Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練zh_TW
dc.contributor.advisorYing-Lien Chenen
dc.contributor.author戴于翔zh_TW
dc.contributor.authorYu-Hsiang Taien
dc.date.accessioned2025-07-09T16:07:23Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-26-
dc.identifier.citation安寶貞、蔡志濃、林筑蘋。2021。植物誘導性抗病。載於謝廷芳、安寶貞、林筑蘋(主編),作物病害之非農藥防治實務專書(頁57-64)。台中市:行政院農業委員會農業試驗所。
李建勳、柯天雄、陳正次2009。小果番茄新品種「種苗亞蔬22號」。種苗科技專訊65: 11-13。
吳旻皇。2025。淺談土壤消毒之方法。苗栗區農業專訓109:19-21。
周浩平、王惠美、黃㯖昌。2015。應用液化澱粉芽孢桿菌Bacillus amyloliquefaciens PMB01防治作物土壤傳播性病害之效果評估。高雄區農業改良場103年報58-60。
陳任芳。2007。番茄萎凋病之預防策略。花蓮區農業專訊62:18-19。
陳媛鈺、林宗俊、鍾文鑫、王智立。2015。篩選抑制番茄萎凋病菌厚膜孢子發芽之拮抗細菌。植物病理學會刊24(3&4):251-266。
郭建志、陳俊位、廖君達、陳葦玲、蔡宜峯。2014。液化澱粉芽孢桿菌在作物病害防治的開發與應用。臺中區農業改良場特刊121:69-86。
楊秀珠、余思葳、黃裕銘。2011。番茄之病蟲害發生與管理。合理、安全及有效使用農藥輔導教材—蔬菜8。
楊素絲、陳正次、全中和。2008。番茄新品種花蓮亞蔬21號之育成。花蓮區農業改良場研究彙報26:65-80。
農業部動植物防疫檢疫署。2023。已登錄之免登記植物保護資材產品清單。
鄭安秀、王仕賢、黃山內。2001。番茄嫁接茄子根砧防治土傳病害。台南區農業專訊35:1-3。
劉依昌、黃瑞彰、蔡孟旅、黃秀雯。2016。小果番茄設施栽培及健康管理技術。臺南區農業改良場技術專刊105-3。
劉依昌、韓錦絲、謝明憲、王仕賢、王仁晃、陳正次。2009。番茄台南亞蔬19號之育成。臺南區農業改良場研究彙報53:12-23。
賴于歆、徐立航、陳穎練。2019。小麥赤黴病菌與番茄萎凋病菌之PSD2基因影響磷脂質組成、生長與產孢。植物醫學61(1):1-18。
Achary, V. M. M., Ram, B., Manna, M., Datta, D., Bhatt, A., Reddy, M. K. & Agrawal, P. K. 2017. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal 15:1493-1508.
Amini, J., & Sidovich, D. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of Plant Protection Research 50(2):172-178.
Arfaoui, A., El Hadrami, A., Adam, L. R., & Daayf, F. 2020. Combining Streptomyces hygroscopicus and phosphite boosts soybean’s defense responses to Phytophthora sojae. BioControl 65:363-375.
Barrett, S. R., Shearer, B. L., & Hardy, G. E. St. J. 2004. Phytotoxicity in relation to in planta concentration of the fungicide phosphite in nine Western Australian native species. Australasian Plant Pathology 33:521-528.
Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., & Alexandersson, E. 2014. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology 14:254.
Cohen, T., & Coffey, M. D. 1986. Systemic fungicides and the control of oomycetes. Annual Review of Phytopathology 24:311-338.
Chakraborty, N. 2021. Salicylic acid and nitric oxide cross‑talks to improve innate immunity and plant vigor in tomato against Fusarium oxysporum stress. Plant Cell Reports 40:1415-1427.
Chou, H. P., Huang, Y. C., Lin, Y. H., & Deng, W. L. 2022. Selection, formulation, and field evaluation of Bacillus amyloliquefaciens PMB01 for its application to manage tomato bacterial wilt disease. Agriculture 12(10):1714.
Dalio, R. J., Fleischmann, F., Humez, M., & Osswald, W. 2014. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS ONE 9(1): e87860.
Dann, E., & McLeod, A. 2021. Phosphonic acid: a long-standing and versatile crop protectant. Pest Management Science 77: 2197-2208.
Danova-Alt, R., Dijkema, C., DE Waard, P., & Köck, M. 2008. Transport and compartmentation of phosphite in higher plant cells-kinetic and 31P nuclear magnetic resonance studies. Plant, Cell & Environment 31(10):1510-1521.
Davis, A. J., Say, M., Snow, A. J., & Grant, B. R. 1994. Sensitivity of Fusarium oxysporum f. sp. cubense to phosphonate. Plant Pathology 43:200-205.
