Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97532
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊文淵zh_TW
dc.contributor.advisorWen-Yuan Yangen
dc.contributor.author洪佑承zh_TW
dc.contributor.authorYou-Chen Hungen
dc.date.accessioned2025-07-02T16:19:56Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-05-26-
dc.identifier.citationAbd El-Tawab, A., G. Hassb El-Naby, N. Mowaf, and M. Al-Khayat. 2020. Molecular studies on some factors of E. coli isolated from avian products and infants with diarrhea. Benha Veterinary Medical Journal 39:84-89.
Ahmed, H. A., R. M. El Bayomi, R. I. Hamed, R. A. Mohsen, F. A. El-Gohary, A. A. Hefny, E. Elkhawaga, and H. M. N. Tolba. 2022. Genetic relatedness, antibiotic resistance, and effect of silver nanoparticle on biofilm formation by Clostridium perfringens isolated from chickens, pigeons, camels, and human consumers. Vet. Sci. 9:109.
Alharbi, M. G., R. R. Al-Hindi, A. Esmael, I. A. Alotibi, S. A. Azhari, M. S. Alseghayer, and A. D. Teklemariam. 2022. The "Big Six": hidden emerging foodborne bacterial pathogens. Trop. Med. Infect. Dis. 7:356.
Alizadeh, M., B. Shojadoost, N. Boodhoo, J. Astill, K. Taha-Abdelaziz, D. C. Hodgins, R. R. Kulkarni, and S. Sharif. 2021. Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim. Health Res. Rev. 22:147-162.
Allocati, N., M. Masulli, M. F. Alexeyev, and C. Di Ilio. 2013. Escherichia coli in Europe: an overview. Int. J. Environ. Res. Public Health 10:6235-6254.
Alsaab, F., A. Wahdan, and E. M. A. Saeed. 2021. Phenotypic detection and genotyping of Clostridium perfringens associated with enterotoxemia in sheep in the Qassim region of Saudi Arabia. Vet. World 14:578-584
Amimoto, K., T. Noro, E. Oishi, and M. Shimizu. 2007. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology (Reading) 153:1198-1206.
Araujo, D., A. R. Silva, R. Fernandes, P. Serra, M. M. Barros, A. M. Campos, R. Oliveira, S. Silva, C. Almeida, and J. Castro. 2024. Emerging approaches for mitigating biofilm-formation-associated infections in farm, wild, and companion animals. Pathogens 13:320.
Barbara, A. J., H. T. Trinh, R. D. Glock, and J. Glenn Songer. 2008. Necrotic enteritis-producing strains of Clostridium perfringens displace non-necrotic enteritis strains from the gut of chicks. Vet. Microbiol. 126:377-382.
Barros, M. M., J. Castro, D. Araujo, A. M. Campos, R. Oliveira, S. Silva, D. Outor-Monteiro, and C. Almeida. 2023. Swine Colibacillosis: Global epidemiologic and antimicrobial scenario. Antibiotics (Basel) 12:682.

Bekal, S., A. Lin, A. Vincent, C. Berry, M. Gilmour, E. Fournier, J. C. Cote, and C. Tremblay. 2015. Draft genome gequence of a necrotoxigenic Escherichia coli isolate. Genome. Announc. 3: e01152-15.
Bemis, D. A., L. M. Grupka, S. Liamthong, D. W. Folland, J. M. t. Sykes, and E. C. Ramsay. 2007. Clonal relatedness of Salmonella isolates associated with invasive infections in captive and wild-caught rattlesnakes. Vet. Microbiol. 120:300-307.
Bertolini, M., C. I. Schwertz, A. Vielmo, M. M. Piva, L. C. Bilhalva, S. P. Pavarini, D. Driemeier, and L. Sonne. 2021. Pathological and microbiological findings in fatal cases of salmonellosis in captive Bothrops snakes in southern Brazil. J. Comp. Pathol. 186:7-12.
Bridier, A., R. Briandet, V. Thomas, and F. Dubois-Brissonnet. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017-1032.
Cambre, R.C., Green, D.E., Smith, E.E., Montali. R.J., Bush. M. 1980. Salmonellosis and arizonosis in the reptile collection at the National Zoological Park. J. Am. Vet. Med. Assoc. 177:800-803.
Charlebois, A., M. Jacques, and M. Archambault. 2014. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front. Microbiol. 5:183.
Charlebois, A., M. Jacques, M. Boulianne, and M. Archambault. 2017. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol. 62:32-38.
Chen, C. Y., W. C. Chen, S. C. Chin, Y. H. Lai, K. C. Tung, C. S. Chiou, Y. M. Hsu, and C. C. Chang. 2010. Prevalence and antimicrobial susceptibility of Salmonellae isolates from reptiles in Taiwan. J. Vet. Diagn. Invest. 22:44-50.
Chen, J., and B. A. McClane. 2015. Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect. Immun. 83:2369-2381.
Chon, J. W., K. H. Seo, D. Bae, J. H. Park, S. Khan, and K. Sung. 2018. Prevalence, toxin gene profile, antibiotic resistance, and molecular characterization of Clostridium perfringens from diarrheic and non-diarrheic dogs in Korea. J. Vet. Sci. 19:368-374.
Coura, F. M., M. D. Freitas, J. Ribeiro, R. A. de Leme, C. de Souza, A. A. Alfieri, E. J. Facury Filho, A. U. de Carvalho, M. X. Silva, A. P. Lage, and M. B. Heinemann. 2015. Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd. Trop. Anim. Health Prod. 47:3-11.
Coursodon, C. F., R. D. Glock, K. L. Moore, K. K. Cooper, and J. G. Songer. 2012. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 18:117-121.
Dec, M., D. Stepien-Pysniak, K. Szczepaniak, B. Turchi, and R. Urban-Chmiel. 2022. Virulence profiles and antibiotic susceptibility of Escherichia coli strains from pet reptiles. Pathogens 11:127.
Derongs, L., C. Druilhe, C. Ziebal, C. Le Marechal, and A. M. Pourcher. 2020. Characterization of Clostridium Perfringens isolates collected from three agricultural biogas plants over a one-year period. Int. J. Environ. Res. Public Health 17:5450.
Desai, P. T., S. Porwollik, F. Long, P. Cheng, A. Wollam, V. Bhonagiri-Palsikar, K. Hallsworth-Pepin, S. W. Clifton, G. M. Weinstock, and M. McClelland. 2013. Evolutionary genomics of Salmonella enterica subspecies. mBio. 4:e00579-12.
Diniz, A. N., F. M. Coura, M. Rupnik, V. Adams, T. L. Stent, J. I. Rood, C. A. de Oliveira, Jr., F. C. F. Lobato, and R. O. S. Silva. 2018. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs. Anaerobe 49:58-62.
Divers, S. J., and S. J. Stahl. 2016. Mader's reptile and amphibian medicine and surgery. 3rd ed. Elsevier, Amsterdam, Nederland.
Dubreuil, J. D. 2019. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals. J. Microbiol. 57:541-549.
Dufresne, K., and F. Daigle. 2021. Identification of Crp as a novel regulator of the Std fimbrial expression in Salmonella. Microbiology (Reading) 167:001022.
El-Nady, H. H., M. I. Eissa, N. Z. Abou-Zeid, E. B. Abd-Elfatah, A. A. Shehata, and E. M. Fawzi. 2023. Colibacillosis in lambs and kids in Egypt: Prevalence, serogroups, antibiogram profile, virulence genes distribution and antimicrobial resistance genes. Open Vet. J. 13:1106-1115.
El-Saadony, M. T., H. M. Salem, A. M. El-Tahan, T. A. Abd El-Mageed, S. M. Soliman, A. F. Khafaga, A. A. Swelum, A. E. Ahmed, F. A. Alshammari, and M. E. Abd El-Hack. 2022. The control of poultry salmonellosis using organic agents: an updated overview. Poult. Sci. 101:101716.
Elsify, A., R. Tarabess, M. A. Nayel, A. Salama, M. Allaam, E. G. M. Abd, H. Hassan, A. Zaghawa, and S. Elballal. 2016. Bacteriological and molecular studies on Clostridium perfringens isolated from sheep in three Egyptian provinces. Afr. J. Microbiol. Res. 10:725-732.

Feng, H., K. Wu, Y. Yuan, M. Fang, J. Wang, R. Li, R. Zhang, X. Wang, D. Ye, and Z. Yang. 2024. Genomic analysis of Clostridium perfringens type D isolates from goat farms. Vet. Microbiol. 294:110105.

Ferrarezi, M. C., T. C. Cardoso, and I. S. Dutra. 2008. Genotyping of Clostridium perfringens isolated from calves with neonatal diarrhea. Anaerobe 14:328-331.
Franco, A., R. S. Hendriksen, S. Lorenzetti, R. Onorati, G. Gentile, G. Dell'Omo, F. M. Aarestrup, and A. Battisti. 2011. Characterization of Salmonella occurring at high prevalence in a population of the land iguana Conolophus subcristatus in Galapagos islands, Ecuador. PLoS One 6:e23147.
Fratamico, P. M., C. DebRoy, Y. Liu, D. S. Needleman, G. M. Baranzoni, and P. Feng. 2016. Advances in molecular serotyping and subtyping of Escherichia coli. Front. Microbiol. 7:644.
Freedman, J. C., A. Shrestha, and B. A. McClane. 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel) 8:73.
Gole, V. C., K. K. Chousalkar, and J. R. Roberts. 2013. Survey of Enterobacteriaceae contamination of table eggs collected from layer flocks in Australia. Int. J. Food Microbiol. 164:161-165.
Goo, D., I. Park, H. Nam, Y. Lee, J. Sawall, A. H. Smith, T. G. Rehberger, C. Li, and H. S. Lillehoj. 2023. Collagen adhesin protein and necrotic enteritis B-like toxin as biomarkers for early diagnosis of necrotic enteritis in commercial broiler chickens. Poult. Sci. 102:102647.
Grupka, L. M., E. C. Ramsay, and D. A. Bemis. 2006. Salmonella surveillance in a collection of rattlesnakes (Crotalus spp.). J. Zoo Wildl. Med. 37:306-312.
Guttenberg, G., S. Hornei, T. Jank, C. Schwan, W. Lu, O. Einsle, P. Papatheodorou, and K. Aktories. 2012. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J. Biol. Chem. 287:24929-24940.
Haralambie, M. G., A. Țărnă, A. Coroian, A. M. C. Imbrea, I. Balta, L. Ștef, N. Corcionivoschi. A short overview of Clostridium perfringens: Relevancy, toxinotypes, clinicalimpacts, and the challenges of biofilm formation. Scientific papers animal science and biotechnologies 57:70.
Harris, R., K. Sankar, J. A. Small, R. Suepaul, A. Stewart-Johnson, and A. Adesiyun. 2012. Prevalence and characteristics of enteric pathogens detected in diarrhoeic and non-diarrhoeic foals in Trinidad. Vet. Med. Int. 2012:724959.
Hitsumoto, Y., N. Morita, R. Yamazoe, M. Tagomori, T. Yamasaki, and S. Katayama. 2014. Adhesive properties of Clostridium perfringens to extracellular matrix proteins collagens and fibronectin. Anaerobe 25:67-71.
Hussain, K. 2018. Molecular Characterization of Clostridium perfringens toxino-types and type ‘D’ multidrug resistance profile in diarrheic sheep. Pakistan Veterinary Journal 38:271-275.
Husta, M., R. Ducatelle, F. Haesebrouck, F. Van Immerseel, and E. Goossens. 2020. A comparative study on the use of selective media for the enumeration of Clostridium perfringens in poultry faeces. Anaerobe 63:102205.
Ingle, D. J., M. Valcanis, A. Kuzevski, M. Tauschek, M. Inouye, T. Stinear, M. M. Levine, R. M. Robins-Browne, and K. E. Holt. 2016. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb. Genom. 2:e000064.
Jacobson, E. R. and M. M. Garner. 2021. Infectious diseases and pathology of reptiles. 2nd ed. CRC Press, Florida, United States.
Jajere, S. M. 2019. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 12:504-521.
Jakubovics, N. S., R. C. Shields, N. Rajarajan, and J. G. Burgess. 2013. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett. Appl. Microbiol. 57:467-475.
Ji, B. W., R. U. Sheth, P. D. Dixit, K. Tchourine, and D. Vitkup. 2020. Macroecological dynamics of gut microbiota. Nat. Microbiol. 5:768-775.
Johansson, A., A. Aspan, M. Kaldhusdal, and B. E. Engstrom. 2010. Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis. Vet. Microbiol. 144:87-92.
Kathayat, D., D. Lokesh, S. Ranjit, and G. Rajashekara. 2021. Avian pathogenic Escherichia coli (APEC): An overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens 10:467.
Keyburn, A. L., T. L. Bannam, R. J. Moore, and J. I. Rood. 2010. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins (Basel) 2:1913-1927.
Keyburn, A. L., J. D. Boyce, P. Vaz, T. L. Bannam, M. E. Ford, D. Parker, A. Di Rubbo, J. I. Rood, and R. J. Moore. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 4:e26.
Keyburn, A. L., S. A. Sheedy, M. E. Ford, M. M. Williamson, M. M. Awad, J. I. Rood, and R. J. Moore. 2006. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect. Immun. 74:6496-6500.
Kiu, R., J. Brown, H. Bedwell, C. Leclaire, S. Caim, D. Pickard, G. Dougan, R. A. Dixon, and L. J. Hall. 2019. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim. Microbiome. 1:12.
Kuroki, T., T. Ishihara, I. Furukawa, A. T. Okatani, and Y. Kato. 2013. Prevalence of Salmonella in wild snakes in Japan. Jpn. J. Infect. Dis. 66:295-298.
Lam, K. K., P. Crow, K. H. Ng, K. C. Shek, H. T. Fung, G. Ades, A. Grioni, K. S. Tan, K. T. Yip, D. C. Lung, T. L. Que, T. S. Lam, I. D. Simpson, K. L. Tsui, and C. W. Kam. 2011. A cross-sectional survey of snake oral bacterial flora from Hong Kong, SAR, China. Emerg. Med. J. 28:107-114.
Lamberski, N., K. Seurynck, C. Gregory, T. A. Moore, C. S. Pfaff, and R. Hines. 2002. Recovery of a pathogenic Salmonella arizona from four snakes at the riverbanks zoo. J. Herpetol. Med. Surg. 12:17-22.
Lebrun, M., J. G. Mainil, and A. Linden. 2010. Cattle enterotoxaemia and Clostridium perfringens: description, diagnosis and prophylaxis. Vet. Rec. 167:13-22.
Lee, K. W., and H. S. Lillehoj. 2021. Role of Clostridium perfringens necrotic enteritis B-like toxin in disease pathogenesis. Vaccines (Basel) 10:61.
Leininger, D. J., J. R. Roberson, and F. Elvinger. 2001. Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. J. Vet. Diagn. Invest. 13:273-275.
Lepp, D., S. Ojha, I. Mehdizadeh Gohari, B. Chakravarty, J. F. Prescott, and J. Gong. 2019. Immunization with subunits of a novel pilus produced by virulent Clostridium perfringens strains confers partial protection against necrotic enteritis in chickens. Vet. Microbiol. 230:7-13.
Lepp, D., Y. Zhou, S. Ojha, I. Mehdizadeh Gohari, J. Carere, C. Yang, J. F. Prescott, and J. Gong. 2021. Clostridium perfringens produces an adhesive pilus required for the pathogenesis of necrotic enteritis in poultry. J. Bacteriol. 203:e00578-20.
Li, J., and B. A. McClane. 2014. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease. Infect. Immun. 82:4620-4630.
Li, J., and B. A. McClane. 2018. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialyated host macromolecules (mucin) or Caco-2 cells. Infect. Immun. 86:e00547-17.
Li, J., M. A. Navarro, F. A. Uzal, and B. A. McClane. 2021. NanI sialidase contributes to the growth and adherence of Clostridium perfringens type F strain F4969 in the presence of adherent mucus. Infect. Immun. 89:e0025621.
Li, J., Y. Zhou, D. Yang, S. Zhang, Z. Sun, Y. Wang, S. Wang, and C. Wu. 2020. Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi, China. Vet. Microbiol. 252:108932.
Libby, S. J., M. Lesnick, P. Hasegawa, M. Kurth, C. Belcher, J. Fierer, and D. G. Guiney. 2002. Characterization of the spv locus in Salmonella enterica serovar Arizona. Infect. Immun. 70:3290-3294.
Llanco, L. A., V. Nakano, and M. J. Avila-Campos. 2015. Sialidase production and genetic diversity in Clostridium perfringens type A isolated from chicken with necrotic enteritis in Brazil. Curr. Microbiol. 70:330-337.
Lopez-Garrido, J., and J. Casadesus. 2012. Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PLoS One 7:e30499.
M de Freitas Pereira, R., H. S. de Oliveira Filho, C. D. JL, R. P. J. F, T. de Sousa Lima, K. Dos Santos, E. da Silva Pereira, N. Jeronimo da Silva, C. J. Bruno de Oliveira, J. Leal de Araujo, and F. de Souza Mendonca. 2024. Fibrinonecrotic enteritis and orchitis associated with Salmonella enterica subsp houtenae infection in a short-tailed boa (Boa constrictor amarali). J. Comp. Pathol. 209:1-5.
Magdesian, K. G., S. Barnum, and N. Pusterla. 2022. Fecal PCR testing for detection of Clostridium perfringens and Clostridioides difficile toxin genes and other pathogens in foals with diarrhea: 28 cases. J. Vet. Diagn. Invest. 34:396-401.
Mahamat Abdelrahim, A., N. Radomski, S. Delannoy, S. Djellal, M. Le Negrate, K. Hadjab, P. Fach, J. A. Hennekinne, M. Y. Mistou, and O. Firmesse. 2019. Large-scale genomic analyses and toxinotyping of Clostridium perfringens implicated in foodborne outbreaks in France. Front. Microbiol. 10:777.
McDevitt, R. M., J. D. Brooker, T. Acamovic, and N. H. C. Sparks. 2019. Necrotic enteritis; a continuing challenge for the poultry industry. Worlds Poult. Sci. J. 62:221-247.
Mehdizadeh Gohari, I., A. N. M, J. Li, A. Shrestha, F. Uzal, and A. M. B. 2021. Pathogenicity and virulence of Clostridium perfringens. Virulence 12:723-753.
Meletiadis, A., A. Romano, B. Moroni, M. R. Di Nicola, V. Montemurro, M. Pitti, M. Pezzolato, E. Bozzetta, S. Sciuto, and P. L. Acutis. 2024. A case of food-borne salmonellosis in a corn snake (Pantherophis guttatus) after a feeder mouse meal. Animals 14:1722.
Mignaqui, A. C., R. B. Marcellino, T. Ronco, J. S. Pappalardo, B. Nonnemann, K. Pedersen, and C. A. Robles. 2017. Isolation and molecular characterization of Clostridium perfringens from healthy Merino lambs in Patagonia region, Argentina. Anaerobe 43:35-38.
Milton, A. A. P., A. G. Momin, P. N. Gandhale, S. Das, S. Ghatak, G. B. Priya, D. M. Firake, K. Srinivas, K. M. Momin, Z. Hussain, and A. Sen. 2022. Prevalence, toxinotyping, antimicrobial susceptibility and biofilm-forming ability of Clostridium perfringens isolated from free-living rodents and shrews. Anaerobe 77:102618.
Minamoto, Y., N. Dhanani, M. E. Markel, J. M. Steiner, and J. S. Suchodolski. 2014. Prevalence of Clostridium perfringens, Clostridium perfringens enterotoxin and dysbiosis in fecal samples of dogs with diarrhea. Vet. Microbiol. 174:463-473.
Mitchell, M. A., and O. Diaz-Figueroa. 2005. Clinical reptile gastroenterology. Vet. Clin. North Am. Exot. Anim. Pract. 8:277-298.
Moustafa, S., I. Zakaria, A. Moustafa, R. AboSakaya, and A. Selim. 2022. Bacteriological and serological investigation of Clostridium perfringens in lambs. Sci. Rep. 12:19715.
Muylaert, A., M. Lebrun, J. N. Duprez, S. Labrozzo, H. Theys, B. Taminiau, and J. Mainil. 2010. Enterotoxaemia-like syndrome and Clostridium perfringens in veal calves. Vet. Rec. 167:64-65.
Nakadai, A., T. Kuroki, Y. Kato, R. Suzuki, S. Yamai, C. Yaginuma, R. Shiotani, A. Yamanouchi, and H. Hayashidani. 2005. Prevalence of Salmonella spp. in pet reptiles in Japan. J. Vet. Med. Sci. 67:97-101.
Nakano, M., E. Yamasaki, A. Ichinose, T. Shimohata, A. Takahashi, J. K. Akada, K. Nakamura, J. Moss, T. Hirayama, and H. Kurazono. 2012. Salmonella enterotoxin (Stn) regulates membrane composition and integrity. Dis. Model. Mech. 5:515-521.
Navarro, M. A., J. Li, B. A. McClane, E. Morrell, J. Beingesser, and F. A. Uzal. 2018. NanI sialidase is an important contributor to Clostridium perfringens type F strain F4969 intestinal colonization in mice. Infect. Immun. 86: e00462-18.
Nazki, S., S. A. Wani, R. Parveen, S. A. Ahangar, Z. A. Kashoo, S. Hamid, Z. A. Dar, T. A. Dar, and P. A. Dar. 2017. Isolation, molecular characterization and prevalence of Clostridium perfringens in sheep and goats of Kashmir Himalayas, India. Vet. World 10:1501-1507.
Nguyen, T. T., H. Vu-Khac, and T. D. Nguyen. 2020. Isolation and characterization of Clostridium perfringens strains isolated from ostriches (Struthio camelus) in Vietnam. Vet. World 13:1679-1684.
O'Toole, G. A. 2016. Classic spotlight: Plate counting you can count on. J. Bacteriol. 198:3127.
Okumura, K., H. I. Kawsar, T. Shimizu, T. Ohta, H. Hayashi, and T. Shimizu. 2005. Identification and characterization of a cell-wall anchored DNase gene in Clostridium perfringens. FEMS Microbiol. Lett. 242:281-285.
Owuamanam, C.M., S. A. Ameen, and R. A. M. Adedokun. 2012. Clinical case report on diarrhea caused by Escherichia coli in Horsfield’s tortoise (Testudo horsfieldi) at zoological garden, University of Ibadan, Nigeria. Glob. Vet. 9:717-719.
Pakbin, B., W. M. Bruck, and J. W. A. Rossen. 2021. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 22:9922.
Park, J. Y., S. Kim, J. Y. Oh, H. R. Kim, I. Jang, H. S. Lee, and Y. K. Kwon. 2015. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poult. Sci 94:1158-1164.
Pees, M., M. Brockmann, N. Steiner, and R. E. Marschang. 2023. Salmonella in reptiles: a review of occurrence, interactions, shedding and risk factors for human infections. Front. Cell Dev. Biol. 11:1251036.
Plews, P. I., M. C. Bromel, and I. A. Schipper. 1985. Characterization of the coliform and enteric bacilli in the environment of calves with colibacillosis. Appl. Environ. Microbiol. 49:949-954.
Praveen Kumar, N., N. Vinod Kumar, and A. Karthik. 2019. Molecular detection and characterization of Clostridium perfringens toxin genes causing necrotic enteritis in broiler chickens. Trop. Anim. Health Prod. 51:1559-1569.
Priya, G. B., R. K. Agrawal, A. A. P. Milton, M. Mishra, S. K. Mendiratta, R. K. Agarwal, A. Luke, B. R. Singh, and D. Kumar. 2018. Development and evaluation of isothermal amplification assay for the rapid and sensitive detection of Clostridium perfringens from chevon. Anaerobe 54:178-187.
Ramos, C. P., J. A. Santana, F. Morcatti Coura, R. G. C. Xavier, C. A. G. Leal, C. A. Oliveira Junior, M. B. Heinemann, A. P. Lage, F. C. F. Lobato, and R. O. S. Silva. 2019. Identification and characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile isolates from reptiles in Brazil. Biomed. Res. Int. 2019:9530732.
Ronco, T., M. Stegger, K. L. Ng, B. Lilje, U. Lyhs, P. S. Andersen, and K. Pedersen. 2017. Genome analysis of Clostridium perfringens isolates from healthy and necrotic enteritis infected chickens and turkeys. BMC Res. Notes 10:270.

Rood, J. I., V. Adams, J. Lacey, D. Lyras, B. A. McClane, S. B. Melville, R. J. Moore, M. R. Popoff, M. R. Sarker, J. G. Songer, F. A. Uzal, and F. Van Immerseel. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53:5-10.
Rwego, I. B., T. R. Gillespie, G. Isabirye-Basuta, and T. L. Goldberg. 2008. High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J. Clin. Microbiol. 46:3187-3191.
Schauer, R., G. V. Srinivasan, B. Coddeville, J. P. Zanetta, and Y. Guerardel. 2009. Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus. Carbohydr. Res. 344:1494-1500.
Selim, A. M., M. M. Elhaig, I. Zakaria, and A. Ali. 2017. Bacteriological and molecular studies of Clostridium perfringens infections in newly born calves. Trop. Anim. Health Prod. 49:201-205.
Shaikh, I. K., P. P. Dixit, B. S. Pawade, M. Potnis-Lele, and B. P. Kurhe. 2017. Assessment of cultivable oral bacterial flora from important venomous snakes of India and their antibiotic susceptibilities. Curr. Microbiol. 74:1278-1286.
Silva, R. O., R. L. Santos, P. S. Pires, L. C. Pereira, S. T. Pereira, M. C. Duarte, R. A. de Assis, and F. C. Lobato. 2013. Detection of toxins A/B and isolation of Clostridium difficile and Clostridium perfringens from dogs in Minas Gerais, Brazil. Braz. J. Microbiol. 44:133-137.
Smati, M., G. Magistro, S. Adiba, A. Wieser, B. Picard, S. Schubert, and E. Denamur. 2017. Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal pathogenic Escherichia coli. Int. J. Med. Microbiol. 307:44-56.
Sora, V. M., G. Meroni, P. A. Martino, A. Soggiu, L. Bonizzi, and A. Zecconi. 2021. Extraintestinal pathogenic Escherichia coli: virulence factors and antibiotic resistance. Pathogens 10:1355.
Stewart, J.S. 1990. Anaerobic bacterial infections in reptiles. J. Zoo Wildl. Med. 21:180-184.
Sulaiman, I. M., N. Miranda, and S. Simpson. 2021. MALDI-TOF mass spectrometry and 16S rRNA gene sequence analysis for the identification of foodborne Clostridium Spp. J. AOAC Int. 104:1381-1388.
Tang, H. L., Y. C. Lai, C. S. Chiou, P. Y. Liu, L. L. Weng, W. Hou, K. S. Cheng, K. C. Tung, and M. C. Lu. 2015. Liver abscess caused by Klebsiella pneumoniae in a red-footed tortoise. J. Microbiol. Immunol. Infect. 48:347-349.

Tarhane, S., E. Bozkurt, and F. Buyuk. 2023. Investigation of Salmonella spp. and Escherichia coli in the snake-eyed lizard (Ophisops elegans) (Sauria, Lacertidae) in the Cankiri province of Turkey. Pol. J. Vet. Sci. 26:83-90.
Thi, T. N., H. Vu-Khac, and T. N. Duc. 2021. Characterisation of Clostridium perfringens isolated from chickens in Vietnam. Veterinární medicína 66:431-439.
Tian, S., C. Wang, Y. Li, X. Bao, Y. Zhang, and T. Tang. 2021. The Impact of SlyA on cell metabolism of Salmonella typhimurium: a joint study of transcriptomics and metabolomics. J. Proteome Res. 20:184-190.
Timbermont, L., A. Lanckriet, F. Pasmans, F. Haesebrouck, R. Ducatelle, and F. Van Immerseel. 2009. Intra-species growth-inhibition by Clostridium perfringens is a possible virulence trait in necrotic enteritis in broilers. Vet. Microbiol. 137:388-391.
Tomasiewicz, D. M., D. K. Hotchkiss, G. W. Reinbold, R. B. Read, Jr., and P. A. Hartman. 1980. The most suitable number of colonies on plates for counting (1). J. Food Prot. 43:282-286.
Udhayavel, S., G. Thippichettypalayam Ramasamy, V. Gowthaman, S. Malmarugan, and K. Senthilvel. 2017. Occurrence of Clostridium perfringens contamination in poultry feed ingredients: Isolation, identification and its antibiotic sensitivity pattern. Anim. Nutr. 3:309-312.
Van Damme, L., C. Callens, M. Dargatz, M. Flugel, S. Hark, F. Thiemann, S. Pelzer, R. Ducatelle, F. Van Immerseel, and E. Goossens. 2022. NanI sialidase contributes to toxin expression and host cell binding of Clostridium perfringens type G strain CP56 in vitro. Vet. Microbiol. 266:109371.
Vidal, A., G. E. Martin-Valls, M. Tello, E. Mateu, M. Martin, and L. Darwich. 2019. Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain. Vet. Microbiol. 237:108419.
Wade, B., A. L. Keyburn, V. Haring, M. Ford, J. I. Rood, and R. J. Moore. 2016. The adherent abilities of Clostridium perfringens strains are critical for the pathogenesis of avian necrotic enteritis. Vet. Microbiol. 197:53-61.
Wade, B., A. L. Keyburn, T. Seemann, J. I. Rood, and R. J. Moore. 2015. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens. Vet. Microbiol. 180:299-303.
Weese, J.S. and Henri, R. S. 2000. Diarrhea associated with enterotoxigenic Clostridium perfringens in a red-footed tortoise (Geochelone carbonaria). J. Zoo Wildl. Med. 31:265-266.
Wu, K., H. Feng, J. Ma, B. Wang, J. Feng, H. Zhang, Y. Jiang, R. Li, J. Wang, and Z. Yang. 2022. Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding modes from Gansu and Qinghai provinces, China. Anaerobe 73:102516.
Xiong, N., M. T. Brewer, T. A. Day, M. J. Kimber, A. E. Barnhill, and S. A. Carlson. 2010. Evaluation of the pathogenicity and virulence of three strains of Salmonella organisms in calves and pigs. Am. J. Vet. Res. 71:1170-1177.
Yanagimoto, K., and E. Haramoto. 2021. Isolation of alpha-toxin-deficient Clostridium perfringens type F from sewage influents and effluents. Microbiol. Spectr. 9:e0021421.
Yang, W. Y., C. H. Chou, and C. Wang. 2018. Characterization of toxin genes and quantitative analysis of netB in necrotic enteritis (NE)-producing and non-NE-producing Clostridium perfringens isolated from chickens. Anaerobe 54:115-120.
Zhang, B., J. Ren, D. Yang, S. Liu, and X. Gong. 2019. Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China. PeerJ 7:e6658.
Zhou, L., Y. Li, S. Gao, H. Yuan, L. Zuo, C. Wu, R. Huang, and S. Wu. 2021. Salmonella spvC gene inhibits autophagy of host cells and suppresses NLRP3 as well as NLRC4. Front. Immunol. 12:639019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97532-
dc.description.abstract臺灣人工養殖用作寵物的玉米蛇(Pantherophis guttatus)常見發生致死性的下痢,患病蛇隻出現下痢、水樣狀下痢、拒食、脫水等症狀,最終導致死亡。此病好發於孵化後六月齡內的玉米蛇,造成飼主醫療負擔,並引致養殖業者造成經濟損失。為探討人工飼養玉米蛇致死性下痢關連菌種,本研究前期蒐集四個田間發生場內蛇隻直腸拭子檢體,調查動物下痢及腸道發炎常見菌種與玉米蛇下痢之間的關聯性,每場採集正常與下痢蛇隻直腸拭子各10支進行菌種分離,比較正常與下痢蛇隻直腸菌種檢出率及菌落數的差異性,藉以找出差異菌種。後期調查納入另外8個下痢發生場內下痢與正常蛇隻前期差異菌種各8株,含前期四場共24株差異菌種進行該菌株毒力因子分析比較。前期直腸拭子菌種分離結果顯示,每場正常蛇隻均可分離出沙門氏菌(Salmonella spp.)、大腸桿菌(Escherichia coli)及產氣莢膜梭菌(Clostridium perfringens),場檢出率分別為100%(4/4)、100%(4/4)及100%(4/4),樣本檢出率為50%(20/40)、45%(18/40)及75%(30/40);下痢蛇隻沙門氏菌、大腸桿菌及產氣莢膜梭菌場檢出率依序為100%(4/4)、100%(4/4)及100%(4/4),樣本檢出率為30%(12/40)、37.5%(15/40)及100%(40/40),統計分析發現三個標的菌種於正常與下痢蛇隻場檢出率雖無統計差異,下痢蛇隻直腸中產氣莢膜梭菌樣本檢出率與樣本分離菌量顯著高於正常蛇隻(p = 0.0007;p < 0.0001)。 後期由12個下痢發生場正常與下痢蛇隻各自分離的12株產氣莢膜梭菌(n=24)以聚合酶鏈鎖反應(polymerase chain reaction;PCR)進行毒素分型,共檢出A、B、D及G四種毒素型(toxinotype),A毒素型佔比最高(54.17%;16/24)。後以cadA、cna、nanI、netB及tpeL等5個毒力因子以即時定量聚合酶連鎖反應(real time PCR)進行基因攜帶數絕對定量分析比較,下痢蛇隻產氣莢膜梭菌的cadA基因攜帶量顯著低於正常蛇隻分離株(p=0.0343),cna、nanI、netB及tpeL等毒力基因攜帶數於兩者間則未有統計差異(cna, p=0.5927;nanI, p=0.1970;netB, p=0.7553;tpeL, p=0.3778)。綜上,下痢玉米蛇與正常蛇隻相比,直腸內具有顯著高量的產氣莢膜梭菌,並以A毒素型為主要菌型,直腸中產氣莢膜梭菌檢出率對玉米蛇是否下痢具有顯著影響。下痢蛇隻產氣莢膜梭菌中cadA基因攜帶量顯著低於正常蛇隻分離株,顯示cadA基因於該菌致病機制中可能扮演重要角色,值得就其功能性探究該基因攜帶量少是否有助菌株長期附著腸道,造成持續性的下痢結果。zh_TW
dc.description.abstractCorn snakes (Pantherophis guttatus) are commonly bred as exotic pets in Taiwan, where outbreaks of fatal diarrhea are frequently observed, particularly in juveniles less than six months of age. Affected snakes typically present with profuse watery diarrhea, anorexia, dehydration, and progressive deterioration, often culminating in death. These disease episodes impose medical costs on pet owners and result in economic losses for breeders. To identify bacterial pathogens associated with diarrhea in captive corn snakes, we conducted a two-phase investigation. In the initial phase, rectal swab samples were collected from four affected captive facilities, including 10 clinically healthy and 10 diarrheic snakes from each facility (n = 80). Bacterial cultures were performed to isolate and identify common enteric pathogens. Salmonella spp., Escherichia coli, and Clostridium perfringens were isolated from all facilities, with farm-level detection rates of 100% (4/4) for each species. At the individual level, C. perfringens was significantly more frequently detected in diarrheic snakes than in healthy ones (100% vs. 75%; p = 0.0007), with markedly higher bacterial loads (p < 0.0001). No significant differences were observed for Salmonella spp. or E. coli detection rates between groups. In the second phase, a total of 24 C. perfringens isolates—12 from healthy snakes and 12 from diarrheic snakes across 12 facilities—were subjected to toxinotyping by PCR. Four toxinotypes (A, B, D, and G) were identified, with type A being predominant (54.17%; 16/24). Quantitative real-time PCR was subsequently used to assess the absolute copy numbers of five virulence-associated genes (cadA, cna, nanI, netB, and tpeL). Among these, the cadA gene copy number was significantly lower in isolates from diarrheic snakes compared to those from healthy individuals (p = 0.0343), while no significant differences were observed for the remaining genes. Collectively, our findings indicate that C. perfringens, particularly toxinotype A, is strongly associated with diarrhea in captive corn snakes. The elevated prevalence and bacterial load of C. perfringens in diarrheic individuals suggest a potential pathogenic role. Furthermore, the lower cadA gene copy number in isolates from diarrheic snakes may reflect an adaptive mechanism facilitating prolonged intestinal colonization and chronic disease, warranting further functional studies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:19:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:19:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書...i
誌謝...ii
中文摘要...iii
英文摘要...iv
目次...v
表次...viii
圖次...xi
第一章 緒言...1
第二章 文獻回顧...3
第一節 爬蟲類消化道疾病與關連病原...3
第二節 沙門氏菌於爬蟲類消化道疾病的盛行情形...4
第三節 大腸桿菌於爬蟲類消化道疾病的盛行情形...6
第四節 產氣莢膜梭菌於爬蟲類消化道疾病的盛行情形...8
第五節 毒力因子與致病相關性研究...10
第三章 材料與方法...13
第一節 樣本採集...13
第二節 培養基製備...15
3.2.1 沙門氏菌培養基...15
3.2.2 大腸桿菌培養基...15
3.2.3 產氣莢膜梭菌培養基...16
第三節 病原菌分離培養、鑑定與計數...18
3.3.1 沙門氏菌...18
3.3.2 大腸桿菌...18
3.3.3 產氣莢膜梭菌...18
第四節 產氣莢膜梭菌分子鑑定與毒素分型...20
3.4.1 細菌樣本DNA萃取...20
3.4.2 聚合酶鏈鎖反應(PCR)...20
第五節 毒力因子分析...22
3.5.1 毒力基因載體DNA製備與轉型...22
3.5.2 質體DNA萃取...22
3.5.3 標準曲線建立...23
3.5.4 即時定量聚合酶鏈鎖反應(qPCR)...23
3.5.5 毒力因子絕對定量...24
第六節 統計分析...25
第四章 結果...26
第一節 正常與下痢蛇隻直腸沙門氏菌、大腸桿菌及產氣莢膜梭菌檢出率差異分析...26
第二節 正常與下痢蛇隻直腸沙門氏菌、大腸桿菌及產氣莢膜梭菌菌量差異分析...27
第三節 產氣莢膜梭菌分離株毒素分型...28
第四節 正常與下痢蛇隻產氣莢膜梭菌分離株毒力基因攜帶量差異分析...29
第五章 討論...30
第一節 玉米蛇下痢關連菌種探討...30
第二節 下痢蛇隻產氣莢膜梭菌分離株毒素型探討...32
第三節 下痢蛇隻產氣莢膜梭菌分離株毒力因子分析...33
第六章 結論...39
參考文獻...40

表次
Table 1. Reference strains of C. perfringens used as positive control groups for toxinotyping...52
Table 2. Primers used for C. perfringens toxinotyping...53
Table 3. Primers used for amplifying virulence genes in qPCR...54
Table 4. Bacterial detection rates of Salmonella spp., Escherichia coli and C. perfringens in the samples from corn snake farms...55
Table 5. Bacterial colony counts of swab samples collected from corn snakes in Farm 1...56
Table 6. Bacterial colony counts of swab samples collected from corn snakes in Farm 2...57
Table 7. Bacterial colony counts of swab samples collected from corn snakes in Farm 3...58
Table 8. Bacterial colony counts of swab samples collected from corn snakes in Farm 4...59
Table 9. Comparisons of log10 tranformed bacterial cell counts (CFU/mL) in swab samples between normal and diarrhea group...60
Table 10. Gene carriage and toxinotyping of C. perfringens isolates from normal and diseased corn snakes by PCR Toxinotyping of C. perfringens isolates from normal and diseased corn snakes...61
Table 11. Distribution of toxinotypes in 24 isolates of C. perfringens...62
Table 12. Virulence gene carriage rate in 24 isolates of C. perfringens...63
Table 13. Statistical comparison of virulence gene copies between C. perfringens isolates from normal and diarrhea corn snakes...64

圖次
Figure 1. Gel electrophoresis of 16S rRNA gene PCR products in C. perfringens isolates...65
Figure 2. Gel electrophoresis of cpa gene PCR products in C. perfringens isolates...65
Figure 3. Standard curve of cadA gene copies by qPCR...66
Figure 4. Standard curve of cna gene copies by qPCR...66
Figure 5. Standard curve of nanI gene copies by qPCR...67
Figure 6. Standard curve of netB gene copies by qPCR...67
Figure 7. Standard curve of tpeL gene copies by qPCR...68
Figure 8. Differential virulence gene copies between C. perfringens isolates from normal and diarrhea corn snakes...68
Supplementary data...69
-
dc.language.isozh_TW-
dc.subject致死性下痢zh_TW
dc.subjectA 毒素型zh_TW
dc.subjectcadA 毒力基因zh_TW
dc.subject玉米蛇zh_TW
dc.subject產氣莢膜梭菌zh_TW
dc.subjectcadA virulence geneen
dc.subjectCorn snakesen
dc.subjectfatal diarrheaen
dc.subjectClostridium perfringensen
dc.subjecttoxinotype Aen
dc.title人工飼養玉米蛇致死性下痢關連菌及其毒力因子研究zh_TW
dc.titleInvestigation of bacterial agent and its virulence factor associated with fatal diarrhea in captive corn snakes (Pantherophis guttatus)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee董光中;林志憲zh_TW
dc.contributor.oralexamcommitteeKwong-Chung Tung;Zi-Xian Linen
dc.subject.keyword玉米蛇,致死性下痢,產氣莢膜梭菌,cadA 毒力基因,A 毒素型,zh_TW
dc.subject.keywordCorn snakes,fatal diarrhea,Clostridium perfringens,toxinotype A,cadA virulence gene,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202500975-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-05-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2025-07-03-
Appears in Collections:獸醫學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
2.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved