wu, F. Yu, C. Ma, Y. Xu, W. Chen, Y. Zhang, J. Liu, and L. Wu, “Concept design of the ‘Guanlan’ science mission: China’s novel contribution to space oceanogrpahy,” Frontiers Mar. Sci., vol. 6, p. 194, Apr. 2019. [30] X. Li and T. Yang, “A novel non-local denoising filter based on multibaseline InSAR,” IEEE J. Miniaturization Air Space Syst., vol. 4, no. 4, pp. 376-380, Dec. 2023. [31] W. Zou, Y. Li, Z. Li and X. Ding, “Improvement of the accuracy of InSAR image co-registration based on tie points–a review,” Sensors, vol. 9, no. 2, pp. 1259–1281, Feb. 2009. [32] I. Kozlov, I. Kopyshov, D. Frey, E. Morozov, I. Medvedev, A. Shiryborova, K. P. Sil- vestrova, A. V. Gavrikov, E. A. Ezhova, D. M. Soloviev, E. V. Plotnikov, V. R. Zhuk, P. V. Gaisky, A. A. Osadchiev, and N. B. Stepanova, “Multi-sensor observations reveal large-amplitude nonlinear internal waves in the Kara Gates, Arctic Ocean,” Remote Sens., vol. 15, no. 24, p. 5769, Dec. 2023. [33] F. Liu, X. Fan, T. Zhang, and Q. Liu, “GNSS-based SAR interferometry for 3-D deformation retrieval: Algorithms and feasibility study,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 5736-5748, Oct. 2018. [34] Z Wang, F. Liu, R. Shang, and J. Zhou, “A novel multiangle images association algorithm based on supervised areas for GNSS-based InSAR,” IEEE Geosci. Remote Sens. Lett., vol.20, Art. no. 4001705, 2023. [35] A. Theodosiou, M. Kleinherenbrink, and P. López-Dekker, “Wide-swath ocean altimetry using multisatellite single-pass interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 61, Art. no. 5210721, 2023. [36] Starlink Coverage Tracker, Accessed: Apr. 12, 2024. [Online]. Available: https://starlink.sx [37] P. Webb, “Introduction of Oceanography,” Accessed: Dec. 8, 2024. [Online]. Available: https://rwu.pressbooks.pub/webboceanography. [38] Z. Zhao, V. Klemas, Q. Zheng, and X.-H. Yan, “Satellite observation of internal solitary waves converting polarity,” Geophys. Res. Lett., vol.30, no. 19, p. 1988, Oct. 2003. [39] Y. Wei and L.-X. Guo, “Simulation of scattering on a time-varying sea surface beneath which an internal solitary wave travels,” Int. J. Remote Sens., vol. 38, no. 18, pp. 5251-5270, Sep. 2017. [40] T. Kodaira, T. Waseda, M. Miyata, and W. Choi, “Internal solitary waves in a two-fluid system with a free surface,” J. Fluid Mech., vol. 804, pp. 201-223, Oct. 2016. [41] L. Zou, Y. Hu, Z. Wang, Y. Pei, and Z. Yu, “Computational analyses of fully nonlinear interaction of an internal solitary wave and a free surface wave,” AIP Adv., vol. 9, no. 3, pp. 1–11, Mar. 2019. [42] R. Romeiser, W. Alpers, and V. Wismann, “An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data,” J. Geophys. Res., Oceans, vol. 102, no. C11, pp. 25237-25250, Nov. 1997. [43] R. Romeiser and W. Alpers, “An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography,” J. Geophys. Res., Oceans, vol. 102, no. C11, pp. 25251-25267, Nov. 1997. [44] I. Robinson, Measuring the Oceans From Space: The Principles and Methods of Satellite Oceanography, Cham, Switzerland: Springer, 2004. [45] W. Plant, “Bragg scattering of electromagnetic waves from the air/sea interface,” Surface Waves and Fluxes, vol. II, Remote Sensing, G. Geemaert and W. Plant, Eds., Norwell, MA, USA: Kluwer, 1990, pp. 41–108. [46] C. Mobley, The Oceanic Optics Book, Dartmouth, NS, Canada: International Ocean Colour Coordinating Group, 2022. [47] T. Elfouhaily, B. Chapron, K. Katsaros and D. Vandemark, “A unified directional spectrum for long and short wind-driven waves,” J. Geophys. Res., Oceans, vol. 102, no. C7, pp. 15781-15796, Jul.15, 1997. [48] J. Smith, Spectral audio signal processing, Accessed: Oct. 11, 2023. [Online]. Available: https://ccrma.stanford.edu/%7Ejos/sasp/Practical_Zero_Padding.html [49] B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: Role of phase-field direction,” Appl. Opt., vol. 39, no. 26, pp. 4802-4816, Sep. 2000. [50] M. Arevalillo-Herráez, F. Villatoro, and M. Gdeisat, “A robust and simple measure for quality-guided 2D phase unwrapping algorithms,” IEEE Trans. Image Proc., vol. 25, no. 6, pp. 2601-2609, Jun. 2016. [51] M. Arevalillo-Herráez, D. Burton, M. Lalor, and M. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Optics, vol. 41, no. 35, pp. 7437-7444, Dec. 2002. [52] D. Ghiglia and M. Pritt, Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, New York, NY, USA: Wiley, 1998. [53] F. Gatelli, A. Monti-Guarnieri, F. Parizzi, P. Pasquali, C. Prati, and F. Rocca, “The wavenumber shift in SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 855–865, Jul. 1994. [54] A. Mestre-Quereda, J. Lopez-Sanchez, and J. Mallorqui, “Range spectral filtering in SAR interferometry: Methods and limitations,” Sensors, vol. 22, no. 22, p. 8696, Nov. 2022. [55] E. Rodriguez and J. Martin, “Theory and design of interferometric synthetic aperture radars,” IEE Proc. Radar Signal Process., vol. 139, no. 2, pp. 147–159, Apr. 1992. [56] I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data, Norwood, MA, USA: Artech House, 2005. [57] T. Boyer, H. García, R. Locarnini, M. Zweng, A. Mishonov, J. Reagan, K. Weathers, O. Baranova, C. Paver, D. Seidov, and V. Igor. World Ocean Atlas 2018: Density, NOAA National Centers for Environmental Information Dataset. Accessed: Jun. 5, 2023. [Online]. Available: https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18. [58] J. Xue, H. Graber, B. Lund, and R. Romeiser, “Amplitudes estimation of large internal solitary waves in the Mid-Atlantic Bight using synthetic aperture radar and marine X-band radar images,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3250-3258, Jun. 2013. [59] G. Beutler, Methods of Celestial Mechanics, I: Physical, Mathematical, and Numerical Principles, 4th ed., Berlin, Germany: Springer, 2005. [60] W. Alpers and C. Rufenach, “The effect of orbital motions on synthetic aperture radar imagery of ocean waves,” IEEE Trans. Antennas Propagat., vol. AP-27, no. 5, pp. 685– 690, Sep. 1979. [61] C. Rufenach and W. Alpers, “Imaging ocean waves by synthetic aperture radars with long integration times,” IEEE Trans. Antennas Propagat., vol. AP-29, no. 3, pp. 422– 428, May 1981. [62] W. Alpers, “Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra,” J. Geophys. Res., Oceans, vol. 88, no. C3, pp. 1745–1759, Feb. 1983. [63] Q. Li, Y. Zhang, Y. Wang, Y. Bai, Y. Zhang and X. Li, “Numerical simulation of SAR image for sea surface,” Remote Sens., vol. 14, no. 3, p. 439, Jan. 2022. [64] K. Hasselmann, R. Raney, W. Plant, W. Alpers, R. Shuchman, D. Lyzenga, C. Rufe- nach, and M. Tucker, “Theory of synthetic aperture radar ocean imaging: A MARSEN view,” J. Geophys. Res., Oceans, vol. 90, no. C3, pp. 4659-4686, May 1985. [65] K. Hasselmann and S. Hasselmann, “On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion,” J. Geophys. Res., Oceans, vol. 96, no. C6, pp. 10713-10729, Jun.15, 1991. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97630 | - |
| dc.description.abstract | 內波易對水下行動產生威脅,但由於其在水面上的足跡易被風浪掩埋,即時偵測很困難。本論文使用多衛星跨軌干涉合成孔徑雷達成像(multi-satellite cross-track interferometric synthetic aperture radar) 技術,獲取內波在水面上的足跡。多組衛星以不同方向、海拔飛行,將獲取的海面高度影像作平均,以消除周遭風浪的影響,但水平方向的解析度因此變差。本論文參照三起內波事件進行模擬,輔以適當參數與運作情境,可在風速每秒六公尺內達到水平方向解析度 14 公尺,海面高度誤差則在公分等級。 | zh_TW |
| dc.description.abstract | Internal waves, which can wreak havoc on underwater activities, are difficult to detect because their signatures on the sea surface are easily obscured by wind waves. In this work, a cross-track interferometric synthetic aperture radar (XTI-SAR) imaging technique based on multiple satellite-pairs is proposed to detect the surface signatures of internal wave, with higher height accuracy and finer horizontal resolution that can be achieved by using conventional satellite pair. By superposing the XTI-SAR images acquired from multiple satellite pairs, random features of wind waves are filtered out to reveal the surface signatures of internal wave, without compromising the horizontal resolution. Three internal-wave events are simulated to demonstrate the efficacy of the proposed approach, with height accuracy of centimeters and spatial resolution of 14 m, under wind speed of U₁₀ ≦ 6 m/s. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:08:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:08:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試審定書 i
Acknowledgment ii 中文摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables xiv 1 Introduction 1 2 Features of Internal Waves 8 2.1 Radar Cross Section 10 2.2 Wind-Wave Model 15 3 Implementation of XTI SAR Imaging 17 3.1 Co-registration 18 3.2 Removal of Flat-Earth Phase 20 3.3 Multi-Satellite Constellation and Pair Averaging 21 3.4 Phase Unwrapping and Mean Filter 23 3.5 Elevation Mapping and Geometric Correction 25 3.6 Internal-Wave Signature Detection Constraints 27 3.6.1 Blind-Spot in SAR Images 28 3.6.2 Baseline Decorrelation and Center Frequency Shift 28 3.6.3 Trade-off between Horizontal Resolution and Vertical Accuracy 30 4 Simulations and Discussion 32 4.1 Velocity Bunching Effect 37 4.2 Effect of Baseline 43 4.3 Effect of Mean Filter Size 44 4.4 Selection of Baseline, Mean-Filter Size and Satellite Pair Number 46 4.5 Effect of Wind Speed 49 4.6 Detection of Subtle Internal-Wave Signatures 52 5 Conclusions 57 Bibliography 59 Appendix: Registration Error Induced by Target Motion 71 | - |
| dc.language.iso | en | - |
| dc.subject | 多組衛星 | zh_TW |
| dc.subject | 水面足跡 | zh_TW |
| dc.subject | 內波 | zh_TW |
| dc.subject | 跨軌干涉合成孔徑雷達 | zh_TW |
| dc.subject | multiple satellite pairs | en |
| dc.subject | cross-track interferometric synthetic aperture radar (XTI-SAR) | en |
| dc.subject | internal wave | en |
| dc.subject | surface signature | en |
| dc.title | 採用多衛星跨軌干涉合成孔徑雷達偵測內波 | zh_TW |
| dc.title | Internal Wave Detection with Multi-Satellite Cross-Track InSAR Imaging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李翔傑;丁建均 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiang-Chieh Lee;Jian-Jiun Ding | en |
| dc.subject.keyword | 跨軌干涉合成孔徑雷達,內波,水面足跡,多組衛星, | zh_TW |
| dc.subject.keyword | cross-track interferometric synthetic aperture radar (XTI-SAR),internal wave,surface signature,multiple satellite pairs, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202501333 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-10 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 18.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