Di, X., Gomila, J. & Takken, F. L.W. 2017. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology 18:1024-1035.
Gilreath, J. P., & Santos., B. M. 2004. Methyl bromide alternatives for weed and soilborne disease management in tomato (Lycopersicon esculentum). Crop Protection 23:1193-1198.
Griffith, J. M., Smillie, R. H., Niere, J. O., & Grant, B. R. 1989. Effect of phosphate on the toxicity of phosphite in Phytophthora palmivora. Archives of Microbiology 152:425-429.
Guest, D., & Bompeix, G. 1990. The complex mode of action of phosphonates. Australasian Plant Pathology 19:113-115.
Hardy, G. E. St. J., Barrett, S., & Shearer, B. L. 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology 30:133-139.
Hu, T., Hu, Z., & Zeng, H. 2015. Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnology Reports 9:37-45.
Liang, Y. P., & Ni, H. F. 2023. The effect of different phosphite spray formulas on phytotoxicity and phosphite uptake of avocado and control efficacy against Phytophthora root rot. Journal of Taiwan Agricultural Research 72(2):81-96.
Ma, L. J., van der Does, H., Borkovich, K. et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367-373
Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology 169(14): 1417-1424.
Macioszek, V. K., Jęcz, T., Ciereszko, I., & Kononowicz, A. K. 2023. Jasmonic acid as a mediator in plant response to necrotrophic fungi. Cells 12(7):1027.
Mandal, S., Mitra, A., & Mallick, N. 2008. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology 72:56-61.
Maurya, S., Dubey, S., Kumari, R., & Verma, R. 2019. Management tactics for fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Management 4(5):1-7
McDonald, A. E., Grant, B. R., & Plaxton, W. C. 2001. Phosphite (phosphorous acid): Its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition 24(10):1505-1519.
Molinari, S., Fanelli, E. & Leonetti, P. 2014. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology 15:255-264.
Pérez-Zavala, F. G., Ojeda-Rivera, J. O., Herrera-Estrella, L., & López-Arredondo, D. 2024. Beneficial Effects of Phosphite in Arabidopsis thaliana mediated by activation of ABA, SA, and JA biosynthesis and signaling pathways. Plants 13(13):1873.
Pilbeam, R. A., Howard, K., Shearer, B. L., & Hardy, G. E. St. J. 2011.Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Trees 25:1121-1131.
Safaie-Farahani, A & Taghavi, S. M. 2017. Transcript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens. Molecular Biology Research Communications 6:177-183.
Saindrenan, P., Barchietto, T., Avelino, J., & Bompeix, G. 1988. Effects of phosphite on phytoalexin accumulation in leaves of cowpea infected with Phytophthora cryptogea. Physiological and Molecular Plant Pathology 32(3):425-435.
Silva, J. A. G., Resende, M. L. V., Monteiro, A. C. A., Pádua1, M. A., Guerra-Guimarães, L., Fernanda L. Medeiros, F. L., Stéfanny A. Martins, S. A., & Botelho1, D. M. S. 2019. Resistance inducers applied alone or in association with fungicide for the management of leaf rust and brown eye spot of coffee under field conditions. Journal of Phytopathology 167:430-439.
Singh, V. K., Singh, H. B., & Upadhyay, R. S. 2017. Role of fusaric acid in the development of 'Fusarium wilt' symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemistry 118:320-332.
Upadhyay, R. K., & Mattoo, A. K. 2018. Genome-wide identification of tomato (Solanum lycopersicum L.) lipoxygenases coupled with expression profiles during plant development and in response to methyl-jasmonate and wounding. Journal of Plant Physiology 231:318-328.
Vinas, M., Mendez, J. C., & Jiménez, V. M. 2020. Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Scientia Horticulturae 265:109200.
Walker, G. E. 1989. Phytotoxicity in mandarins caused by phosphorous acid. Australasian Plant Pathology 18:57-59.
Wicks, T., & Hall, B. 1990. Evaluation of phosphonic (phosphorous) acid for the control of Phytophthora cambivora on almond and cherry in South Australia. Australasian Plant Pathology 19:132-133.
Yogev, E., Sadowsky, A., Solei, Z., Oren, Y., & Orbach, Y. 2006. The performance of potassium phosphite for controlling Alternaria brown spot of citrus fruit. Journal of Plant Diseases and Protection 113(5):207-213.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97625-
dc.description.abstract番茄為世界上最重要的經濟作物之一,然而在栽培過程中面臨多種病害的侵襲,其中由土媒性病原真菌Fusarium oxysporum f. sp. lycopersici引起的番茄萎凋病於台灣長期缺乏推薦的防治藥劑,僅能依靠抗病品種與耕作防治等其他手段。亞磷酸為國內「免登記植物保護資材」之一,用於防治多種作物的卵菌類病害已行之有年,雖然其抗病機制尚未被完全了解,但多數認為與誘發植物防禦反應有關。本研究透過in vitro實驗與盆栽實驗測試亞磷酸防治番茄萎凋病的能力,並利用qPCR分析三個番茄根部的防禦相關基因於亞磷酸處理後的表現量變化,以試圖找出亞磷酸的抗病作用機制。In vitro實驗結果顯示亞磷酸於低濃度下對番茄萎凋病菌無顯著的直接抑菌或殺菌效果,且最低抑菌濃度為3.2%,遠大於本研究測試使用的田間推薦濃度0.2% (葉面噴灑)與0.5% (土壤澆灌),但兩個推薦濃度於盆栽實驗中皆出現顯著的防治效果。qPCR分析則顯示僅澆灌處理組的部分基因表現量則有短時間地顯著上調,但無長時間維持,因此推測亞磷酸對番茄萎凋病主要機制可能為防禦預警效應(priming)。綜上所述,本研究發現亞磷酸具有防治番茄萎凋病的潛力,並期望與現行防治策略搭配使用能進一步減少病害所造成的損害。zh_TW
dc.description.abstractTomato is one of the most important vegetable crops in the world. However, its production is threatened by various pests and diseases, including Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici. In Taiwan, there are no recommended fungicides for managing this disease, leaving farmers to rely on resistant cultivars and cultural control methods. Phosphonic acid has been used to control oomycete diseases in various crops for decades. Although its mode of action is not fully understood, it is believed to induce plant defense responses. This study investigates the effectiveness of phosphonic acid against tomato Fusarium wilt through in vitro assays and pot experiments. Additionally, the expression of three defense-related genes in tomato roots was evaluated using quantitative PCR (qPCR). The in vitro tests revealed that phosphonic acid had little to no antifungal activity against F. oxysporum f. sp. lycopersici, with a minimum inhibitory concentration of 3.2%, much higher than the recommended field application rates (0.2% for foliar spray and 0.5% for soil-drench), both of which were used in this study. Despite this, phosphonic acid application significantly reduced disease severity in pot assays. qPCR analysis indicated that only the soil-drench treatment led to a temporary but significant upregulation of gene expression. These findings suggest that the effectiveness of phosphonic acid in controlling Fusarium wilt may result from the priming of plant defense responses. This study presents a potential supplementary method for managing tomato Fusarium wilt, aiming to improve disease control without chemical fungicides.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:07:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:07:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目次 iii
表次 iv
圖次 v
壹、前言 1
貳、材料與方法 5
一、 實驗菌株之培養與保存 5
二、 番茄萎凋病菌厚膜孢子液製備 5
三、 亞磷酸溶液配製 6
四、 濾紙片擴散試驗 6
五、 含藥培養基試驗 6
六、 亞磷酸對番茄萎凋病菌分生孢子萌芽與菌絲生長影響試驗 6
七、 最低抑菌濃度與最低殺菌濃度試驗 7
八、 實驗植物之品種與種植 7
九、 亞磷酸對番茄萎凋病之防治試驗 7
十、 測試亞磷酸對蕃茄防禦相關基因的影響 8
十一、 數據統計及分析 9
參、結果 10
一、 亞磷酸於低濃度下對番茄萎凋病菌無顯著的抑制或殺菌效果 10
二、 亞磷酸處理能提高番茄植株對番茄萎凋病菌的抵抗能力 10
三、 亞磷酸能促進部分番茄根部防禦相關基因的表現 11
肆、討論 13
伍、參考文獻 18
陸、圖表集 24
-
dc.language.isozh_TW-
dc.subject亞磷酸zh_TW
dc.subject防禦預警效應zh_TW
dc.subject免登記植物保護資材zh_TW
dc.subject番茄萎凋病菌zh_TW
dc.subject番茄zh_TW
dc.subjectTomatoen
dc.subjectprimingen
dc.subjectplant protection products exempted from registrationen
dc.subjectphosphonic aciden
dc.subjectFusarium oxysporum f. sp. lycopersicien
dc.title亞磷酸作為番茄萎凋病防治資材之潛力zh_TW
dc.titlePhosphonic acid as a potential treatment for controlling tomato Fusarium wilten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾嘉綾;曾敏南zh_TW
dc.contributor.oralexamcommitteeChia-Lin Chung;Min-Nan Tsengen
dc.subject.keyword番茄,番茄萎凋病菌,亞磷酸,免登記植物保護資材,防禦預警效應,zh_TW
dc.subject.keywordTomato,Fusarium oxysporum f. sp. lycopersici,phosphonic acid,plant protection products exempted from registration,priming,en
dc.relation.page36-
dc.identifier.doi10.6342/NTU202501265-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2025-07-10-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved