Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97589
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆zh_TW
dc.contributor.advisorPei-Lung Chenen
dc.contributor.author洪崇凱zh_TW
dc.contributor.authorTsung-Kai Hungen
dc.date.accessioned2025-07-03T16:08:29Z-
dc.date.available2025-07-04-
dc.date.copyright2025-07-03-
dc.date.issued2025-
dc.date.submitted2025-02-10-
dc.identifier.citationAlexandrova M, Manchorova D, Dimova T. 2022. Immunity at maternal–fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 308: 55–76. https://doi.org/10.1111/imr.13056.
Amorim LM, Augusto DG, Nemat-Gorgani N, Montero-Martin G, Marin WM, Shams H, Dandekar R, Caillier S, Parham P, Fernández-Viña MA, et al. 2021. High-resolution characterization of KIR genes in a large North American cohort reveals novel details of structural and sequence diversity. Front Immunol 12: 674778. https://doi.org/10.3389/fimmu.2021.674778.
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, et al. 2015. A global reference for human genetic variation. Nature 526: 68–74. https://doi.org/10.1038/nature15393.
Bashirova AA, Martin MP, McVicar DW, Carrington M. 2006. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 7: 277–300. https://doi.org/10.1146/annurev.genom.7.080505.115726.
Béziat V, Traherne JA, Liu LL, Jayaraman J, Enqvist M, Larsson S, Trowsdale J, Malmberg K-J. 2013. Influence of KIR gene copy number on natural killer cell education. Blood 121: 4703–4707. https://doi.org/10.1182/blood-2013-01-478107.
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts Ch, Wang ECY, Frater J, Gilmour J, Twigger K, et al. 2018. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8+ T cell–mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 3: eaao2892. https://doi.org/10.1126/sciimmunol.aao2892.
Bono M, Pende D, Bertaina A, Moretta A, Della Chiesa M, Sivori S, Zecca M, Locatelli F, Moretta L, Bottino C, et al. 2018. Analysis of KIR3DP1 polymorphism provides relevant information on centromeric KIR gene content. J Immunol 201: 1460–1467. https://doi.org/10.4049/jimmunol.1800496.
Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec J-B, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, et al. 2017. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J Clin Oncol 35: 2268–2278. https://doi.org/10.1200/JCO.2016.71.1964.
Boudreau JE, Mulrooney TJ, Le Luduec J-B, Barker E, Hsu KC. 2016. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol 196: 3398–3410. https://doi.org/10.4049/jimmunol.1502350.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421.
Campbell KS, Purdy AK. 2011. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132: 315–325. https://doi.org/10.1111/j.1365-2567.2010.03398.x.
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18: 170–175. https://doi.org/10.1038/s41592-020-01056-5.
Cheng H, Jarvis ED, Fedrigo O, Koepfli K-P, Urban L, Gemmell NJ, Li H. 2022. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol 40: 1332–1335. https://doi.org/10.1038/s41587-022-01225-7.
Clara JA, Childs RW. 2022. Harnessing natural killer cells for the treatment of multiple myeloma. Semin Oncol 49: 69–85. https://doi.org/10.1053/j.seminoncol.2022.02.001.
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. https://doi.org/10.1093/bioinformatics/btp163.
De Brito Vargas L, Beltrame MH, Ho B, Marin WM, Dandekar R, Montero-Martin G, Fernández-Viña MA, Hurtado AM, Hill KR, Tsuneto LT, et al. 2021. Remarkably low KIR and HLA diversity in Amerindians reveals signatures of strong purifying selection shaping the centromeric KIR region. Mol Biol Evol 39: msab298. https://doi.org/10.1093/molbev/msab298.
Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA, Mahdavi M, Nozad Charoudeh H. 2021. The role of KIR-positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 92: 107361. https://doi.org/10.1016/j.intimp.2021.107361.
Fauriat C, Ivarsson MA, Ljunggren H-G, Malmberg K-J, Michaëlsson J. 2010. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 115: 1166–1174. https://doi.org/10.1182/blood-2009-09-245746.
Feng Q, Zhou M, Li S, Morimoto L, Hansen H, Myint SS, Wang R, Metayer C, Kang A, Fear AL, et al. 2022. Interaction between maternal killer immunoglobulin-like receptors and offspring HLAs and susceptibility of childhood ALL. Blood Adv 6: 3756–3766. https://doi.org/10.1182/bloodadvances.2022007928.
Ford MKB, Hari A, Zhou Q, Numanagić I, Sahinalp SC. 2024. Biologically-informed killer cell immunoglobulin-like receptor gene annotation tool. Bioinformatics 40: btae622. https://doi.org/10.1093/bioinformatics/btae622.
Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R, Vilches C, Parham P. 2001. Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166: 2992–3001. https://doi.org/10.4049/jimmunol.166.5.2992.
Gómez-Lozano N, Estefanía E, Williams F, Halfpenny I, Middleton D, Solís R, Vilches C. 2004. The silent KIR3DP1 gene (CD158c) is transcribed and might encode a secreted receptor in a minority of humans, in whom the KIR3DP1, KIR2DL4, and KIR3DL1/KIR3DS1 genes are duplicated. Eur J Immunol 35: 16–24. https://doi.org/10.1002/eji.200425415.
Gómez-Lozano N, Vilches C. 2002. Genotyping of human killer-cell immunoglobulin-like receptor genes by polymerase chain reaction with sequence-specific primers: an update. Tissue Antigens 59: 184–193. https://doi.org/10.1034/j.1399-0039.2002.590304.x.
Hanna GJ, O’Neill A, Shin K-Y, Wong K, Jo VY, Quinn CT, Cutler JM, Flynn M, Lizotte PH, Annino DJ Jr, et al. 2021. Neoadjuvant and adjuvant nivolumab and lirilumab in patients with recurrent, resectable squamous cell carcinoma of the head and neck. Clin Cancer Res 28: 468–478. https://doi.org/10.1158/1078-0432.CCR-21-3686.
Jarvis ED, Formenti G, Rhie A, Guarracino A, Yang C, Wood J, Tracey A, Thibaud-Nissen F, Vollger MR, Porubsky D, et al. 2022. Semi-automated assembly of high-quality diploid human reference genomes. Nature 611: 519–531. https://doi.org/10.1038/s41586-022-05231-5.
Jiang W, Johnson C, Jayaraman J, Simecek N, Noble J, Moffatt MF, Cookson WO, Trowsdale J, Traherne JA. 2012. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 22: 1845–1854. https://doi.org/10.1101/gr.135947.111.
Jiang W, Johnson C, Simecek N, López-Álvarez MR, Di D, Trowsdale J, Traherne JA. 2016. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med 8. https://doi.org/10.1186/s13073-016-0358-0.
Khakoo SI, Carrington M. 2006. KIR and disease: a model system or system of models? Immunol Rev 214: 186–201. https://doi.org/10.1111/j.1600-065X.2006.00461.x.
Lai S-K, Luo AC, Chiu I-H, Chuang H-W, Chou T-H, Hung T-K, Hsu JS, Chen C-Y, Yang W-S, Yang Y-C, et al. 2024. A novel framework for human leukocyte antigen (HLA) genotyping using probe capture-based targeted next-generation sequencing and computational analysis. Computational and Structural Biotechnology Journal 23: 1562–1571. http://dx.doi.org/10.1016/j.csbj.2024.03.030.
Lee Y-C. 2022. Development of a killer-cell immunoglobulin-like receptor (KIR) genotyping bioinformatics pipeline using next-generation sequencing data. Master's thesis, National Taiwan University. https://doi.org/10.6342/NTU202200470.
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou S-H, Chen L, Li J, et al. 2022. KIR+ CD8+ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 376. http://dx.doi.org/10.1126/science.abi9591.
Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, Lu S, Lucas JK, Monlong J, Abel HJ, et al. 2023. A draft human pangenome reference. Nature 617: 312–324. https://doi.org/10.1038/s41586-023-06063-9.
Lin H-Y, Chuang H-W, Hung T-K, Wang T-J, Lin C-J, Hsu JS, Hsu C-L, Yang Y-C, Chen P-L, Chen C-Y. 2023. Graph-KIR: Graph-based KIR Copy Number Estimation and Allele Calling Using Short-read Sequencing Data. 2023.11.29.568665. https://doi.org/10.1101/2023.11.29.568665.
Liu H, Zhou S, Liu J, Chen F, Zhang Y, Liu M, Min S, Wang H, Wang X, Wu N. 2022. Lirilumab and Avelumab Enhance Anti-HPV+ Cervical Cancer Activity of Natural Killer Cells via Vav1-Dependent NF-κB Disinhibition. Front Oncol 12. http://dx.doi.org/10.3389/fonc.2022.747482.
Liu W-C. 2023. Bioinformatics analysis for copy number determination of killer-cell immunoglobulin-like receptor (KIR) genotyping by capture-based next-generation sequencing and verification of KIR structural variations by polymerase chain reactions. Master's thesis, National Taiwan University. https://doi.org/10.6342/ NTU202302895.
Maccari G, Robinson J, Hammond JA, Marsh SGE. 2020. The IPD Project: a centralised resource for the study of polymorphism in genes of the immune system. Immunogenetics 72: 49–55. https://doi.org/10.1007/s00251-019-01133-w.
Martin MP, Bashirova A, Traherne J, Trowsdale J, Carrington M. 2003. Cutting edge: expansion of the KIR locus by unequal crossing over. J Immunol 171: 2192–2195. https://doi.org/10.4049/jimmunol.171.5.2192.
Middleton D, Gonzelez F. 2010. The extensive polymorphism of KIR genes. Immunology 129: 8–19. https://doi.org/10.1111/j.1365-2567.2009.03208.x.
Norman PJ, Hollenbach JA, Nemat-Gorgani N, Marin WM, Norberg SJ, Ashouri E, Jayaraman J, Wroblewski EE, Trowsdale J, Rajalingam R, et al. 2016. Defining KIR and HLA Class I Genotypes at Highest Resolution via High-Throughput Sequencing. The American Journal of Human Genetics 99: 375–391. https://doi.org/10.1016/j.ajhg.2016.06.023
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, et al. 2022. The complete sequence of a human genome. Science 376: 44–53. https://doi.org/10.1126/science.abj6987.
Pollock NR, Harrison GF, Norman PJ. 2022. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. The Journal of Allergy and Clinical Immunology: In Practice 10: 1763–1775. https://doi.org/10.1016/j.jaip.2022.04.036.
Pyo C-W, Wang R, Vu Q, Cereb N, Yang SY, Duh F-M, Wolinsky S, Martin MP, Carrington M, Geraghty DE. 2013. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC Genomics 14: 89. https://doi.org/10.1186/1471-2164-14-89.
Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Zweig AS, Karolchik D, et al. 2013. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30: 1003–1005. https://doi.org/10.1093/bioinformatics/btt167.
Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, Rhie A, Eichler EE, Phillippy AM, Koren S. 2023. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01662-6.
Robinson J, Mistry K, McWilliam H, Lopez R, Marsh SGE. 2010. IPD—the Immuno Polymorphism Database. Nucleic Acids Res 38: D863–D869. https://doi.org/10.1093/nar/gkp973.
Roe D, Vierra-Green C, Pyo C-W, Geraghty DE, Spellman SR, Maiers M, Kuang R. 2020. A Detailed View of KIR Haplotype Structures and Gene Families as Provided by a New Motif-Based Multiple Sequence Alignment. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.585731.
Roe D, Williams J, Ivery K, Brouckaert J, Downey N, Locklear C, Kuang R, Maiers M. 2020. Efficient Sequencing, Assembly, and Annotation of Human KIR Haplotypes. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.582927.
Saunders PM, Pymm P, Pietra G, Hughes VA, Hitchen C, O’Connor GM, Loiacono F, Widjaja J, Price DA, Falco M, et al. 2016. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med 213: 791–807. https://doi.org/10.1084/jem.20150255.
Shumate A, Salzberg SL. 2021. Liftoff: accurate mapping of gene annotations. Bioinformatics 37: 1639–1643. https://doi.org/10.1093/bioinformatics/btaa1016.
Song L, Bai G, Liu XS, Li B, Li H. 2023. Efficient and accurate KIR and HLA genotyping with massively parallel sequencing data. Genome Res 33: 923–931. https://doi.org/10.1101/gr.277585.122.
Traherne JA, Martin M, Ward R, Ohashi M, Pellett F, Gladman D, Middleton D, Carrington M, Trowsdale J. 2010. Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex. Human Molecular Genetics 19: 737–751. https://doi.org/10.1093/hmg/ddp538.
Wagner J, Olson ND, Harris L, Khan Z, Farek J, Mahmoud M, Stankovic A, Kovacevic V, Yoo B, Miller N, et al. 2022. Benchmarking challenging small variants with linked and long reads. Cell Genomics 2: 100128. https://doi.org/10.1016/j.xgen.2022.100128.
Williams F, Maxwell LD, Halfpenny IA, Meenagh A, Sleator C, Curran MD, Middleton D. 2003. Multiple copies of KIR3DL/S1 and KIR2DL4 genes identified in a number of individuals. Hum Immunol 64: 729–732. https://doi.org/10.1016/S0198-8859(03)00124-2.
Wu Z, Park S, Lau CM, Zhong Y, Sheppard S, Sun JC, Das J, Altan-Bonnet G, Hsu KC. 2021. Dynamic variability in SHP-1 abundance determines natural killer cell responsiveness. Sci Signal 14: eabe5380. https://doi.org/10.1126/scisignal.abe5380.
Xu X, Zhou Y, Wei H. 2020. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.592010.
Yawata M, Yawata N, Draghi M, Little A-M, Partheniou F, Parham P. 2006. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203: 633–645. https://doi.org/10.1084/jem.20051884.
Zamir MR, Shahi A, Salehi S, Amirzargar A. 2022. Natural killer cells and killer cell immunoglobulin-like receptors in solid organ transplantation: Protectors or opponents? Transplant Rev 36: 100723. https://doi.org/10.1016/j.trre.2022.100723.
Zheng G, Guo Z, Li W, Xi W, Zuo B, Zhang R, Wen W, Yang A-G, Jia L. 2021. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer resistance to trastuzumab. Sig Transduct Target Ther 6: 1–15. https://doi.org/10.1038/s41392-021-00629-w.
Zhou Y, Song L, Li H. 2024. Full resolution HLA and KIR gene annotations for human genome assemblies. Genome Res gr.278985.124. http://dx.doi.org/10.1101/gr.278985.124.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97589-
dc.description.abstract殺手細胞免疫球蛋白樣受體(killer-cell immunoglobulin-like receptor, KIR)基因複合體是人類基因組中多型性最強、結構最複雜的區域之一,對自然殺手(NK)細胞的功能具有關鍵影響。雖然 KIR 多樣性在感染狀況、癌症進展以及移植相容性方面的重要性早已獲得肯定,但之前由於技術上遭遇的困難,始終缺乏對 KIR 區域的高解析度定型方法。本文利用Human Pangenome Reference Consortium (HPRC) 所產生的高品質且定相(haplotype-resolved)基因體組裝序列,針對 47 位來自多元族群的個體(共94條單套染色體)進行KIR多樣性的完整描繪。
為達此目標,我開發並應用了名為「Structural KIR annoTator (SKIRT)」的生物資訊流程,將IPD-KIR資料庫裡完整的KIR等位基因序列對齊至組裝後的基因體contigs,以解析基因層級的拷貝數、等位基因差異,以及結構重排情形。透過廣泛的生物資訊分析與實驗室驗證(包含使用特異性引子對的聚合酶連鎖反應 PCR-SSP、定量 PCR(qPCR),以及Sanger定序確認新穎斷點),SKIRT能夠達到七位數字等位基因的高精度解析。研究結果顯示,本方法鑑定出 570 筆新發現的KIR等位基因、多種基因拷貝數變異(CNVs),以及例如KIR2DS4/3DL1、KIR2DL3/2DP1等不預期的基因融合(fusion),凸顯該區域能產生新型受體構造的潛力。值得注意的是,許多新發現的等位基因帶有改變胺基酸序列的變異(nonsynonymous)或調控序列異常,顯示它們可能影響NK細胞的功能。
比較分析也顯示,SKIRT無論在結構變異偵測或等位基因分型層面皆優於現今存在的其他分析工具,成為KIR基因定型的新標竿。此發現一方面擴充了對人類免疫多樣性的認知,另一方面亦彰顯了「組裝式分析」如何有效解析基因組中的“暗區域”。從臨床角度來看,更完整的 KIR 單套基因體與等位基因變異資訊,有助於更精確地進行免疫基因體學研究,包括疾病關聯分析及移植免疫領域。
zh_TW
dc.description.abstractThe killer-cell immunoglobulin-like receptor (KIR) gene complex is among the most polymorphic and structurally complex regions of the human genome, controlling key aspects of natural killer (NK) cell function. Despite the established importance of KIR diversity in infection outcomes, cancer progression, and transplant compatibility, systematic high-resolution genotyping of the KIR region has long been hindered by technical challenges. In this study, I leverage high-fidelity haplotype-resolved genome assemblies from the Human Pangenome Reference Consortium (HPRC) to comprehensively map KIR variation in 47 diverse individuals (94 haplotypes).
To accomplish this, I developed and applied the Structural KIR annoTator (SKIRT) pipeline, which aligns complete KIR allele sequences from the IPD-KIR database to assembled genome contigs, resolving gene-level copy number, allele-level differences, and structural rearrangements. Through an extensive bioinformatic and laboratory validation process—including PCR with sequence-specific primers (PCR-SSP), quantitative PCR (qPCR), and Sanger sequencing of novel junctions—SKIRT achieved up to seven-digit allele resolution. The method revealed 570 novel KIR alleles, numerous copy number variants (CNVs), and unexpected gene fusions such as KIR2DS4/3DL1 and KIR2DL3/2DP1, underscoring the region’s capacity for generating new receptor configurations. Many of these newly discovered alleles harbor nonsynonymous substitutions or altered regulatory sequences, suggesting a potential impact on NK cell function.
Comparative analysis showed that SKIRT outperforms existing pipelines in structural variant detection and allele calling, setting a benchmark for KIR genotyping. These findings expand our fundamental understanding of human immune diversity and underscore how assembly-based approaches can illuminate genomic “dark regions.” From a clinical perspective, this enhanced knowledge of KIR haplotypes and allele-level variation paves the way for more precise immunogenetic research, including disease association studies and transplantation immunology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-03T16:08:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-03T16:08:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝辭 iii
中文摘要 v
Abstract vii
目次 ix
圖次 xi
表次 xii
Chapter 1 Introduction 1
1.1 Background and Significance of KIR in Immunity 1
1.2 Challenges in Resolving KIR Diversity 4
1.3 Motivation and the Potential of High-Resolution Data 8
1.4 Current KIR Genotyping Methods 10
1.5 Objectives and Aims 12
1.6 Overview of Foundational Work 16
Chapter 2 Materials and Methods 18
2.1 Data Collection and Resources 18
2.1.1 HPRC Genome Assemblies 18
2.1.2 Reference Data from the IPD-KIR Database 20
2.1.3 Experimental Result for Validation 20
2.2 Development and Implementation of the SKIRT Pipeline 21
2.2.1 Overview and Objectives 21
2.2.2 Data Preparation and Pipeline Implementation 26
2.2.3 Workflow 30
2.3 Experimental Validation 33
2.3.1 PCR-SSP 33
2.3.2 Quantitative Polymerase Chain Reaction (qPCR) 34
2.3.3 Sanger Sequencing 36
Chapter 3 Results 36
3.1 Overview of Findings 36
3.2 Novel Structural Variants in the KIR Locus 39
3.2.1 Novel Fusion Gene KIR2DS4/3DL1 40
3.2.2 Copy Number Variations (CNVs) 44
3.2.3 A Known Fusion Gene KIR2DL3/2DP1 49
3.3 Discovery of Novel KIR Alleles 55
3.4 Performance Evaluation and Comparison of SKIRT 60
Chapter 4 Discussion 67
4.1 Implications of Extensive KIR Diversity 67
4.2 Advances in Methodology and Genomic Analysis 72
4.3 Future Directions 74
Chapter 5 Conclusion 78
References 81
Appendix 95
-
dc.language.isoen-
dc.subject自然殺手細胞zh_TW
dc.subject免疫基因體zh_TW
dc.subject基因結構變異zh_TW
dc.subjectSKIRT分析zh_TW
dc.subject基因融合zh_TW
dc.subject拷貝數變異zh_TW
dc.subject泛基因體zh_TW
dc.subject自然殺手細胞類免疫球蛋白受體zh_TW
dc.subjectPangenomeen
dc.subjectKIRen
dc.subjectNatural Killer cellsen
dc.subjectImmunogeneomicsen
dc.subjectStructural variationen
dc.subjectSKIRTen
dc.subjectGene fusionen
dc.subjectCopy number variationen
dc.title自然殺手細胞類免疫球蛋白受體基因群的基因多樣性與結構複雜性:人類泛基因體組裝序列的詳盡分析zh_TW
dc.titleGenetic Diversity and Structural Complexity of the Killer-Cell Immunoglobulin-Like Receptor Gene Complex: A Comprehensive Analysis Using Human Pangenome Assembliesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee許書睿;楊雅倩;陳倩瑜;許家郎;張偉嶠zh_TW
dc.contributor.oralexamcommitteeJacob Shujui Hsu;Ya-Chien Yang;Chien-Yu Chen;Chia-Lang Hsu;Wei-Chiao Changen
dc.subject.keyword自然殺手細胞類免疫球蛋白受體,自然殺手細胞,免疫基因體,基因結構變異,SKIRT分析,基因融合,拷貝數變異,泛基因體,zh_TW
dc.subject.keywordKIR,Natural Killer cells,Immunogeneomics,Structural variation,SKIRT,Gene fusion,Copy number variation,Pangenome,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202500548-
dc.rights.note未授權-
dc.date.accepted2025-02-11-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
9.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved