請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97594完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐海仁 | zh_TW |
| dc.contributor.advisor | Hiran A. Ariyawansa | en |
| dc.contributor.author | 卓義敦 | zh_TW |
| dc.contributor.author | Yi-Tun Cho | en |
| dc.date.accessioned | 2025-07-03T16:09:59Z | - |
| dc.date.available | 2025-07-04 | - |
| dc.date.copyright | 2025-07-03 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-18 | - |
| dc.identifier.citation | Agriculture and Food Agency. (2023). Agriculture statistic yearbook. Ministry of agriculture, Taiwan.
Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402 Altın, N., Kurbetli, İ., & Göre, M. E. (2018). In vitro and in vivo efficacy of some fungicides against Phytophthora nicotianae. International Journal of Agriculture and Biology, 20:2069-2073. https://doi.org/10.17957/IJAB/15.0733 Asghar, W., & Kataoka, R. (2025). Fungal volatiles from green manure-incorporated soils promote the growth of lettuce (Lactuca sativa) and mediate antifungal activity against Fusarium oxysporum in vitro. Plant and Soil, 507(1), 77-88. https://doi.org/10.1007/s11104-023-06158-5 Barale, S. S., Ghane, S. G., & Sonawane, K. D. (2022). Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express, 12(1), 7. https://doi.org/10.1186/s13568-022-01348-3 Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51(W1), W46–W50. https://doi.org/10.1093/nar/gkad344 Briard, B., Heddergott, C., & Latgé, J. P. (2016). Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio, 7(2), e00219. https://doi.org/10.1128/mBio.00219-16 Calvo, H., Mendiara, I., Arias, E., Gracia, A. P., Blanco, D., & Venturini, M. E. (2020). Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biology and Technology, 166, 111208. https://doi.org/10.1016/j.postharvbio.2020.111208 Chaves-López, C., Serio, A., Gianotti, A., Sacchetti, G., Ndagijimana, M., Ciccarone, C., Stellarini, A., Corsetti, A., & Paparella, A. (2015). Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 119(2), 487–499. https://doi.org/10.1111/jam.12847 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560 Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014. https://doi.org/10.1038/nbt1325 Chen, Y.-J., Cheah, B.H., Lin, C.-Y., Ku, Y.-T., Kuo, C.-H., Zhang, Y.-Y., Chen, B.-R., Nean, O., Hsieh, C.-H., Yeh, P.-M., Yeo, F.K.S., Lin, Y.-P., Chuang, W.-P., Lee, C.-R., & Ting, H.-M. (2023). Inducible chemical defenses in wild mungbean confer resistance to Spodoptera litura and possibly at the expense of drought tolerance. Environmental and Experimental Botany, 205, 105100. https://doi.org/10.1016/j.envexpbot.2022.105 Doyle, J. J., & Doyle, J. L. (Eds.). (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15. Dunlap, C. A., Bowman, M. J., & Rooney, A. P. (2019). Iturinic lipopeptide diversity in the Bacillus subtilis species group - important antifungals for plant disease biocontrol applications. Frontiers in Microbiology, 10, 1794. https://doi.org/10.3389/fmicb.2019.01794 Dunlap, C. A., Kim, S. J., Kwon, S. W., & Rooney, A. P. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1212–1217. https://doi.org/10.1099/ijsem.0.000858 Eren, A. M., Kiefl, E., Shaiber, A., Veseli, I., Miller, S. E., Schechter, M. S., Fink, I., Pan, J. N., Yousef, M., Fogarty, E. C., Trigodet, F., Watson, A. R., Esen, Ö. C., Moore, R. M., Clayssen, Q., Lee, M. D., Kivenson, V., Graham, E. D., Merrill, B. D., Karkman, A., … Willis, A. D. (2021). Community-led, integrated, reproducible multi-omics with anvi'o. Nature Microbiology, 6(1), 3–6. https://doi.org/10.1038/s41564-020-00834-3 Fazle Rabbee, M., & Baek, K. H. (2020). Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules, 25(21), 4973. https://doi.org/10.3390/molecules25214973 Fincheira, P., Venthur, H., Mutis, A., Parada, M., & Quiroz, A. (2016). Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiological Research, 193, 39–47. https://doi.org/10.1016/j.micres.2016.09.008 Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Biological Sciences, 1(1), 35-40. Gilchrist, C. L. M., & Chooi, Y. H. (2021). clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics, 37(16), 2473–2475. https://doi.org/10.1093/bioinformatics/btab007 Grady, E. N., MacDonald, J., Ho, M. T., Weselowski, B., McDowell, T., Solomon, O., Renaud, J., & Yuan, Z. C. (2019). Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology, 19(1), 5. https://doi.org/10.1186/s12866-018-1380-8 Grahovac, J., Pajčin, I., & Vlajkov, V. (2023). Bacillus VOCs in the context of biological control. Antibiotics, 12(3), 581. https://doi.org/10.3390/antibiotics12030581 He, P., Hao, K., Blom, J., Rückert, C., Vater, J., Mao, Z., Wu, Y., Hou, M., He, P., He, Y., & Borriss, R. (2012). Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. Journal of Biotechnology, 164(2), 281–291. https://doi.org/10.1016/j.jbiotec.2012.12.014 Jayasinghe, H., Chang, H. X., Knobloch, S., Yang, S. H., Hendalage, D. P. B., Ariyawansa, K. G. S. U., Liu, P. Y., Stadler, M., & Ariyawansa, H. A. (2024). Metagenomic insight to apprehend the fungal communities associated with leaf blight of Welsh onion in Taiwan. Frontiers in Plant Science, 15, 1352997. https://doi.org/10.3389/fpls.2024.1352997 Kang, H. C., Park, Y. H., & Go, S. J. (2003). Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiological Research, 158(4), 321-326. https://doi.org/10.1078/0944-5013-00211 Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110 Kenfaoui, J., Dutilloy, E., Benchlih, S., Lahlali, R., Ait-Barka, E., & Esmaeel, Q. (2024). Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Applied Microbiology and Biotechnology, 108(1), 439. https://doi.org/10.1007/s00253-024-13255-7 Kim, T. Y., Hwang, S. H., Noh, J. S., Cho, J. Y., & Maung, C. E. H. (2022). Antifungal potential of Bacillus velezensis CE 100 for the control of different Colletotrichum species through isolation of active dipeptide, Cyclo-(D-phenylalanyl-D-prolyl). International Journal of Molecular Sciences, 23(14), 7786. https://doi.org/10.3390/ijms23147786 Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., & Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186(4), 1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004 Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., & Zhang, R. (2014). Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in Microbiology, 5, 636. https://doi.org/10.3389/fmicb.2014.00636 Li, W., Sun, L., Wu, H., Gu, W., Lu, Y., Liu, C., Zhang, J., Li, W., Zhou, C., Geng, H., Li, Y., Peng, H., Shi, C., Wang, D., & Peng, G. (2024). Bacillus velezensis YXDHD1-7 prevents early blight disease by promoting growth and enhancing defense enzyme activities in tomato plants. Microorganisms, 12(5), 921. https://doi.org/10.3390/microorganisms12050921 Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Park, H. W., Yu, N. H., Kim, Y. H., & Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. The Plant Pathology Journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073 Ling, L., Luo, H., Yang, C., Wang, Y., Cheng, W., Pang, M., & Jiang, K. (2022). Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry. Frontiers in Microbiology, 13, 987844. https://doi.org/10.3389/fmicb.2022.987844 Liu, A., Xu, R., Zhang, S., Wang, Y., Hu, B., Ao, X., Li, Q., Li, J., Hu, K., Yang, Y., & Liu, S. (2022). Antifungal mechanisms and application of lactic acid bacteria in bakery products: A review. Frontiers in Microbiology, 13, 924398. https://doi.org/10.3389/fmicb.2022.924398 Luna-Bulbarela, A., Tinoco-Valencia, R., Corzo, G., Kazuma, K., Konno, K., Galindo, E., & Serrano-Carreón, L. (2018). Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages. Biological Control, 127, 145-154. https://doi.org/10.1016/j.biocontrol.2018.08.004 Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Research International, 2015, 473050. https://doi.org/10.1155/2015/473050 Meng, Q., Jiang, H., & Hao, J. J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 98, 18-26. https://doi.org/10.1016/j.biocontrol.2016.03.010 Ngalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms, 9(3), 614. https://doi.org/10.3390/microorganisms9030614 Orban, A., Jerschow, J. J., Birk, F., Suarez, C., Schnell, S., & Rühl, M. (2023). Effect of bacterial volatiles on the mycelial growth of mushrooms. Microbiological Research, 266, 127250. https://doi.org/10.1016/j.micres.2022.127250 Pérez-García, L. A., Sáenz-Mata, J., Fortis-Hernández, M., Navarro-Muñoz, C. E., Palacio-Rodríguez, R., & Preciado-Rangel, P. (2023). Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy, 13(2), 315. https://doi.org/10.3390/agronomy13020315 Pimentão, A. R., Cuco, A. P., Pascoal, C., Cássio, F., & Castro, B. B. (2024). Current trends and mismatches on fungicide use and assessment of the ecological effects in freshwater ecosystems. Environmental Pollution, 347, 123678. https://doi.org/10.1016/j.envpol.2024.123678 Płaza, G., Chojniak, J., Rudnicka, K., Paraszkiewicz, K., & Bernat, P. (2015). Detection of biosurfactants in Bacillus species: genes and products identification. Journal of Applied Microbiology, 119(4), 1023–1034. https://doi.org/10.1111/jam.12893 Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2016). Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods, 8(1), 12-24. https://doi.org/10.1039/C5AY02550H Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1046. https://doi.org/10.3390/molecules24061046 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pareì, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026. https://doi.org/10.1104/pp.103.026583 Ryu, C. M., Faragt, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pareì, P. W., et al. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932. https://doi.org/10.1073/pnas.0730845100 Schmitz, S., Hoffmann, A., Szekat, C., Rudd, B., & Bierbaum, G. (2006). The lantibiotic mersacidin is an autoinducing peptide. Applied and Environmental Microbiology, 72(11), 7270–7277. https://doi.org/10.1128/AEM.00723-06 Sidorova, D. E., Skripka, M. I., Khmel, I. A., Koksharova, O. A., & Plyuta, V. A. (2022). Effects of volatile organic compounds on biofilms and swimming motility of Agrobacterium tumefaciens. Microorganisms, 10(8), 1512. https://doi.org/10.3390/microorganisms10081512 Song, S., Jeon, E. K., & Hwang, C. W. (2022). Characteristic analysis of soil-isolated Bacillus velezensis HY-3479 and its antifungal activity against phytopathogens. Current Microbiology, 79(12), 357. https://doi.org/10.1007/s00284-022-03060-8 Steinke, K., Mohite, O. S., Weber, T., & Kovács, Á. T. (2021). Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. mSystems, 6(2), e00057-21. https://doi.org/10.1128/mSystems.00057-21 Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14), 6614–6624. https://doi.org/10.1093/nar/gkw569 Toral, L., Rodríguez, M., Martínez-Checa, F., Montaño, A., Cortés-Delgado, A., Smolinska, A., Llamas, I., & Sampedro, I. (2021). Identification of volatile organic compounds in extremophilic bacteria and their effective use in biocontrol of postharvest fungal phytopathogens. Frontiers in Microbiology, 12, 773092. https://doi.org/10.3389/fmicb.2021.773092 Tzean, S. S., Tzeng, K. C., Chang, C. A., Tsai, T. T., and Yen, S. F. (2019). List of plant diseases in Taiwan. Bureau of animal and plant health inspection and quarantine, Council of agriculture, Executive Yuan, Taipei, Taiwan Wang, C. H., Tsai, Y. C., Tsai, I., Chung, C. L., Lin, Y. C., Hung, T. H., Suwannarach, N., Cheewangkoon, R., Elgorban, A. M., & Ariyawansa, H. A. (2021). Stemphylium leaf blight of Welsh Onion (Allium fistulosum): An emerging disease in Sanxing, Taiwan. Plant Disease, 105(12), 4121–4131. https://doi.org/10.1094/PDIS-11-20-2329-RE Wang, J. Y., Jayasinghe, H., Cho, Y. T., Tsai, Y. C., Chen, C. Y., Doan, H. K., & Ariyawansa, H. A. (2023). Diversity and biocontrol potential of endophytic fungi and bacteria associated with healthy welsh onion leaves in Taiwan. Microorganisms, 11(7), 1801. https://doi.org/10.3390/microorganisms11071801 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/journal.pcbi.1005595 Xing, S., Gao, Y., Li, X., Ren, H., Gao, Y., Yang, H., Liu, Y., He, S., & Huang, Q. (2023). Antifungal activity of volatile components from Ceratocystis fimbriata and its potential biocontrol mechanism on Alternaria alternata in postharvest cherry tomato fruit. Microbiology Spectrum, 11(1), e0271322. https://doi.org/10.1128/spectrum.02713-22 Xiong, Z. R., Cobo, M., Whittal, R. M., Snyder, A. B., & Worobo, R. W. (2022). Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PloS One, 17(4), e0266470. https://doi.org/10.1371/journal.pone.0266470 Yu, C., Chen, H., Zhu, L., Song, Y., Jiang, Q., Zhang, Y., Ali, Q., Gu, Q., Gao, X., Borriss, R., Dong, S., & Wu, H. (2023). Profiling of antimicrobial metabolites synthesized by the endophytic and genetically amenable biocontrol strain Bacillus velezensis DMW1. Microbiology Spectrum, 11(2), e0003823. https://doi.org/10.1128/spectrum.00038-23 Yu, Y. H., Cho, Y. T., Xu, Y. C., Wong, Z. J., Tsai, Y. C., & Ariyawansa, H. A. (2024). Identifying and controlling anthracnose caused by Colletotrichum Taxa of Welsh Onion in Sanxing, Taiwan. Phytopathology, 114(6), 1263–1275. https://doi.org/10.1094/PHYTO-08-23-0301-R Yuan, H., Wang, L., Hou, H., Qin, G., Shi, B., Zhou, B., ... & Tu, H. (2025). Antifungal activity and mechanism of volatile organic compounds produced by Bacillus velezensis strain P2-1 against Botryosphaeria dothidea-induced postharvest decay in apples. Postharvest Biology and Technology, 222, 113405. https://doi.org/10.1016/j.postharvbio.2025.113405 Zhao, W. X., Ting, H. M., Zhang, Y. Y., Lee, S. K., Wang, C. N., & Liu, C. T. (2024). Beneficial effects of microbial volatile organic compounds derived from Rhodopseudomonas palustris on plant growth and biological control. Plant and Soil, 505, 1–19. https://doi.org/10.1007/s11104-024-07182-9 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97594 | - |
| dc.description.abstract | 青蔥是台灣重要作物,廣泛應用於蔬菜與香料。近年來,新興青蔥葉部病原菌如 Stemphylium vesicarium, Colletotrichum spaethianum 與 C. circinans 在台灣大量發生並造成顯著損失。在我們先前的研究中,從健康青蔥葉部中分離出一株Bacillus velezensis GFB08 菌株,具有在實驗室與溫室條件下降低青蔥葉部病害的能力。本篇研究的主要目標為透過基因體學與代謝組體學評估 B. velezensis GFB08 在青蔥上的抑病機制。透過結合illumina與Nanopore定序進行基因體組裝,B. velezensis GFB08具有單一3.89 mb的染色體,其中包含3,735編碼序列,藉由比較基因體分析,GFB08具有完整且高度保守的fengycin及bacillomycin D二次代謝物基因簇。代謝物純化與質譜分析進一步證實GFB08產生的fengycin對三種青蔥葉部病原菌皆具有廣效的抗真菌活性,而bacillomycin D 則表現出物種專一性的抗真菌活性,特別是fengycin與bacillomycin D 在抑制C. spaethianum上呈現出加成的抗菌效果。此外,GFB08產生的揮發性有機化合物(VOCs),如乙酸、乙偶姻、1-丁醇與3-甲基丁醇,均能顯著抑制C. spaethianum的菌絲生長。為了評估GFB08的實際應用潛力,本研究同時進行了植物生長促進試驗、發酵條件最佳化與田間防治試驗,結果顯示GFB08 僅在種子時期能夠顯著促進青蔥生長。5 L發酵試驗成果顯示,GFB08的最適產孢條件為1% 糖蜜, 0.5% 大豆粉, 28°C, pH 7, 與200 rpm,內生孢子濃度可達2×109 CFU/mL。田間防治試驗中,B. velezensis GFB08 稀釋液100倍可抑制青蔥黑腐病的罹病嚴重度。整體而言,本研究為生物防治菌株B. velezensis GFB08 提供了功能上的參考依據,並揭示其在永續農業上的應用潛力。 | zh_TW |
| dc.description.abstract | The Welsh onion is an essential crop in Taiwan, widely consumed as a vegetable or spice. In recent years, foliar fungal pathogens Stemphylium vesicarium, Colletotrichum spaethianum, and C. circinans have been identified as emerging threats, causing significant damage to the Welsh onion in Sangxing, Taiwan. In our recent study, Bacillus velezensis GFB08 isolated from healthy Welsh onion leaves demonstrated the ability to reduce foliar diseases under laboratory and greenhouse conditions. The main objective of this study was to elucidate the disease suppression mechanisms of B. velezensis GFB08 through genomic and metabolomic approaches. Using Illumina and Nanopore hybrid assembly, the present study found that B. velezensis GFB08 genome harbored a 3.89 mb chromosome with 3,735 coding sequences. Comparative genomic analysis revealed complete and highly conserved biosynthetic gene clusters (BGCs) for fengycin and bacillomycin D. Metabolite profiling confirmed that fengycin produced by GFB08 exhibited broad-spectrum antifungal activity against all three foliar pathogens, while bacillomycin D displayed species-specific effects. Notably, fengycin and bacillomycin D displayed additive antifungal activity against C. spaethianum. Additionally, volatile organic compounds (VOCs) such as acetic acid, 2-pentanone, acetoin, 1-butanol and 3-methyl- were identified as major antifungal VOCs from GFB08, significantly inhibiting C. spaethianum growth under in vitro. To facilitate the practical application of GFB08, plant growth promotion assays, fermentation optimization, and field evaluations were also conducted. GFB08 enhanced Welsh onion growth only during seed stage. Based on 5 L fermentation optimization, B. velezensis GFB08 achieved highest endospore production under the following conditions: 1% molasses, 0.5% soybean flour, 28°C, pH 7, and 200 rpm, reaching a concentration of 2×109 CFU/mL. Field trials demonstrated that a 100-fold dilution of B. velezensis GFB08 effectively reduced the disease severity of Welsh onion leave blight. Overall, this study provides a comprehensive functional characterization of the biocontrol agent B. velezensis GFB08 and highlight its potential for sustainable agriculture. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-03T16:09:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-03T16:09:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xi List of Supplementary Figures xii List of Supplementary Tables xiii Chapter 1. Introduction 1 Welsh onion and foliar diseases 1 Foliar disease management of Welsh onion 1 Bacillus velenzsis, a well-known beneficial microbe 3 Aims of this study 5 Chapter 2. Materials and methods 6 Bacillus velenzsis GFB08 cultivation and genomic DNA extraction 6 Whole genome sequencing, assembly, and annotation 7 Comparative genomics 8 Isolation, identification, and bioactivity assay of lipopeptides 8 Collection, identification, and bioactivity assay of VOCs 13 Plant growth promotion (PGP) assay 14 Optimization of fermentation conditions 16 Field trials 18 Statistical analysis 19 Chapter 3. Results 20 Genome features of Bacillus velenzsis GFB08 20 Comparative genomics 21 Isolation, identification, and bioactivity assay of lipopeptides 23 Collection, identification, and bioactivity assay of VOCs 27 Plant growth promotion assay 29 Optimization of fermentation condition 29 Field trials 31 Chapter 4. Discussion 33 General Conclusions 38 References 40 Figures 54 Tables 66 Supplementary materials 70 | - |
| dc.language.iso | en | - |
| dc.subject | 生物活性二次代謝物 | zh_TW |
| dc.subject | 發酵條件最佳化 | zh_TW |
| dc.subject | 生物防治 | zh_TW |
| dc.subject | 比較基因體分析 | zh_TW |
| dc.subject | 植物生長促進 | zh_TW |
| dc.subject | Plant growth promotion | en |
| dc.subject | Fermentation optimization | en |
| dc.subject | Bioactive secondary metabolites | en |
| dc.subject | Biocontrol agent | en |
| dc.subject | Comparative genomic analysis | en |
| dc.title | 透過基因體學與代謝組體學評估 Bacillus velezensis GFB08 在青蔥上的抑病機制 | zh_TW |
| dc.title | Elucidating Disease Suppression Mechanisms of Bacillus velezensis GFB08 in Welsh Onion through Genomic and Metabolomic Approaches | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊玉良;陳賢明 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Liang Yang;Hieng-Ming Ting | en |
| dc.subject.keyword | 生物防治,生物活性二次代謝物,比較基因體分析,植物生長促進,發酵條件最佳化, | zh_TW |
| dc.subject.keyword | Biocontrol agent,Bioactive secondary metabolites,Comparative genomic analysis,Plant growth promotion,Fermentation optimization, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202501190 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2027-07-01 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-07-01 | 39.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
