請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97526| 標題: | 單色k子棋 Monochromatic k in a row |
| 作者: | 古國翰 Kuo-Han Ku |
| 指導教授: | 戴尚年 Shagnik Das |
| 關鍵字: | k子棋,五子棋,位置遊戲,極值問題,Nikodym集合問題, k in a row,Five in a row,Gomoku,Positional Game,Extremal Problem,Nikodym set Problem, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 本篇論文將探討一種k子棋的變體(即單色k子棋):兩位玩家輪流在給定的棋盤上下棋,其中雙方玩家所使用的棋子沒有顏色差異。遊戲會在棋盤上產生了一條k子連線時結束,由下最後一子的玩家獲勝。和一般的k子棋不同,玩家不再需要佔領一整條k子連線;僅需佔領某條k子連線的最後一個空位即可。
本篇聚焦在此類遊戲的總步數估計。嚴格來說,是對最終棋盤上棋子(之於棋盤格數)的密度做估計。作為原始遊戲棋盤的延伸,平面網格(Z^2)和超立方體([k]^d)是本篇主要探討的兩種棋盤類型。 就最小密度而言,對於平面網格棋盤上的單色3子棋,我們有確切值:1/17。對於其他更大的k,其介在1-16/k-o(k^(-1))和1-8/k+o(k^(-1))之間。對於超立方體棋盤,最小密度大致為1-2d/k+2d(d-1)/(k^2)±O(k^(-3))。 就最大密度而言,我們仍有平面棋盤上單色3子棋的確切值:1/5。對於不是3的倍數的k,其等於1-2/k。對於剩餘的k,上下界非常相近,其值介於1-2/(k-1)和1-2/k之間。超立方體的則是1-2/k-O(k^(-2))。 We introduce a variant of k in a row: On a given board, each of players claims a position in turns until there is a k in a row among all claimed positions. The difference to the original k in a row is that, in this variant, a player no longer needs to claim a full k in a row by themself to win the game; instead, claiming the last remaining position of a k in a row is sufficient. We are curious about how long a game can last, or, equivalently, how dense a final board configuration can be. Likewise, we concern how sparse a configuration can be. We ask the same questions for various boards, say the infinite plane board and the hypercubes [k]^d for every d∈N. To answer it, we give bounds on the maximum and minimum densities configurations. Speaking minimum density, on the infinite plane board, we have the exact answer, 1/17, when k=3. For other k, the minimum density is between 1-16/k-o(k^(-1)) and 1-8/k+o(k^(-1)). On the hypercube [k]^d, it is around 1-2d/k+2d(d-1)/(k^2)±O(k^(-3)). Speaking maximum density, we still have the exact answer for the plane board when k=3, which is 1/5. For other k with 3∤k, it is exactly 1-2/k. For other multiple of 3, it is between 1-2/(k-1) and 1-2/k. On the hypercube, it is around 1-2/k-O(k^(-2)). |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97526 |
| DOI: | 10.6342/NTU202501210 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2025-07-03 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
