Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋麗英zh_TW
dc.contributor.advisorLi-Ying Sungen
dc.contributor.author徐蕙薰zh_TW
dc.contributor.authorHui-Hsun Hsuen
dc.date.accessioned2025-07-03T16:11:11Z-
dc.date.available2025-07-04-
dc.date.copyright2025-07-03-
dc.date.issued2025-
dc.date.submitted2025-06-11-
dc.identifier.citationAdebayo, M., Singh, S., Singh, A. P., & Dasgupta, S. (2021). Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 35(6), e21620. https://doi.org/10.1096/fj.202100067R
Agarwal, A., Said, T. M., Bedaiwy, M. A., Banerjee, J., & Alvarez, J. G. (2006). Oxidative stress in an assisted reproductive techniques setting. Fertility and Sterility, 86(3), 503-512. https://doi.org/10.1016/j.fertnstert.2006.02.088
Ajayi, A. F., & Akhigbe, R. E. (2020). Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice, 6, 5.https://doi.org/10.1186/s40738-020-00074-3
Amador, A., Steger, R. W., Bartke, A., Johns, A., Siler-Khodr, T. M., Parker, C. R., Jr., & Shepherd, A. M. (1985). Testicular LH receptors during aging in Fisher 344 rats. Journal of Andrology, 6(1), 61-64.https://doi.org/10.1002/j.1939-4640.1985.tb00816.x
Andreu, A., Flores, L., Méndez, M., Ibarzabal, A., Casals, G., Mercadé, I., Borrás, A., Barral, Y., Agustí, I., Manau, D., Vidal, J., & Casals, G. (2024). Impact of bariatric surgery on ovarian reserve markers and its correlation with nutritional parameters and adipokines. Frontiers in endocrinology, 15, 1284576.https://doi.org/10.3389/fendo.2024.1284576
Awadalla, M., Kim, A., Vestal, N., Ho, J., & Bendikson, K. (2021). Effect of Age and Embryo Morphology on Live Birth Rate After Transfer of Unbiopsied Blastocysts. JBRA assisted reproduction, 25(3), 373-382. https://doi.org/10.5935/1518-0557.20200101
Azzam, E. I., Jay-Gerin, J. P., & Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer letters, 327(1-2), 48-60.https://doi.org/10.1016/j.canlet.2011.12.012
Babayev, E., Wang, T., Szigeti-Buck, K., Lowther, K., Taylor, H. S., Horvath, T., & Seli, E. (2016). Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas, 93, 121-130.https://doi.org/10.1016/j.maturitas.2016.06.015
Bakhtari, A., Nazari, S., Alaee, S., Kargar-Abarghouei, E., Mesbah, F., Mirzaei, E., & Molaei, M. J. (2020). Effects of Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles on Mouse Embryo Development, Antioxidant Enzymes and Apoptosis Genes Expression, and Ultrastructure of Sperm, Oocytes and Granulosa Cells. International journal of fertility & sterility, 14(3), 161-170.https://doi.org/10.22074/ijfs.2020.6167
Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem, 22(2), 111-180. https://doi.org/10.3109/10409238709083738
Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews, 87(1), 245-313. https://doi.org/10.1152/physrev.00044.2005
Ben-Meir, A., Burstein, E., Borrego-Alvarez, A., Chong, J., Wong, E., Yavorska, T., Naranian, T., Chi, M., Wang, Y., Bentov, Y., Alexis, J., Meriano, J., Sung, H. K., Gasser, D. L., Moley, K. H., Hekimi, S., Casper, R. F., & Jurisicova, A. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell, 14(5), 887-895.https://doi.org/10.1111/acel.12368
Bezdíček, J., Sekaninová, J., Janků, M., Makarevič, A., Luhová, L., Dujíčková, L., & Petřivalský, M. (2025). Reactive oxygen and nitrogen species: multifaceted regulators of ovarian activity. Biology of reproduction, ioaf032. Advance online publication. https://doi.org/10.1093/biolre/ioaf032
Bolcun-Filas, E., & Handel, M. A. (2018). Meiosis: the chromosomal foundation of reproduction. Biology of reproduction, 99(1), 112-126.https://doi.org/10.1093/biolre/ioy021
Bradley, J., & Swann, K. (2019). Mitochondria and lipid metabolism in mammalian oocytes and early embryos. The International journal of developmental biology, 63(3-4-5), 93-103. https://doi.org/10.1387/ijdb.180355ks
Bragg, J. M., Kuzawa, C. W., Agustin, S. S., Banerjee, M. N., & Mcdade, T. W. (2012). Age at menarche and parity are independently associated with Anti-Müllerian hormone, a marker of ovarian reserve, in filipino young adult women. American journal of human biology: the official journal of the Human Biology Council, 24(6), 739-745. https://doi.org/https://doi.org/10.1002/ajhb.22309
Castellaneta, A., Losito, I., Porcelli, V., Barile, S., Maresca, A., Del Dotto, V., Losacco, V., Guadalupi, L. S., Calvano, C. D., Chan, D. C., Carelli, V., Palmieri, L., & Cataldi, T. R. I. (2024). Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and mitofusins. Journal of lipid research, 65(6), 100563. https://doi.org/10.1016/j.jlr.2024.100563
Cedars, M. I. (2022). Evaluation of Female Fertility-AMH and Ovarian Reserve Testing. The Journal of clinical endocrinology and metabolism, 107(6), 1510-1519.https://doi.org/10.1210/clinem/dgac039
Ceko, M. J., Hummitzsch, K., Hatzirodos, N., Bonner, W. M., Aitken, J. B., Russell, D. L., Lane, M., Rodgers, R. J., & Harris, H. H. (2015). X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics : integrated biometal science, 7(1), 71-82.https://doi.org/10.1039/c4mt00228h
Chapple, S. J., Cheng, X., & Mann, G. E. (2013). Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox biology, 1(1), 319-331.https://doi.org/https://doi.org/10.1016/j.redox.2013.04.001
Charalambous, C., Webster, A., & Schuh, M. (2023). Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nature reviews molecular cell biology, 24(1), 27-44. https://doi.org/10.1038/s41580-022-00517-3
Chaube, S. K., Prasad, P. V., Thakur, S. C., & Shrivastav, T. G. (2005). Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis: an international journal on programmed cell death, 10(4), 863-874.https://doi.org/10.1007/s10495-005-0367-8
Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., & Chan, D. C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology, 160(2), 189-200. https://doi.org/10.1083/jcb.200211046
Chiang, T., Schultz, R. M., & Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biology of reproduction, 86(1), 1-7.https://doi.org/10.1095/biolreprod.111.094367
Critchley, H. O. D., Maybin, J. A., Armstrong, G. M., & Williams, A. R. W. (2020). Physiology of the Endometrium and Regulation of Menstruation. Physiological reviews, 100(3), 1149-1179. https://doi.org/10.1152/physrev.00031.2019
Daddangadi, A., Uppangala, S., Kabekkodu, S. P., Khan, G. N., Kalthur, G., Talevi, R., & Adiga, S. K. (2024). Advanced Maternal Age Affects the Cryosusceptibility of Ovulated but not In Vitro Matured Mouse Oocytes. Reproductive sciences (Thousand Oaks, Calif.), 31(5), 1420-1428.https://doi.org/10.1007/s43032-024-01462-6
Das, S. K., & Vasudevan, D. M. (2007). Alcohol-induced oxidative stress. Life sciences, 81(3), 177-187. https://doi.org/10.1016/j.lfs.2007.05.005
de Paula, W. B., Lucas, C. H., Agip, A. N., Vizcay-Barrena, G., & Allen, J. F. (2013). Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 368(1622), 20120263.https://doi.org/10.1098/rstb.2012.0263
de Vet, A., Laven, J. S., de Jong, F. H., Themmen, A. P., & Fauser, B. C. (2002). Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertility and sterility, 77(2), 357-362.https://doi.org/10.1016/s0015-0282(01)02993-4
Dou, X., Sun, Y., Li, J., Zhang, J., Hao, D., Liu, W., Wu, R., Kong, F., Peng, X., & Li, J. (2017). Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging cell, 16(4), 825-836.https://doi.org/10.1111/acel.12617
Durlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Kumar, T. R., Matzuk, M. M., Rose, U. M., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A., & Themmen, A. P. (2001). Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology, 142(11), 4891-4899.https://doi.org/10.1210/endo.142.11.8486
Dutta, S., & Sengupta, P. (2016). Men and mice: Relating their ages. Life sciences, 152, 244-248. https://doi.org/10.1016/j.lfs.2015.10.025
Faddy, M. J. (2000). Follicle dynamics during ovarian ageing. Molecular and cellular endocrinology, 163(1-2), 43-48. https://doi.org/10.1016/s0303-7207(99)00238-5
Faddy, M. J., Gosden, R. G., Gougeon, A., Richardson, S. J., & Nelson, J. F. (1992). Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Human reproduction (Oxford, England), 7(10), 1342-1346. https://doi.org/10.1093/oxfordjournals.humrep.a137570
Farquhar, C., Rishworth, J. R., Brown, J., Nelen, W. L., & Marjoribanks, J. (2015). Assisted reproductive technology: an overview of Cochrane Reviews. The Cochrane database of systematic reviews, 8(8), CD010537.https://doi.org/10.1002/14651858.CD010537.pub4
Ferreira, A. F., Machado-Simões, J., Moniz, I., Soares, M., Carvalho, A., Diniz, P., Ramalho-Santos, J., Sousa, A. P., Lopes-da-Costa, L., & Almeida-Santos, T. (2024). Chemical reversion of age-related oocyte dysfunction fails to enhance embryo development in a bovine model of postovulatory aging. Journal of assisted reproduction and genetics, 41(8), 1997-2009.https://doi.org/10.1007/s10815-024-03151-4
Filicori, M., Cognigni, G. E., Samara, A., Melappioni, S., Perri, T., Cantelli, B., Parmegiani, L., Pelusi, G., & DeAloysio, D. (2002). The use of LH activity to drive folliculogenesis: exploring uncharted territories in ovulation induction. Human reproduction update, 8(6), 543-557.https://doi.org/10.1093/humupd/8.6.543
Fortune, J. E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Animal reproduction science, 78(3-4), 135-163. https://doi.org/10.1016/s0378-4320(03)00088-5
Gonzales, C. B., Seubert, J. M., & Paes, A. M. (2025). Editorial: Targeting mitochondria in aging and disease. Frontiers in pharmacology, 16, 1589728.https://doi.org/10.3389/fphar.2025.1589728
GREEN, J. A. (1957). Some Effects of advancing age on the histology and reactivity of the mouse ovary. The Anatomical record, 129(3), 333-347.https://doi.org/https://doi.org/10.1002/ar.1091290306
Grøndahl, M. L., Christiansen, S. L., Kesmodel, U. S., Agerholm, I. E., Lemmen, J. G., Lundstrøm, P., Bogstad, J., Raaschou-Jensen, M., & Ladelund, S. (2017). Effect of women's age on embryo morphology, cleavage rate and competence-A multicenter cohort study. PLoS One, 12(4), e0172456.https://doi.org/10.1371/journal.pone.0172456
Gruhn, J. R., Zielinska, A. P., Shukla, V., Blanshard, R., Capalbo, A., Cimadomo, D., Nikiforov, D., Chan, A. C., Newnham, L. J., Vogel, I., Scarica, C., Krapchev, M., Taylor, D., Kristensen, S. G., Cheng, J., Ernst, E., Bjørn, A. B., Colmorn, L. B., Blayney, M., . . . Hoffmann, E. R. (2019). Chromosome errors in human eggs shape natural fertility over reproductive life span. Science (New York, N.Y.), 365(6460), 1466-1469. https://doi.org/10.1126/science.aav7321
Harlow, S. D. (2000). Menstruation and Menstrual Disorders: The Epidemiology of Menstruation and Menstrual Dysfunction. In M. B. Goldman & M. C. Hatch (Eds.), Women and Health (pp. 99-113). Academic Press.https://doi.org/10.1016/B978-012288145-9/50012-7
He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 44(2), 532-553.https://doi.org/10.1159/000485089
He, Y., Gao, M., Yang, W., Sun, S., Wang, Q., & Gu, L. (2023). Melatonin ameliorates histone modification disorders in mammalian aged oocytes by neutralizing the alkylation of HDAC1. Free radical biology & medicine, 208, 361-370.\https://doi.org/10.1016/j.freeradbiomed.2023.08.023
Hirshfeld-Cytron, J. E., Duncan, F. E., Xu, M., Jozefik, J. K., Shea, L. D., & Woodruff, T. K. (2011). Animal age, weight and estrus cycle stage impact the quality of in vitro grown follicles. Human reproduction (Oxford, England), 26(9), 2473-2485. https://doi.org/10.1093/humrep/der183
Hook, E. B. (1981). Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol, 58(3), 282-285.
Hu, C., Huang, Y., & Li, L. (2017). Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. International journal of molecular sciences, 18(1), 144. https://doi.org/10.3390/ijms18010144
Hu, L. L., Liao, B. Y., Wei, J. X., Ling, Y. L., Wei, Y. X., Liu, Z. L., Luo, X. Q., & Wang, J. L. (2020). Podophyllotoxin Exposure Causes Spindle Defects and DNA Damage-Induced Apoptosis in Mouse Fertilized Oocytes and Early Embryos. Frontiers in cell and developmental biology, 8, 600521.https://doi.org/10.3389/fcell.2020.600521
Ismail, T., Kim, Y., Lee, H., Lee, D. S., & Lee, H. S. (2019). Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. International journal of molecular sciences, 20(18), 4407.https://doi.org/10.3390/ijms20184407
Jenkins, B. C., Neikirk, K., Katti, P., Claypool, S. M., Kirabo, A., McReynolds, M. R., & Hinton, A., Jr. (2024). Mitochondria in disease: changes in shapes and dynamics. Trends in biochemical sciences, 49(4), 346-360.https://doi.org/10.1016/j.tibs.2024.01.011
Ježek, P., Holendová, B., & Plecitá-Hlavatá, L. (2020). Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules, 10(1), 93.https://doi.org/10.3390/biom10010093
Jiang, W., Zheng, Z., Yan, N., Yao, S., Xie, Q., Ni, D., Cao, S., Zhao, C., & Ling, X. (2025). Maternal age-related declines in live birth rate following single euploid embryo transfer: a retrospective cohort study. Journal of ovarian research, 18(1), 24. https://doi.org/10.1186/s13048-025-01602-9
Jiao, Z. X., Xu, M., & Woodruff, T. K. (2012). Age-associated alteration of oocyte-specific gene expression in polar bodies: potential markers of oocyte competence. Fertility and sterility, 98(2), 480-486.https://doi.org/10.1016/j.fertnstert.2012.04.035
Kalyanaraman, B. (2020). Pitfalls of Reactive Oxygen Species (ROS) Measurements by Fluorescent Probes and Mitochondrial Superoxide Determination Using MitoSOX. In L. J. Berliner & N. L. Parinandi (Eds.), Measuring Oxidants and Oxidative Stress in Biological Systems (pp. 7-9). Springer.
Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J., & Ryan, M. T. (2018). Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature communications, 9(1), 5239.https://doi.org/10.1038/s41467-018-07543-w
Kamerkar, S. C., Liu, A., & Higgs, H. N. (2025). Mitochondrial fission - changing perspectives for future progress. Journal of cell science, 138(9), jcs263640.https://doi.org/10.1242/jcs.263640
Kasai, H., & Nishimura, S. (1984). Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic acids research, 12(4), 2137-2145. https://doi.org/10.1093/nar/12.4.2137
Keefe, D. L., Niven-Fairchild, T., Powell, S., & Buradagunta, S. (1995). Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertility and Sterility, 64(3), 577-583.
Kobayashi, M., Nakano, R., & Ooshima, A. (1990). Immunohistochemical localization of pituitary gonadotrophins and gonadal steroids confirms the 'two-cell, two-gonadotrophin' hypothesis of steroidogenesis in the human ovary. The Journal of endocrinology, 126(3), 483-488. https://doi.org/10.1677/joe.0.1260483
Kojima, M. L., de Rooij, D. G., & Page, D. C. (2019). Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. elife, 8, e43738. https://doi.org/10.7554/eLife.43738
Koo, Y. J., Ryu, H. M., Yang, J. H., Lim, J. H., Lee, J. E., Kim, M. Y., & Chung, J. H. (2012). Pregnancy outcomes according to increasing maternal age. Taiwanese journal of obstetrics & gynecology, 51(1), 60-65.https://doi.org/10.1016/j.tjog.2012.01.012
Krejcova, T., Smelcova, M., Petr, J., Bodart, J. F., Sedmikova, M., Nevoral, J., Dvorakova, M., Vyskocilova, A., Weingartova, I., Kucerova-Chrpova, V., Chmelikova, E., Tumova, L., & Jilek, F. (2015). Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS One, 10(1), e0116964. https://doi.org/10.1371/journal.pone.0116964
Kuliev, A., Cieslak, J., & Verlinsky, Y. (2005). Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenetic and genome research, 111(3-4), 193-198. https://doi.org/10.1159/000086889
Lee, J. H., Park, J. K., Yoon, S. Y., Park, E. A., Jun, J. H., Lim, H. J., Kim, J., & Song, H. (2021). Advanced Maternal Age Deteriorates the Developmental Competence of Vitrified Oocytes in Mice. Cells, 10(6), 1563.https://doi.org/10.3390/cells10061563
Li, H., & Cai, Z. (2022). SIRT3 regulates mitochondrial biogenesis in aging-related diseases. Journal of biomedical research, 37(2), 77-88.https://doi.org/10.7555/jbr.36.20220078
Liang, J., Huang, F., Hao, X., Zhang, P., & Chen, R. (2024). Nicotinamide mononucleotide supplementation rescues mitochondrial and energy metabolism functions and ameliorates inflammatory states in the ovaries of aging mice. MedComm (2020), 5(10), e727. https://doi.org/10.1002/mco2.727
Liang, Q. X., Lin, Y. H., Zhang, C. H., Sun, H. M., Zhou, L., Schatten, H., Sun, Q. Y., & Qian, W. P. (2018). Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo. Aging, 10(7), 1586-1596.https://doi.org/10.18632/aging.101494
Lim, J., & Luderer, U. (2010). Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biology of reproduction, 84(4), 775-782. https://doi.org/10.1095/biolreprod.110.088583
Lismont, C., Revenco, I., & Fransen, M. (2019). Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. International journal of molecular sciences, 20(15), 3673. https://doi.org/10.3390/ijms20153673
Liu, T., Sun, L., Zhang, Y., Wang, Y., & Zheng, J. (2022). Imbalanced GSH/ROS and sequential cell death. Journal of biochemical and molecular toxicology, 36(1), e22942. https://doi.org/10.1002/jbt.22942
Lliberos, C., Liew, S. H., Zareie, P., La Gruta, N. L., Mansell, A., & Hutt, K. (2021). Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Scientific reports, 11(1), 278. https://doi.org/10.1038/s41598-020-79488-4
Long, S., Zheng, Y., Deng, X., Guo, J., Xu, Z., Scharffetter-Kochanek, K., Dou, Y., & Jiang, M. (2024). Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Communications biology, 7(1), 1229. https://doi.org/10.1038/s42003-024-06888-x
Luke, B., Brown, M. B., Wantman, E., Lederman, A., Gibbons, W., Schattman, G. L., Lobo, R. A., Leach, R. E., & Stern, J. E. (2012). Cumulative birth rates with linked assisted reproductive technology cycles. The New England journal of medicine, 366(26), 2483-2491. https://doi.org/10.1056/NEJMoa1110238
Magoffin, D. A., & Weitsman, S. R. (1994). Insulin-like growth factor-I regulation of luteinizing hormone (LH) receptor messenger ribonucleic acid expression and LH-stimulated signal transduction in rat ovarian theca-interstitial cells. Biology of reproduction, 51(4), 766-775. https://doi.org/10.1095/biolreprod51.4.766
Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., Sou, Y. S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of cell biology, 189(2), 211-221. https://doi.org/10.1083/jcb.200910140
McGee, E. A., & Hsueh, A. J. W. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine reviews, 21(2), 200-214. https://doi.org/10.1210/edrv.21.2.0394
McLaren, A., & Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Developmental biology, 187(1), 107-113. https://doi.org/10.1006/dbio.1997.8584
Menken, J., Trussell, J., & Larsen, U. (1986). Age and infertility. Science (New York, N.Y.), 233(4771), 1389-1394. https://doi.org/10.1126/science.3755843
Michelmann, H. W., Micheels, P., & Mettler, L. (1987). Einfluss des mütterlichen Alters auf die Erfolgsrate bei der In-vitro-Fertilisation. Ein Vergleich humaner und tierexperimenteller Daten [Effect of maternal age on the success rate of in vitro fertilization. A comparison of human and animal experiment data]. Geburtshilfe und Frauenheilkunde, 47(7), 495-498. https://doi.org/10.1055/s-2008-1035860
Miki, K., & Clapham, D. E. (2013). Rheotaxis guides mammalian sperm. Current biology : CB, 23(6), 443-452. https://doi.org/10.1016/j.cub.2013.02.007
Minamikawa, T., Sriratana, A., Williams, D. A., Bowser, D. N., Hill, J. S., & Nagley, P. (1999). Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. Journal of cell science, 112 ( Pt 14), 2419-2430. https://doi.org/10.1242/jcs.112.14.2419
Moghadam, A. R. E., Moghadam, M. T., Hemadi, M., & Saki, G. (2022). Oocyte quality and aging. JBRA assisted reproduction, 26(1), 105-122.https://doi.org/10.5935/1518-0557.20210026
Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical journal, 417(1), 1-13. https://doi.org/10.1042/bj20081386
Myers, M., Morgan, F. H., Liew, S. H., Zerafa, N., Gamage, T. U., Sarraj, M., Cook, M., Kapic, I., Sutherland, A., Scott, C. L., Strasser, A., Findlay, J. K., Kerr, J. B., & Hutt, K. J. (2014). PUMA regulates germ cell loss and primordial follicle endowment in mice. Reproduction (Cambridge, England), 148(2), 211-219.https://doi.org/10.1530/rep-13-0666
Naik, A. Q., Zafar, T., & Shrivastava, V. K. (2023). The impact of non-caloric artificial sweetener aspartame on female reproductive system in mice model. Reproductive biology and endocrinology: RB&E, 21(1), 73.https://doi.org/10.1186/s12958-023-01115-4
Ni, F., Wang, F., Li, J., Liu, Y., Sun, X., Chen, J., Li, J., Zhang, Y., Jin, J., Ye, X., Tu, M., Chen, J., Chen, C., & Zhang, D. (2024). BNC1 deficiency induces mitochondrial dysfunction-triggered spermatogonia apoptosis through the CREB/SIRT1/FOXO3 pathway: the therapeutic potential of nicotinamide riboside and metformin†. Biology of reproduction, 110(3), 615-631.https://doi.org/10.1093/biolre/ioad168
Okado-Matsumoto, A., & Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. The Journal of biological chemistry, 276(42), 38388-38393.https://doi.org/10.1074/jbc.M105395200
Paczkowski, M., Schoolcraft, W. B., & Krisher, R. L. (2014). Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction (Cambridge, England), 148(4), 429-439.https://doi.org/10.1530/rep-14-0015
Pan, X.-H., Zhang, X.-J., Yao, X., Tian, N.-N., Yang, Z.-L., Wang, K., Zhu, X.-Q., Zhao, J., He, J., Cai, X.-M., Pang, R.-Q., & Ruan, G.-P. (2021). Effects and mechanisms of mUCMSCs on ovarian structure and function in naturally ageing C57 mice. Journal of ovarian research, 14(1), 133.https://doi.org/10.1186/s13048-021-00854-5
Pascua-Maestro, R., Diez-Hermano, S., Lillo, C., Ganfornina, M. D., & Sanchez, D. (2017). Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS genetics, 13(2), e1006603.https://doi.org/10.1371/journal.pgen.1006603
Pedersen, T., & Peters, H. (1971). Follicle growth and cell dynamics in the mouse ovary during pregnancy. Fertility and sterility, 22(1), 42-52.https://doi.org/10.1016/s0015-0282(16)37985-7
Pepling, M. E. (2012). Follicular assembly: mechanisms of action. Reproduction (Cambridge, England), 143(2), 139-149. https://doi.org/10.1530/rep-11-0299
Predheepan, D., Salian, S. R., Uppangala, S., Kalthur, G., Kovačič, B., & Adiga, S. K. (2024). Advanced maternal age affects their frozen-thawed embryo susceptibility to high oxygen environment. Scientific reports, 14(1), 23008.https://doi.org/10.1038/s41598-024-73894-8
Pryor, W. A., & Stone, K. (1993). Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Annals of the New York Academy of Sciences, 686, 12-28. https://doi.org/10.1111/j.1749-6632.1993.tb39148.x
Qin, S., Chi, X., Zhu, Z., Chen, C., Zhang, T., He, M., Gao, M., Zhao, T., Zhang, J., Zhang, L., Zheng, W., Chen, Z., Wang, W., Zhou, B., Xia, G., & Wang, C. (2025). Oocytes maintain low ROS levels to support the dormancy of primordial follicles. Aging cell, 24(1), e14338. https://doi.org/https://doi.org/10.1111/acel.14338
Rai, R., & Regan, L. (2006). Recurrent miscarriage. Lancet (London, England), 368(9535), 601-611. https://doi.org/10.1016/s0140-6736(06)69204-0
Richardson, S. J., Senikas, V., & Nelson, J. F. (1987). Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. The Journal of clinical endocrinology and metabolism, 65(6), 1231-1237.https://doi.org/10.1210/jcem-65-6-1231
Robin, E. D., & Wong, R. (1988). Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. Journal of cellular physiology, 136(3), 507-513. https://doi.org/10.1002/jcp.1041360316
Rodgers, R. J., & Irving-Rodgers, H. F. (2010). Formation of the ovarian follicular antrum and follicular fluid. Biology of reproduction, 82(6), 1021-1029.https://doi.org/10.1095/biolreprod.109.082941
Romanski, P. A., Aluko, A., Bortoletto, P., Elias, R., & Rosenwaks, Z. (2022). Age-specific blastocyst conversion rates in embryo cryopreservation cycles. Reproductive biomedicine online, 45(3), 432-439.https://doi.org/10.1016/j.rbmo.2022.04.006
Rosenthal, M. S. (2002). The Fertility Sourcebook (3rd ed.). McGraw-Hill Professional.
Rovini, A., Heslop, K., Hunt, E. G., Morris, M. E., Fang, D., Gooz, M., Gerencser, A. A., & Maldonado, E. N. (2021). Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 35(1), e21148. https://doi.org/10.1096/fj.202001693R
Schlafer, D. H., & Foster, R. A. (2016). Female Genital System. In M. G. Maxie (Ed.), Jubb, Kennedy & Palmer's Pathology of Domestic Animals: Volume 3 (6th ed., Vol. 3, pp. 358–464). Elsevier.https://doi.org/10.1016/B978-0-7020-5319-1.00015-3
Shabalina, I. G., Edgar, D., Gibanova, N., Kalinovich, A. V., Petrovic, N., Vyssokikh, M. Y., Cannon, B., & Nedergaard, J. (2024). Enhanced ROS Production in Mitochondria from Prematurely Aging mtDNA Mutator Mice. Biochemistry. Biokhimiia, 89(2), 279-298. https://doi.org/10.1134/s0006297924020081
Simsek-Duran, F., Li, F., Ford, W., Swanson, R. J., Jones, H. W., Jr., & Castora, F. J. (2013). Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS One, 8(5), e64955.https://doi.org/10.1371/journal.pone.0064955
Sinowatz, F., Kölle, S., & Töpfer-Petersen, E. (2001). Biosynthesis and expression of zona pellucida glycoproteins in mammals. Cells, tissues, organs, 168(1-2), 24-35.https://doi.org/10.1159/000016803
Song, H., Zhang, R., Liu, Y., Wu, J., Fan, W., Wu, J., Liu, Y., & Lin, J. (2025). Menstrual Blood-Derived Endometrial Stem Cells Ameliorate Ovarian Senescence by Relieving Oxidative Stress-Induced Inflammation. Reproductive sciences (Thousand Oaks, Calif.), 32(5) 1566-1579.https://doi.org/10.1007/s43032-024-01739-w
Stringer, J. M., Alesi, L. R., Winship, A. L., & Hutt, K. J. (2023). Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Human reproduction update, 29(4), 434-456.https://doi.org/10.1093/humupd/dmad005
Takahashi, T., Takahashi, E., Igarashi, H., Tezuka, N., & Kurachi, H. (2003). Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Molecular reproduction and development, 66(2), 143-152.https://doi.org/10.1002/mrd.10341
Takeo, T., Hoshii, T., Kondo, Y., Toyodome, H., Arima, H., Yamamura, K.-i., Irie, T., & Nakagata, N. (2008). Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biology of reproduction, 78(3), 546-551.https://doi.org/10.1095/biolreprod.107.065359
Tam, P. P. L., & Snow, M. H. L. (1981). Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. Journal of embryology and experimental morphology, 64, 133-147.
Tarin, J. J. (1996). Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Molecular human reproduction, 2(10), 717-724.https://doi.org/10.1093/molehr/2.10.717
te Velde, E. R., & Pearson, P. L. (2002). The variability of female reproductive ageing. Human reproduction update, 8(2), 141-154.https://doi.org/10.1093/humupd/8.2.141
Van Blerkom, J., Davis, P. W., & Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human reproduction (Oxford, England), 10(2), 415-424.https://doi.org/10.1093/oxfordjournals.humrep.a135954
van der Reest, J., Nardini Cecchino, G., Haigis, M. C., & Kordowitzki, P. (2021). Mitochondria: Their relevance during oocyte ageing. Ageing research reviews, 70, 101378. https://doi.org/10.1016/j.arr.2021.101378
Vidoni, S., Zanna, C., Rugolo, M., Sarzi, E., & Lenaers, G. (2013). Why mitochondria must fuse to maintain their genome integrity. Antioxidants & redox signaling, 19(4), 379-388. https://doi.org/10.1089/ars.2012.4800
Vitagliano, A., Paffoni, A., & Viganò, P. (2023). Does maternal age affect assisted reproduction technology success rates after euploid embryo transfer? A systematic review and meta-analysis. Fertility and sterility, 120(2), 251-265. https://doi.org/10.1016/j.fertnstert.2023.02.036
Wallace, W. H., & Kelsey, T. W. (2010). Human ovarian reserve from conception to the menopause. PLoS One, 5(1), e8772.https://doi.org/10.1371/journal.pone.0008772
Walter, B., Feulner, H., Otzdorff, C., Klein, R., Reese, S., & Meyer-Lindenberg, A. (2019). Changes in anti-Müllerian hormone concentrations in bitches throughout the oestrous cycle. Theriogenology, 127, 114-119.https://doi.org/10.1016/j.theriogenology.2019.01.007
Wang, B., & Du, Y. (2013). Cadmium and its neurotoxic effects. Oxidative medicine and cellular longevity, 2013, 898034. https://doi.org/10.1155/2013/898034
Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J., & Li, F. (2021). Oxidative stress in oocyte aging and female reproduction. Journal of cellular physiology, 236(12), 7966-7983. https://doi.org/10.1002/jcp.30468
Wang, S., Tan, J., Miao, Y., & Zhang, Q. (2022). Mitochondrial Dynamics, Mitophagy, and Mitochondria-Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Frontiers in cell and developmental biology, 10, 848214.https://doi.org/10.3389/fcell.2022.848214
Wasserzug-Pash, P., Rothman, R., Reich, E., Zecharyahu, L., Schonberger, O., Weiss, Y., Srebnik, N., Cohen-Hadad, Y., Weintraub, A., Ben-Ami, I., Holzer, H., & Klutstein, M. (2022). Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging cell, 21(3), e13568.https://doi.org/10.1111/acel.13568
Weenen, C., Laven, J. S. E., von Bergh, A. R. M., Cranfield, M., Groome, N. P., Visser, J. A., Kramer, P., Fauser, B. C. J. M., & Themmen, A. P. N. (2004). Anti‐Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Molecular human reproduction, 10(2), 77-83.https://doi.org/10.1093/molehr/gah015
Wei, K. N., Wang, X. J., Zeng, Z. C., Gu, R. T., Deng, S. Z., Jiang, J., Xu, C. L., Li, W., & Wang, H. L. (2021). Perfluorooctane sulfonate affects mouse oocyte maturation in vitro by promoting oxidative stress and apoptosis induced bymitochondrial dysfunction. Ecotoxicology and environmental safety, 225, 112807.https://doi.org/10.1016/j.ecoenv.2021.112807
Winship, A. L., Stringer, J. M., Liew, S. H., & Hutt, K. J. (2018). The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Human reproduction update, 24(2), 119-134. https://doi.org/10.1093/humupd/dmy002
Witschi, E. (1948). Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds.
Wu, J., Yuan, M., Song, Y., Sun, F., & Han, X. (2015). MC-LR Exposure Leads to Subfertility of Female Mice and Induces Oxidative Stress in Granulosa Cells. Granulosa Cells. Toxins, 7(12), 5212-5223.https://doi.org/10.3390/toxins7124872
Wu, L. L., Chiou, C. C., Chang, P. Y., & Wu, J. T. (2004). Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clinica chimica acta; international journal of clinical chemistry, 339(1-2), 1-9.https://doi.org/10.1016/j.cccn.2003.09.010
Wu, S.-B., & Wei, Y.-H. (2012). AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases. Biochimica et biophysica acta, 1822(2), 233-247.https://doi.org/10.1016/j.bbadis.2011.09.014
Yakes, F. M., & Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 514-519. https://doi.org/10.1073/pnas.94.2.514
Yang, C., Liu, Q., Chen, Y., Wang, X., Ran, Z., Fang, F., Xiong, J., Liu, G., Li, X., Yang, L., & He, C. (2021). Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve. Communications biology, 4(1), 534.https://doi.org/10.1038/s42003-021-02042-z
Yang, Q., Cong, L., Wang, Y., Luo, X., Li, H., Wang, H., Zhu, J., Dai, S., Jin, H., Yao, G., Shi, S., Hsueh, A. J., & Sun, Y. (2020). Increasing ovarian NAD(+) levels improve mitochondrial functions and reverse ovarian aging. Free radical biology & medicine, 156, 1-10. https://doi.org/10.1016/j.freeradbiomed.2020.05.003
Yang, X., Wu, L. L., Chura, L. R., Liang, X., Lane, M., Norman, R. J., & Robker, R. L. (2012). Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertility and sterility, 97(6), 1438-1443.https://doi.org/10.1016/j.fertnstert.2012.02.034
Yildirim, R. M., & Seli, E. (2024). Mitochondria as determinants of reproductive senescence and competence: implications for diagnosis of embryo competence in assisted reproduction. Human reproduction (Oxford, England), 39(10), 2160-2170. https://doi.org/10.1093/humrep/deae171
Yoda, Y., Yokoyama, M., & Hosi, T. (1971). Studies on the fertilization of mouse eggs in vitro:I. in vitro fertilization of eggs by fresh epididymal sperm. The Japanese journal of animal reproduction, 16(4), 147-151.https://doi.org/10.1262/jrd1955.16.147
Youdim, M. B. H., Edmondson, D., & Tipton, K. F. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nature reviews. Neuroscience, 7(4), 295-309.https://doi.org/10.1038/nrn1883
Zacchini, F., Sampino, S., Ziętek, M., & Chan, A. (2022). Delayed parenthood and its influence on offspring health: what have we learned from the mouse model†. Biology of reproduction, 106(1), 58-65. https://doi.org/10.1093/biolre/ioab202
Zhang, H., Li, C., Liu, Q., Li, J., Wu, H., Xu, R., Sun, Y., Cheng, M., Zhao, X., Pan, M., Wei, Q., & Ma, B. (2023). C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife, 12, RP88523. https://doi.org/10.7554/eLife.88523
Zhang, M., ShiYang, X., Zhang, Y., Miao, Y., Chen, Y., Cui, Z., & Xiong, B. (2019). Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free radical biology & medicine, 143, 84-94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002
Zhang, T., Zhou, Y., Li, L., Wang, H. H., Ma, X. S., Qian, W. P., Shen, W., Schatten, H., & Sun, Q. Y. (2016). SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging, 8(4), 685-696. https://doi.org/10.18632/aging.100911
Zhang, X., Wu, X. Q., Lu, S., Guo, Y. L., & Ma, X. (2006). Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell research, 16(10), 841-850. https://doi.org/10.1038/sj.cr.7310095
Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological reviews, 94(3), 909-950. https://doi.org/10.1152/physrev.00026.2013
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97598-
dc.description.abstract根據內政部110年人口統計資料顯示,35歲以上的高齡產婦已佔全體產婦的三成,較10年前增加了1.8倍,反映出生育年齡隨著社會發展而逐漸延後。隨著生產高齡化情況日益普遍,越來越多女性面臨生育困難,而卵母細胞品質下降與卵巢功能退化,已被視為導致高齡女性不孕症的主要因素之一。研究指出,女性生育能力會隨年齡明顯下降,特別是在35歲之後,卵巢濾泡數目快速減少,卵母細胞品質惡化,加上氧化壓力的累積,均加速生殖功能的衰退,並對生育能力產生深遠影響。儘管小鼠 (Mus musculus) 廣泛被應用於生殖老化相關研究,其生命週期短、可控性高的特性有助於進行長期追蹤與機制探討,但目前文獻中對小鼠與人類在生殖老化進程上的對應關係仍缺乏一致性的標準化認定,特別是在粒線體功能變化的層面,系統性研究相對有限。本研究選用2月齡、6月齡、8月齡與10月齡的小鼠作為模型,系統性分析其卵巢濾泡庫存、氧化壓力指標、粒線體數量與功能等變化。結果顯示,隨年齡增加,小鼠卵巢內的濾泡數量明顯下降,尤以6月齡與8月齡小鼠之間的濾泡數量下降幅度最為明顯。同時,生殖老化使得卵母細胞中氧化壓力顯著升高,粒線體功能亦呈現衰退現象。8月齡的小鼠卵母細胞中,粒線體數目顯著減少,能量代謝能力降低,且活性氧 (reactive oxygen species, ROS) 累積明顯增加。上述變化不僅影響卵母細胞的形態與可用卵母細胞的數量,也對其受精能力與發育潛能產生不利影響。體外培養過程中發現,由6月齡小鼠卵母細胞發育而成的胚胎,其囊胚形成率顯著較低;而8月齡小鼠卵母細胞所發育而成的胚胎的高品質囊胚比例更是大幅減少。透過本研究的實證數據,系統性建立小鼠生殖老化進程,冀能提供小鼠年齡對應人類生殖年齡的建設性參考架構,以作為未來研究高齡女性生殖力及改善的最佳動物模式。zh_TW
dc.description.abstractAccording to the Ministry of the Interior's 2021 demographic statistics, women aged 35 and above accounted for 30% of all births in Taiwan, a 1.8-fold increase compared to a decade ago. This trend reflects a societal shift toward delayed childbearing, resulting in a growing prevalence of age-related infertility. Declines in oocyte quality and ovarian function have become recognized as key contributors to reduced fertility in older women. Studies have shown that female fertility significantly declines with age, particularly after the age of 35, with a rapid decrease in ovarian follicle numbers, deterioration in oocyte quality, and the accumulation of oxidative stress, all of which accelerate the decline in reproductive function and profoundly affect fertility. Although mice (Mus musculus) are widely used in reproductive aging research due to their short lifespan and high controllability, which facilitate long-term tracking and mechanistic exploration, a standardized and consistent framework for correlating reproductive aging processes between mice and humans remains lacking, especially in the context of mitochondrial function, where systematic studies are still limited. This research used 2-, 6-, 8-, and 10-month-old mice as experimental models to systematically analyze changes in ovarian follicle reserve, oxidative stress indicators, mitochondrial quantity, and function. The results showed a significant age-related decline in follicle numbers, with the steepest drop observed between 6 and 8 months of age. Concurrently, oxidative stress in oocytes markedly increased, while mitochondrial function progressively deteriorated. In 8-month-old mouse oocytes, mitochondrial number was reduced significantly compared to the 2-month-old group, accompanied by elevated levels of reactive oxygen species (ROS). These changes not only affect oocyte morphology and availability but also have an adverse impact on their fertilization ability and developmental potential. During in vitro culture, embryos derived from 6-month-old mouse oocytes exhibited a significantly lower blastocyst formation rate, while those from 8-month-old oocytes showed a further reduction in blastocyst quality. Through these experimental findings, our study establishes a systematic framework for understanding reproductive aging in mice, aiming to provide a constructive reference for correlating mouse age with human reproductive age and to serve as a reliable animal model for future investigations into fertility decline and its potential interventions in older women.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-03T16:11:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-03T16:11:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iv
Abstract v
目次 viii
表次 x
圖次 xii
縮寫表 xii
第一章 前言與文獻探討 1
1.1 前言 2
1.2 哺乳動物雌性生殖老化的影響 4
1.2.1 雌性生殖系統功能 4
1.2.2 生殖細胞的起源與卵母細胞的形成 5
1.2.3 濾泡的形成與發育 6
1.2.4 老化對生殖系統的影響 8
1.3 氧化壓力在卵母細胞老化的作用 10
1.3.1氧化壓力的產生 10
1.3.2 氧化壓力的防禦 11
1.3.3 氧化壓力對卵母細胞的影響 12
1.4 粒線體功能在雌性生殖老化中的角色 14
1.4.1 粒腺體的結構特徵 14
1.4.2 粒線體動力學 15
1.4.3 粒線體的代謝與能量供應 16
1.4.4 粒線體與氧化還原平衡 17
1.4.5 生殖老化對卵母細胞粒線體的影響 18
1.5 研究展望 20
第二章 生殖老化對小鼠卵巢功能的影響 21
2.1 前言 22
2.2 材料與方法 23
2.3 結果 29
2.3.1 生殖老化對小鼠卵巢庫存的影響 29
2.3.2 生殖老化對小鼠卵巢抗氧化功能的影響 31
2.3.3 生殖老化對小鼠卵巢環境粒線體的影響 32
2.3.4 小結 34
2.4 討論 44
第三章 生殖老化對小鼠卵母細胞的影響 46
3.1 前言 47
3.2 材料與方法 49
3.3 結果 53
3.3.1 生殖老化對小鼠卵母細胞形態的影響 53
3.3.2 生殖老化對小鼠卵母細胞氧化壓力的影響 55
3.3.3 生殖老化對小鼠卵母細胞粒線體功能的影響 56
3.3.4 小結 58
3.4 討論 74
第四章 生殖老化對小鼠體外受精的影響 78
4.1 前言 79
4.2 材料與方法 80
4.3 結果 84
4.3.1 生殖老化對體外受精與體外胚培養效率的影響 84
4.3.2 生殖老化對體外受精與體外培養之囊胚細胞氧化壓力的影響 86
4.3.3 生殖老化對體外受精與體外培養之囊胚細胞粒線體功能的影響 87
4.3.4 小結 89
4.4 討論 105
總結與未來展望 109
參考文獻 117
-
dc.language.isozh_TW-
dc.subject卵母細胞zh_TW
dc.subject輔助生殖技術zh_TW
dc.subject氧化壓力zh_TW
dc.subject粒線體zh_TW
dc.subject小鼠zh_TW
dc.subject生殖老化zh_TW
dc.subjectmitochondriaen
dc.subjectMus musculusen
dc.subjectoocyteen
dc.subjectreproductive agingen
dc.subjectassisted reproductive technologiesen
dc.subjectROSen
dc.title探討老化過程對雌性小鼠生殖健康及卵母細胞粒線體功能的影響zh_TW
dc.titleImpact of Aging on Female Reproductive Health and Oocyte Mitochondrial Function in a Mouse Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳信志;楊尚訓;呂仲浩zh_TW
dc.contributor.oralexamcommitteeShinn-Chih Wu;Shang-Hsun Yang;Chung-Hao Luen
dc.subject.keyword生殖老化,卵母細胞,小鼠,粒線體,氧化壓力,輔助生殖技術,zh_TW
dc.subject.keywordreproductive aging,oocyte,Mus musculus,mitochondria,ROS,assisted reproductive technologies,en
dc.relation.page139-
dc.identifier.doi10.6342/NTU202501118-
dc.rights.note未授權-
dc.date.accepted2025-06-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved