Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97519
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author黃郁涵zh_TW
dc.contributor.authorYu-Han Huangen
dc.date.accessioned2025-07-02T16:16:04Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-25-
dc.identifier.citation[1] Wallace, Philip Richard. "The band theory of graphite." Physical review 71.9 (1947): 622.
[2] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." Science 306.5696 (2004): 666-669.
[3] Novoselov, Kostya S., et al. "Two-dimensional atomic crystals." Proceedings of the National Academy of Sciences 102.30 (2005): 10451-10453.
[4] Nakano, Hideyuki, et al. "Soft synthesis of single‐crystal silicon mono-layer sheets." Angewandte Chemie International Edition 45.38 (2006): 6303-6306.
[5] Pacile, Daniela, et al. "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes." Applied Physics Letters 92.13 (2008).
[6] Terrones, Mauricio, et al. "Pure and doped boron nitride nanotubes." Materials today 10.5 (2007): 30-38.
[7] Bourlinos, Athanasios B., et al. "Liquid‐phase exfoliation of graphite towards solubilized graphenes." Small 5.16 (2009): 1841-1845.
[8] Coleman, Jonathan N., et al. "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science 331.6017 (2011): 568-571.
[9] Cunningham, Graeme, et al. "Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds." ACS nano 6.4 (2012): 3468-3480.
[10] Zeng, Zhiyuan, et al. "Single-layer semiconducting nanosheets: high-yield preparation and device fabrication." Angewandte Chemie-International Edition 50.47 (2011): 11093-11097.
[11] Zhao, Weijie, et al. "Evolution of electronic structure in atomically thin sheets of WS2 and WSe2." ACS nano 7.1 (2013): 791-797.
[12] Fang, Hui, et al. "High-performance single layered WSe2 p-FETs with chemically doped contacts." Nano letters 12.7 (2012): 3788-3792.
[13] Bianco, Elisabeth, et al. "Stability and exfoliation of germanane: a germanium graphane analogue." ACS nano 7.5 (2013): 4414-4421.
[14] Mashtalir, Olha, et al. "Intercalation and delamination of layered carbides and carbonitrides." Nature communications 4.1 (2013): 1716.
[15] Liu, Han, et al. "Phosphorene: an unexplored 2D semiconductor with a high hole mobility." ACS nano 8.4 (2014): 4033-4041.
[16] Li, Likai, et al. "Black phosphorus field-effect transistors." Nature nanotechnology 9.5 (2014): 372-377.
[17] Jiang, Y. C., et al. "Raman fingerprint for semi-metal WTe2 evolving from bulk to mono-layer." Scientific reports 6.1 (2016): 19624.
[18] Ares, Pablo, et al. "Mechanical isolation of highly stable antimonene under ambient conditions." arXiv preprint arXiv:1608.06859 (2016).
[19] Mañas-Valero, Samuel, et al. "Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers." Applied Sciences 6.9 (2016): 264.
[20] Huang, Bevin, et al. "Layer-dependent ferromagnetism in a van der Waals crystal down to the mono-layer limit." Nature 546.7657 (2017): 270-273.
[21] Ranjan, Pranay, et al. "Freestanding borophene and its hybrids." Advanced Materials 31.27 (2019): 1900353.
[22] Huang, Yuan, et al. "Universal mechanical exfoliation of large-area 2D crystals." Nature communications 11.1 (2020): 2453.
[23] Su, Sheng-Kai, et al. "Layered semiconducting 2D materials for future transistor applications." Small Structures 2.5 (2021): 2000103.
[24] Liu, Yuan, et al. "Promises and prospects of two-dimensional transistors." Nature 591.7848 (2021): 43-53.
[25] Iannaccone, Giuseppe, et al. "Quantum engineering of transistors based on 2D materials heterostructures." Nature nanotechnology13.3 (2018): 183-191.
[26] Long, Mingsheng, et al. "Progress, challenges, and opportunities for 2D material based photodetectors." Advanced Functional Materials 29.19 (2019): 1803807.
[27] Dong, Tao, et al."Flexible photodetector based on 2D materials: processing, architectures, and applications."Advanced Materials Interfaces 7.4 (2020): 1901657.
[28] Qiu, Qinxi, et al. "Photodetectors of 2D materials from ultraviolet to terahertz waves." Advanced Materials 33.15 (2021): 2008126.
[29] Withers, Freddie, et al. "Light-emitting diodes by band-structure engineering in van der Waals heterostructures." Nature materials 14.3 (2015): 301-306.
[30] Ricciardulli, Antonio Gaetano, et al. "Solution‐processable 2D materials applied in light‐emitting diodes and solar cells." Advanced Materials Technologies 5.8 (2020): 1900972.
[31] Sheng, Yuewen, et al. "High-performance WS2 mono-layer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition." ACS nano 13.4 (2019): 4530-4537.
[32] Britnell, Liam, et al. "Strong light-matter interactions in heterostructures of atomically thin films." Science 340.6138 (2013): 1311-1314.
[33] Palummo, Maurizia, Marco Bernardi, and Jeffrey C. Grossman. "Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides." Nano letters 15.5 (2015): 2794-2800.
[34] Li, Qiang, et al. "Engineering optical absorption in graphene and other 2D materials: advances and applications." Advanced Optical Materials 7.20 (2019): 1900595.
[35] Gupta, Sunny, et al. "In pursuit of 2D materials for maximum optical response." ACS nano 12.11 (2018): 10880-10889.
[36] Conley, Hiram J., et al. "Bandgap engineering of strained mono-layer and bilayer MoS2." Nano letters 13.8 (2013): 3626-3630.
[37] Li, Xinming, et al. "Graphene-on-silicon Schottky junction solar cells." Advanced Materials (Weinheim) 22 (2010).
[38] He, Yu-Ming, et al. "Single quantum emitters in mono-layer semiconductors." Nature nanotechnology 10.6 (2015): 497-502.
[39] Goossens, Stijn, et al. "Broadband image sensor array based on graphene–CMOS integration." Nature Photonics 11.6 (2017): 366-371.
[40] Mennel, Lukas, et al. "Ultrafast machine vision with 2D material neural network image sensors." Nature 579.7797 (2020): 62-66.
[41] Shin, Jiho, et al. "Vertical full-colour micro-LEDs via 2D materials-based layer transfer." Nature 614.7946 (2023): 81-87.
[42] Wang, Chong, et al. "The optical properties and plasmonics of anisotropic 2D materials." Advanced Optical Materials 8.5 (2020): 1900996.
[43] Arezoomandan, Sara, et al. "Tunable terahertz metamaterials employing layered 2-D materials beyond graphene." IEEE Journal of Selected Topics in Quantum Electronics 23.1 (2016): 188-194.
[44] Sun, Zhipei, Amos Martinez, and Feng Wang. "Optical modulators with 2D layered materials." Nature Photonics 10.4 (2016): 227-238.
[45] Zhou, Linlin, et al. "Nonlinear optical characterization of 2D materials." Nanomaterials 10.11 (2020): 2263.
[46] Mounet, Nicolas, et al. "Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds." Nature nanotechnology 13.3 (2018): 246-252.
[47] Kang, Jiahao, et al. "Graphene and beyond-graphene 2D crystals for next-generation green electronics." Micro-and Nanotechnology Sensors, Systems, and Applications VI. Vol. 9083. SPIE, 2014.
[48] Wang, Hong, et al. "High-quality mono-layer superconductor NbSe2 grown by chemical vapour deposition." Nature communications 8.1 (2017): 394.
[49] Li, Lu, et al. "Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces." Nature physics 7.10 (2011): 762-766.
[50] Island, Joshua O., et al. "Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties." Scientific reports 6.1 (2016): 22214.
[51] Sipos, Balazs, et al. "From Mott state to superconductivity in 1T-TaS2." Nature materials 7.12 (2008): 960-965.
[52] Kim, Kinam, et al. "A role for graphene in silicon-based semiconductor devices." Nature 479.7373 (2011): 338-344.
[53] Martin, Jens, et al. "Observation of electron–hole puddles in graphene using a scanning single-electron transistor." Nature physics 4.2 (2008): 144-148.
[54] Zhu, Yu, et al. "Rational design of hybrid graphene films for high-performance transparent electrodes." ACS nano 5.8 (2011): 6472-6479.
[55] Liu, Chang-Hua, et al. "Graphene photodetectors with ultra-broadband and high responsivity at room temperature." Nature nanotechnology 9.4 (2014): 273-278.
[56] Wang, Ze-gao, et al. "Flexible graphene-based electroluminescent devices." ACS nano 5.9 (2011): 7149-7154.
[57] Si, Chen, Jian Zhou, and Zhimei Sun. "Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals." ACS applied materials & interfaces 7.31 (2015): 17510-17515.
[58] Žutić, Igor, Jaroslav Fabian, and S. Das Sarma. "Spintronics: Fundamentals and applications." Reviews of modern physics 76.2 (2004): 323.
[59] Ashton, Michael, et al. "Two-dimensional intrinsic half-metals with large spin gaps." Nano Letters 17.9 (2017): 5251-5257.
[60] Lemme, Max C., et al. "2D materials for future heterogeneous electronics." Nature communications 13.1 (2022): 1392.
[61] Hong, Seokmo, et al. "Ultralow-dielectric-constant amorphous boron nitride." Nature 582.7813 (2020): 511-514.
[62] Petrone, Nicholas, et al. "Flexible 2D FETs using hBN dielectrics." 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
[63] Zhuang, Pingping, et al. "Nonpolar resistive switching of multi-layer‐hBN‐based memories." Advanced Electronic Materials 6.1 (2020): 1900979.
[64] Im, HoHyun, et al. "Capacitance–voltage characteristics of Pt/hBN/WSe2 metal–insulator–semiconductor capacitor doped by charge-transfer process." Applied Physics Letters 120.2 (2022).
[65] Midtvedt, Daniel, Caio H. Lewenkopf, and Alexander Croy. "Strain–displacement relations for strain engineering in single-layer 2d materials." 2D Materials 3.1 (2016): 011005.
[66] Yang, Gao, et al. "Structure of graphene and its disorders: a review." Science and technology of advanced materials 19.1 (2018): 613-648.
[67] Ekuma, C. E., V. Dobrosavljević, and D. Gunlycke. "First-principles-based method for electron localization: application to mono-layer hexagonal boron nitride." Physical Review Letters 118.10 (2017): 106404.
[68] Mortezaei Nobahari, Mohammad. "Electro-optical properties of strained mono-layer boron phosphide." Scientific Reports 13.1 (2023): 9849.
[69] Qin, Rui, et al. "Uniaxial strain-induced mechanical and electronic property modulation of silicene." Nanoscale research letters 9 (2014): 1-7.
[70] Ren, Ceng-Ceng, et al. "Tunable electronic and topological properties of germanene by functional group modification." Nanomaterials 8.3 (2018): 145.
[71] Lu, Pengfei, et al. "Quasiparticle and optical properties of strained stanene and stanane." Scientific reports 7.1 (2017): 3912.
[72] Dien, Vo Khuong, et al. "Electronic and optical properties of graphene, silicene, germanene, and their semi-hydrogenated systems." RSC advances 12.54 (2022): 34851-34865.
[73] Li, ShaoRong, et al. "First-principle study on the photoelectric properties of mono-layer h-BN under different strain types." Journal of Molecular Modeling 30.2 (2024): 56.
[74] Vu, Tuan V., et al. "Structural, elastic, and electronic properties of chemically functionalized boron phosphide mono-layer." RSC advances 11.15 (2021): 8552-8558.
[75] Xu, Yong, et al. "Large-gap quantum spin Hall insulators in tin films." Physical review letters 111.13 (2013): 136804.
[76] Gablech, Imrich, et al. "Monoelemental 2D materials-based field effect transistors for sensing and biosensing: phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene." TrAC Trends in Analytical Chemistry 105 (2018): 251-262.
[77] Miró, Pere, Martha Audiffred, and Thomas Heine. "An atlas of two-dimensional materials." Chemical Society Reviews 43.18 (2014): 6537-6554.
[78] D'Olimpio, Gianluca, et al. "Enhanced electrocatalytic activity in GaSe and InSe nanosheets: the role of surface oxides." Advanced Functional Materials 30.43 (2020): 2005466.
[79] Sarkar, Abdus Salam, et al. "Liquid exfoliation of electronic grade ultrathin tin (II) sulfide (SnS) with intriguing optical response." npj 2D Materials and Applications 4.1 (2020): 1.
[80] Gao, Anyuan, et al. "Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures." Nature nanotechnology 14.3 (2019): 217-222.
[81] Hu, Yi, et al. "2D arsenene and arsenic materials: Fundamental properties, preparation, and applications." Small 18.9 (2022): 2104556.
[82] Geim, Andre K., and Irina V. Grigorieva. "Van der Waals heterostructures." Nature 499.7459 (2013): 419-425.
[83] Chaves, A., et al. "Bandgap engineering of two-dimensional semiconductor materials." npj 2D Materials and Applications 4.1 (2020): 29.
[84] Novoselov, K. S, et al. "2D materials and van der Waals heterostructures." Science 353.6298 (2016): aac9439.
[85] Liang, Shi‐Jun, et al. "Van der Waals heterostructures for high‐performance device applications: challenges and opportunities." Advanced Materials 32.27 (2020): 1903800.
[86] Frisenda, Riccardo, et al. "Atomically thin p–n junctions based on two-dimensional materials." Chemical Society Reviews 47.9 (2018): 3339-3358.
[87] Huang, Xiaohe, et al. "2D semiconductors for specific electronic applications: from device to system." npj 2D Materials and Applications 6.1 (2022): 51.
[88] Duong, Dinh Loc, et al. "van der Waals layered materials: opportunities and challenges." ACS nano 11.12 (2017): 11803-11830.
[89] Tsai, Po-Cheng, et al. "Persistent charge storage and memory operation of top-gate transistors solely based on two-dimensional molybdenum disulfide." Nanotechnology 34.30 (2023): 305701.
[90] Chang, Che-Jia, et al. "Molybdenum Disulfide Transistors Bearing All-2D-Material Interfaces: Device Performance Optimization and Influences of Interfaces and Passivation Layers." ACS Applied Electronic Materials 5.11 (2023): 6384-6391.
[91] Kwon, Junyoung, et al. "Thickness-dependent Schottky barrier height of MoS2 field-effect transistors." Nanoscale 9.18 (2017): 6151-6157.
[92] Zou, Taoyu, et al. "Two-dimensional tunneling memtransistor with thin-film heterostructure for low-power logic-in-memory complementary metal-oxide semiconductor." ACS nano 18.21 (2024): 13849-13857.
[93] Castellanos-Gomez, Andres, et al. "Spatially resolved optical absorption spectroscopy of single-and few-layer MoS2 by hyperspectral imaging." Nanotechnology 27.11 (2016): 115705.
[94] Liu, Kai, et al. "Elastic properties of chemical-vapor-deposited mono-layer MoS2, WS2, and their bilayer heterostructures." Nano letters 14.9 (2014): 5097-5103.
[95] Shin, Gwang Hyuk, et al. "Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction." Nano letters 20.8 (2020): 5741-5748.
[96] Dhanabalan, Sathish Chander, et al. "Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials." Nanoscale 8.12 (2016): 6410-6434.
[97] Velusamy, Dhinesh Babu, et al. "Flexible transition metal dichalcogenide nanosheets for band-selective photodetection." Nature communications 6.1 (2015): 8063.
[98] Bhuyan, Md Sajibul Alam, et al. "Synthesis of graphene." International Nano Letters 6.2 (2016): 65-83.
[99] Zaretski, Aliaksandr V., et al. "Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates." Nanotechnology 26.4 (2015): 045301.
[100] Tao, Junguang, et al. "Growth of wafer-scale MoS2 mono-layer by magnetron sputtering." Nanoscale 7.6 (2015): 2497-2503.
[101] Orofeo, Carlo M., et al. "Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films." Applied Physics Letters 105.8 (2014).
[102] Johansson, Fredrik OL, et al. "Minimizing sputter-induced damage during deposition of WS2 onto graphene." Applied Physics Letters 110.9 (2017).
[103] Yang, Pengfei, et al. "Batch production of 6-inch uniform mono-layer molybdenum disulfide catalyzed by sodium in glass." Nature communications 9.1 (2018): 979.
[104] Cai, Zhengyang, et al. "Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures." Chemical reviews 118.13 (2018): 6091-6133.
[105] Li, Na, et al. "Atomic layer deposition of Al2O3 directly on 2D materials for high‐performance electronics." Advanced Materials Interfaces 6.10 (2019): 1802055.
[106] Mattinen, Miika, Markku Leskelä, and Mikko Ritala. "Atomic layer deposition of 2D metal dichalcogenides for electronics, catalysis, energy storage, and beyond." Advanced Materials Interfaces 8.6 (2021): 2001677.
[107] Kim, Hyun Gu, and Han-Bo-Ram Lee. "Atomic layer deposition on 2D materials." Chemistry of Materials 29.9 (2017): 3809-3826.
[108] Fu, Deyi, et al. "Molecular beam epitaxy of highly crystalline mono-layer molybdenum disulfide on hexagonal boron nitride." Journal of the American Chemical Society 139.27 (2017): 9392-9400.
[109] Cao, Wei, et al. "2-D layered materials for next-generation electronics: Opportunities and challenges." IEEE Transactions on Electron Devices 65.10 (2018): 4109-4121.
[110] Curry, John F., et al. "Impact of microstructure on MoS2 oxidation and friction." ACS applied materials & interfaces 9.33 (2017): 28019-28026.
[111] Yasaei, Poya, et al. "Stable and selective humidity sensing using stacked black phosphorus flakes." ACS nano 9.10 (2015): 9898-9905.
[112] Li, Qiang, et al. "Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies." Journal of Materials Chemistry A 7.9 (2019): 4291-4312.
[113] Wang, Guorui, et al. "Recent advances in the mechanics of 2D materials." International Journal of Extreme Manufacturing 5.3 (2023): 032002.
[114] Cui, Teng, et al. "Fatigue of graphene." Nature materials 19.4 (2020): 405-411.
[115] Liu, Ping, Qing-Xiang Pei, and Yong-Wei Zhang. "Low-cycle fatigue failure of MoS2 mono-layer." Extreme Mechanics Letters 58 (2023): 101942.
[116] Wang, Xuewen, Yinghui Sun, and Kai Liu. "Chemical and structural stability of 2D layered materials." 2D Materials 6.4 (2019): 042001.
[117] Nan, Hai Yan, et al. "The thermal stability of graphene in air investigated by Raman spectroscopy." Journal of Raman Spectroscopy 44.7 (2013): 1018-1021.
[118] Wang, Xuewen, et al. "Substrate modified thermal stability of mono-and few-layer MoS2." Nanoscale 10.7 (2018): 3540-3546.
[119] Wu, Sanfeng, et al. "Mono-layer semiconductor nanocavity lasers with ultralow thresholds." Nature 520.7545 (2015): 69-72.
[120] Yao, Baicheng, et al. "Gate-tunable frequency combs in graphene–nitride microresonators." Nature 558.7710 (2018): 410-414.
[121] Lee, Seung Hoon, et al. "Switching terahertz waves with gate-controlled active graphene metamaterials." Nature materials 11.11 (2012): 936-941.
[122] Vicarelli, L., et al. "Graphene field-effect transistors as room-temperature terahertz detectors." Nature materials 11.10 (2012): 865-871.
[123] Noori, Yasir J., et al. "Photonic crystals for enhanced light extraction from 2D materials." ACS Photonics 3.12 (2016): 2515-2520.
[124] Gonzalez Marin, Juan Francisco, et al. "MoS2 photodetectors integrated with photonic circuits." npj 2D Materials and Applications 3.1 (2019): 14.
[125] Watson, Adam J., et al. "Transfer of large scale two-dimensional semiconductors: challenges and developments." 2D Materials 8.3 (2021): 032001.
[126] Shen, Pin-Chun, et al. "Ultralow contact resistance between semimetal and mono-layer semiconductors." Nature 593.7858 (2021): 211-217.
[127] Chen, Kuan-Chao, et al. "Multi-layer elemental 2D materials: antimonene, germanene and stanene grown directly on molybdenum disulfides." Semiconductor Science and Technology 34.10 (2019): 105020.
[128] Chang, Che-Jia, et al. "High-performance transistors with polycrystalline 2D material channels: The influence of gold electrode crystallinity and the layer number of molybdenum disulfide channels." Applied Surface Science 693 (2025): 162795.
[129] Yuan, Jintao, et al. "Mono-layer WS2 nanosheets passivated with HfO2 for enhanced photodetectors." ACS Applied Nano Materials 6.6 (2023): 4594-4601.
[130] Cho, Ah-Jin, and Jang-Yeon Kwon. "Hexagonal boron nitride for surface passivation of two-dimensional van der Waals heterojunction solar cells." ACS Applied Materials & Interfaces 11.43 (2019): 39765-39771.
[131] Mercado, Elisha, et al. "Passivation of layered gallium telluride by double encapsulation with graphene." ACS omega 4.19 (2019): 18002-18010.
[132] Rowell, Michael W., and Michael D. McGehee. "Transparent electrode requirements for thin film solar cell modules." Energy & Environmental Science 4.1 (2011): 131-134.
[133] Park, Helen Hejin. "Transparent electrode techniques for semitransparent and tandem perovskite solar cells." Electronic Materials Letters 17 (2021): 18-32.
[134] Ali, Ahmad Hadi, Zainuriah Hassan, and Ahmad Shuhaimi. "Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si." Applied Surface Science 443 (2018): 544-547.
[135] Meng, Li-jian, and M. P. Dos Santos. "Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature." Thin solid films 322.1-2 (1998): 56-62.
[136] Kamioka, T., et al. "Analysis of interface workfunction and process-induced damage of reactive-plasma-deposited ITO/SiO2/Si stack." AIP Advances 7.9 (2017).
[137] Yu, Shihui, et al. "Preparation and investigation of nano-thick FTO/Ag/FTO multi-layer transparent electrodes with high figure of merit." Scientific reports 6.1 (2016): 20399.
[138] Theuring, Martin, et al. "AZO-Ag-AZO transparent electrode for amorphous silicon solar cells." Thin solid films 558 (2014): 294-297.
[139] Li, Xinming, et al. "Anomalous behaviors of graphene transparent conductors in graphene–silicon heterojunction solar cells." Advanced Energy Materials 3.8 (2013): 1029-1034.
[140] Hecht, David S., Liangbing Hu, and Glen Irvin. "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures." Advanced materials 23.13 (2011): 1482-1513.
[141] Lu, Xi, Yaokang Zhang, and Zijian Zheng. "Metal‐based flexible transparent electrodes: challenges and recent advances." Advanced Electronic Materials 7.5 (2021): 2001121.
[142] Zhang, Yaokang, et al. "Solution-processed transparent electrodes for emerging thin-film solar cells." Chemical reviews 120.4 (2020): 2049-2122.
[143] Chen, Yang, et al. "“Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness." Science China Chemistry 65.6 (2022): 1164-1172.
[144] Nair, Rahul Raveendran, et al. "Fine structure constant defines visual transparency of graphene." Science 320.5881 (2008): 1308-1308.
[145] Koh, Wee Shing, et al. "The potential of graphene as an ITO replacement in organic solar cells: An optical perspective." IEEE Journal of Selected topics in quantum electronics 20.1 (2013): 36-42.
[146] Suk, Ji Won, et al. "Transfer of CVD-grown mono-layer graphene onto arbitrary substrates." ACS nano 5.9 (2011): 6916-6924.
[147] Chen, Hsuan-An, et al. "Type-II superlattice infrared photodetectors with graphene transparent electrodes." IEEE Photonics Technology Letters 29.19 (2017): 1691-1694.
[148] You, Peng, et al. "Efficient semitransparent perovskite solar cells with graphene electrodes." Advanced Materials 27.24 (2015): 3632-3638.
[149] Bae, Sukang, et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578.
[150] Lim, Yi Rang, et al. "Roll‐to‐Roll production of layer‐controlled molybdenum disulfide: a platform for 2D semiconductor‐based industrial applications." Advanced Materials 30.5 (2018): 1705270.
[151] Wang, Rui, et al. "Prospects for metal halide perovskite-based tandem solar cells." Nature Photonics 15.6 (2021): 411-425.
[152] Okil, M., et al. "From crystalline to low-cost silicon-based solar cells: A review." Silicon 14.5 (2022): 1895-1911.
[153] Ferekides, C. S., et al. "CdTe thin film solar cells: device and technology issues." Solar energy 77.6 (2004): 823-830.
[154] Mufti, Nandang, et al. "Review of CIGS-based solar cells manufacturing by structural engineering." Solar energy 207 (2020): 1146-1157.
[155] Hanmandlu, Chintam, et al. "3D nanographene precursor suppress interfacial recombination in PEDOT: PSS based perovskite solar cells." Nano Energy 107 (2023): 108136.
[156] Muñoz-García, Ana Belén, et al. "Dye-sensitized solar cells strike back." Chemical Society Reviews 50.22 (2021): 12450-12550.
[157] Jošt, Marko, et al. "Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency." Advanced Energy Materials 10.26 (2020): 1904102.
[158] Das, Sonali, et al. "The role of graphene and other 2D materials in solar photovoltaics." Advanced Materials 31.1 (2019): 1802722.
[159] Al-Ashouri, Amran, et al. "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction." Science 370.6522 (2020): 1300-1309.
[160] Maragliano, Carlo, Ahmed Zayan, and Marco Stefancich. "Three-dimensional point-focus spectral splitting solar concentrator system." International Journal of Optics and Applications 4.4A (2014): 6-11.
[161] Dimroth, Frank, et al. "Four-junction wafer-bonded concentrator solar cells." IEEE Journal of Photovoltaics 6.1 (2015): 343-349.
[162] Green, M. A. et al., Solar Cell Efficiency Tables (version 62). National Renewable Energy Laboratory (NREL), Golden, CO (United States), (2023).
[163] Bellini, Emiliano. "KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell." Zugriff am (2023): 06-16.
[164] Went, Cora M., et al. "A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics." Science Advances 5.12 (2019): eaax6061.
[165] Bernardi, Marco, Maurizia Palummo, and Jeffrey C. Grossman. "Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional mono-layer materials." Nano letters 13.8 (2013): 3664-3670.
[166] Tsai, Meng-Lin, et al. "Mono-layer MoS2 heterojunction solar cells." ACS nano 8.8 (2014): 8317-8322.
[167] Huo, Nengjie, et al. "Novel and enhanced optoelectronic performances of multi-layer MoS2–WS2 heterostructure transistors." Advanced Functional Materials 24.44 (2014): 7025-7031.
[168] Deng, Yexin, et al. "Black phosphorus–mono-layer MoS2 van der Waals heterojunction p–n diode." ACS nano 8.8 (2014): 8292-8299.
[169] Flöry, Nikolaus, et al. "A WSe2/MoSe2 heterostructure photovoltaic device." Applied Physics Letters 107.12 (2015).
[170] Wang, Feng, et al. "Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance." Nano letters 15.11 (2015): 7558-7566.
[171] Pezeshki, Atiye, et al. "Electric and photovoltaic behavior of a few‐layer α‐MoTe2/MoS2 dichalcogenide heterojunction." Advanced Materials 28.16 (2016): 3216-3222.
[172] Song, Yi, et al. "Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells." Nano letters 15.3 (2015): 2104-2110.
[173] Dai, Ruina, et al. "Metal–organic‐compound‐modified MoS2 with enhanced solubility for high‐performance perovskite solar cells." ChemSusChem 10.14 (2017): 2869-2874.
[174] Pospischil, Andreas, et al. "CMOS-compatible graphene photodetector covering all optical communication bands." Nature Photonics 7.11 (2013): 892-896.
[175] Du, Pengfei, et al. "Single-photon detection approach for autonomous vehicles sensing." IEEE Transactions on Vehicular Technology 69.6 (2020): 6067-6078.
[176] Polat, Emre O., et al. "Flexible graphene photodetectors for wearable fitness monitoring." Science advances 5.9 (2019): eaaw7846.
[177] Saleem, Muhammad Imran, Aung Ko Ko Kyaw, and Jaehyun Hur. "Infrared Photodetectors: Recent Advances and Challenges Toward Innovation for Image Sensing Applications." Advanced Optical Materials 12.33 (2024): 2401625.
[178] Liu, Chaoyue, et al. "Silicon/2D-material photodetectors: from near-infrared to mid-infrared." Light: Science & Applications 10.1 (2021): 123.
[179] Nayak, Pabitra K., et al. "Photovoltaic solar cell technologies: analysing the state of the art." Nature Reviews Materials 4.4 (2019): 269-285.
[180] Yang, Wei, et al. "Silicon‐compatible photodetectors: trends to monolithically integrate photosensors with chip technology." Advanced Functional Materials 29.18 (2019): 1808182.
[181] Chow, Philip CY, and Takao Someya. "Organic photodetectors for next‐generation wearable electronics." Advanced Materials 32.15 (2020): 1902045.
[182] Fang, Hehai, and Weida Hu. "Photogating in low dimensional photodetectors." Advanced science 4.12 (2017): 1700323.
[183] Lu, Xiaowei, et al. "Progress of photodetectors based on the photothermoelectric effect." Advanced Materials 31.50 (2019): 1902044.
[184] Taha, Bakr Ahmed, et al. "Plasmonic-enabled nanostructures for designing the next generation of silicon photodetectors: trends, engineering and opportunities." Surfaces and Interfaces (2024): 104334.
[185] Chen, Guanyu, et al. "High‐Speed Photodetectors on Silicon Photonics Platform for Optical Interconnect." Laser & Photonics Reviews 16.12 (2022): 2200117.
[186] Guo, Ruiqi, et al. "Advances in colloidal quantum dot-based photodetectors." Journal of Materials Chemistry C 10.19 (2022): 7404-7422.
[187] Zhou, Wenjia, et al. "Solution-processed upconversion photodetectors based on quantum dots." Nature Electronics 3.5 (2020): 251-258.
[188] Yang, Ming, Hongxi Zhou, and Jun Wang. "Topological insulators photodetectors: Preparation, advances and application challenges." Materials Today Communications 33 (2022): 104190.
[189] Wu, Kewen, et al. "Research progress on topological material-based photodetectors." Materials Advances 4.21 (2023): 5018-5032.
[190] Zhang, Jiaxin, et al. "Recent advances and prospects for GaN-based hybrid type ultraviolet photodetector." Semiconductor Science and Technology (2024).
[191] Ahmadi, Mahshid, Ting Wu, and Bin Hu. "A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics." Advanced Materials 29.41 (2017): 1605242.
[192] Choi, Soo Ho, et al. "Large-scale synthesis of graphene and other 2D materials towards industrialization." Nature Communications 13.1 (2022): 1484.
[193] Pham, Phuong V., et al. "2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges." Chemical reviews 122.6 (2022): 6514-6613.
[194] Lee, Wi Hyoung, et al. "Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic." ACS Nano 6.2 (2012): 1284-1290.
[195] Kang, Sumin, et al. "Role of crack deflection on rate dependent mechanical transfer of multi-layer graphene and its application to transparent electrodes." ACS Applied Nano Materials 2.4 (2019): 1980-1985.
[196] Wang, Yu, et al. "Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst." ACS nano 5.12 (2011): 9927-9933.
[197] Gorantla, Sandeep, et al. "A universal transfer route for graphene." Nanoscale 6.2 (2014): 889-896.
[198] Jung, Wonsuk, et al. "Ultraconformal contact transfer of mono-layer graphene on metal to various substrates." Advanced Materials (Deerfield Beach, Fla.) 26.37 (2014): 6394-6400.
[199] Chen, Kuan-Chao, et al. "The atomic layer etching of molybdenum disulfides using low-power oxygen plasma." Semiconductor Science and Technology 34.4 (2019): 045007.
[200] Raman, Chandrasekhara Venkata. "A new radiation." Indian Journal of physics 2 (1928): 387-398.
[201] Oklopčić, Antonija, Christopher M. Hirata, and Kevin Heng. "Raman scattering by molecular hydrogen and nitrogen in exoplanetary atmospheres." The Astrophysical Journal 832.1 (2016): 30.
[202] Hwang, Dusun, et al. "Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering." Optics express 18.10 (2010): 9747-9754.
[203] Ottaviano, L., et al. "Mechanical exfoliation and layer number identification of MoS2 revisited." 2D Materials 4.4 (2017): 045013.
[204] Li, Xiao‐Li, et al. "Layer‐number dependent optical properties of 2D materials and their application for thickness determination." Advanced Functional Materials 27.19 (2017): 1604468.
[205] Aoki, Takeshi. "Photoluminescence spectroscopy." Characterization of Materials (2002): 1-12.
[206] Binnig, Gerd, Calvin F. Quate, and Ch Gerber. "Atomic force microscope." Physical review letters 56.9 (1986): 930.
[207] Rana, Md Sohel, Hemanshu Roy Pota, and Ian R. Petersen. "Improvement in the imaging performance of atomic force microscopy: A survey." IEEE Transactions on Automation Science and Engineering 14.2 (2016): 1265-1285.
[208] Qian, Wen-yuan. "First Electron Microscope Is Constructed." (1931).
[209] Williams, David B., et al. The transmission electron microscope. Springer Us, 2009.
[210] Weckhuysen, Bert M. "Ultraviolet-visible spectroscopy." (2004): 255-270.
[211] Schroder, Dieter K. Semiconductor material and device characterization. John Wiley & Sons, 2015.
[212] Valdes, Leopoldo B. "Resistivity measurements on germanium for transistors." Proceedings of the IRE 42.2 (2007): 420-427.
[213] Chelly, Avraham, et al. "Broad review of four-point probe correction factors: Enhanced analytical model using advanced numerical and experimental cross-examination." Results in Physics 48 (2023): 106445.
[214] Sennett, R. S., and G. D. Scott. "The structure of evaporated metal films and their optical properties." Journal of the Optical Society of America 40.4 (1950): 203-211.
[215] Fahland, M., P. Karlsson, and C. Charton. "Low resisitivity transparent electrodes for displays on polymer substrates." Thin Solid Films 392.2 (2001): 334-337.
[216] Yun, Jungheum. "Ultrathin metal films for transparent electrodes of flexible optoelectronic devices." Advanced Functional Materials 27.18 (2017): 1606641.
[217] Zhang, Cheng, et al. "Thin‐metal‐film‐based transparent conductors: Material preparation, optical design, and device applications." Advanced Optical Materials 9.3 (2021): 2001298.
[218] Zhang, Yu-Wei, et al. "Highly conductive nanometer-thick gold films grown on molybdenum disulfide surfaces for interconnect applications." Scientific reports 10.1 (2020): 14463.
[219] Chang, Che-Jia, et al. "Layered graphene growth directly on sapphire substrates for applications." ACS omega 7.15 (2022): 13128-13133.
[220] Liu, Yu-Wei, et al. "Nanometer-thick copper films with low resistivity grown on 2D material surfaces." Scientific reports 12.1 (2022): 1823.
[221] Chen, Kuan-Chao, et al. "Van der Waals Epitaxy of Large-Area and Single-Crystalline Gold Films on MoS2 for Low-Contact-Resistance 2D–3D Interfaces." ACS Applied Nano Materials 3.3 (2020): 2997-3003.
[222] Al-Kuhaili, M. F. "Enhancement of plasmonic transmittance of porous gold thin films via gold/metal oxide bi-layers for solar energy-saving applications." Solar Energy 181 (2019): 456-463.
[223] Garrod, Aydan, and Aritra Ghosh. "A review of bifacial solar photovoltaic applications." Frontiers in Energy 17.6 (2023): 704-726.
[224] Kumar, Prashant, Gyanendra Shankar, and Basudev Pradhan. "Recent progress in bifacial perovskite solar cells." Applied Physics A 129.1 (2023): 63.
[225] Agrawal, Anupam, et al. "Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell." Solar Energy 233 (2022): 378-407.
[226] Bartesaghi, Davide, et al. "Competition between recombination and extraction of free charges determines the fill factor of organic solar cells." Nature communications 6.1 (2015): 7083.
[227] Bernardi, Marco, and Jeffrey C. Grossman. "Computer calculations across time and length scales in photovoltaic solar cells." Energy & Environmental Science 9.7 (2016): 2197-2218.
[228] Armin, Ardalan, et al. "Quantum efficiency of organic solar cells: electro-optical cavity considerations." ACS Photonics 1.3 (2014): 173-181.
[229] Hashemi, Mahdieh, Narges Ansari, and Mahsa Vazayefi. "MoS2-based absorbers with whole visible spectrum coverage and high efficiency." Scientific reports 12.1 (2022): 6313.
[230] Lazanas, Alexandros Ch, and Mamas I. Prodromidis. "Electrochemical impedance spectroscopy─ a tutorial." ACS measurement science au 3.3 (2023): 162-193.
[231] Akkanen, Suvi‐Tuuli Marianne, Henry Alexander Fernandez, and Zhipei Sun. "Optical modification of 2D materials: Methods and applications." Advanced Materials 34.19 (2022): 2110152.
[232] Chen, Hsuan-An, et al. "Scalable MoS2/graphene heterostructures grown epitaxially on sapphire substrates for phototransistor applications." Semiconductor Science and Technology 33.2 (2018): 025007.
[233] Nguyen, Anh Thi, et al. "High‐Performance and Lithography‐Free Au/WS2/Ag Vertical Schottky Junction Solar Cells." Advanced Materials Interfaces 10.15 (2023): 2300031.
[234] Yoon, Jongwon, et al. "Highly flexible and transparent multi-layer MoS2 transistors with graphene electrodes." Small 9.19 (2013): 3295-3300.
[235] Qiu, Weicheng, et al. "Thickness-controlled growth of multi-layer graphene on Ni (111) using an approximate equilibrium segregation method for applications in spintronic devices." ACS Applied Nano Materials 6.6 (2023): 4236-4242.
[236] Liu, H. F., Swee Liang Wong, and D. Z. Chi. "CVD growth of MoS2‐based two‐dimensional materials." Chemical Vapor Deposition 21.10-11-12 (2015): 241-259.
[237] Zhou, Dong, et al. "Unveiling the growth mechanism of MoS2 with chemical vapor deposition: from two-dimensional planar nucleation to self-seeding nucleation." Crystal Growth & Design 18.2 (2018): 1012-1019.
[238] Wu, Chong-Rong, et al. "Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth." Nano letters 16.11 (2016): 7093-7097.
[239] Wu, Chong-Rong, et al. "The growth mechanism of transition metal dichalcogenides by using sulfurization of pre-deposited transition metals and the 2D crystal heterostructure establishment." Scientific reports 7.1 (2017): 42146.
[240] Chen, Kuan-Chao, et al. "Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal heterostructures." 2D Materials 4.3 (2017): 034001.
[241] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
[242] Xu, Xiangming, et al. "High‐performance mono-layer MoS2 films at the wafer scale by two‐step growth." Advanced Functional Materials 29.32 (2019): 1901070.
[243] Sathiyan, S., et al. "Evolution of the Polarizing Effect of MoS2." IEEE Photonics Journal 7.6 (2015): 1-10.
[244] Dong, Huina, et al. "High-yield preparation and electrochemical properties of few-layer MoS2 nanosheets by exfoliating natural molybdenite powders directly via a coupled ultrasonication-milling process." Nanoscale research letters 11 (2016): 1-14.
[245] Jeong, Yesul, et al. "Structural characterization and transistor properties of thickness-controllable MoS2 thin films." Journal of Materials Science 54 (2019): 7758-7767.
[246] Bang, Gyeong Sook, et al. "Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets." ACS applied materials & interfaces 6.10 (2014): 7084-7089.
[247] Wang, H. W., P. Skeldon, and G. E. Thompson. "XPS studies of formation from ammonium tetrathiomolybdate solutions." Surface and Coatings Technology 91.3 (1997): 200-207.
[248] Avigad, Eytan, and Lioz Etgar. "Studying the effect of MoO3 in hole-conductor-free perovskite solar cells." ACS Energy Letters 3.9 (2018): 2240-2245.
[249] McCreary, Kathleen M., et al. "The effect of preparation conditions on Raman and photoluminescence of mono-layer WS2." Scientific reports 6.1 (2016): 35154.
[250] Ferrari, Andrea C., and Denis M. Basko. "Raman spectroscopy as a versatile tool for studying the properties of graphene." Nature nanotechnology 8.4 (2013): 235-246.
[251] Tsai, Po-Cheng, et al. "The influence of contact metals on epitaxially grown molybdenum disulfide for electrical and optical device applications." Nanotechnology 33.50 (2022): 505205.
[252] Tsai, Po-Cheng, et al. "Charge Storage of Isolated Mono-layer Molybdenum Disulfide in Epitaxially Grown MoS2/Graphene Heterostructures for Memory Device Applications." ACS Applied Materials & Interfaces 13.38 (2021): 45864-45869.
[253] Baringhaus, Jens, et al. "Exceptional ballistic transport in epitaxial graphene nanoribbons." Nature 506.7488 (2014): 349-354.
[254] Wang, Haining, Changjian Zhang, and Farhan Rana. "Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2." Nano letters 15.12 (2015): 8204-8210.
[255] Tsai, Po-Cheng, et al. "In-plane gate graphene transistor with epitaxially grown molybdenum disulfide passivation layers." Scientific reports 13.1 (2023): 9197.
[256] Hossain, Md Mottaleb, et al. "Low-noise speed-optimized large area CMOS avalanche photodetector for visible light communication." Journal of Lightwave Technology 35.11 (2017): 2315-2324.
[257] Yi, Xin, et al. "Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes." Nature Photonics 13.10 (2019): 683-686.
[258] Wu, Dan, et al. "Recent progress of narrowband perovskite photodetectors: fundamental physics and strategies." Advanced Devices & Instrumentation 4 (2023): 0006.
[259] Dyck, Rudolph H., and Gene P. Weckler. "Integrated arrays of silicon photodetectors for image sensing." IEEE Transactions on Electron Devices 15.4 (1968): 196-201.
[260] Casalino, Maurizio, et al. "Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives." Sensors 10.12 (2010): 10571-10600.
[261] Li, Chao, et al. "Record-breaking-high-responsivity silicon photodetector at infrared 1.31 and 1.55 μm by argon doping technique." IEEE Transactions on Electron Devices 70.5 (2023): 2364-2369.
[262] Niu, Shouzhu, et al. "Brief review of epitaxy and emission properties of GaSb and related semiconductors." Crystals 7.11 (2017): 337.
[263] Plis, Elena A. "InAs/GaSb Type‐II Superlattice Detectors." Advances in Electronics 2014.1 (2014): 246769.
[264] Wu, Enping, et al. "In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared." ACS photonics 6.2 (2019): 565-572.
[265] Martyniuk, Piotr, et al. "Infrared avalanche photodiodes from bulk to 2D materials." Light: Science & Applications 12.1 (2023): 212.
[266] Ren, Zhenwei, et al. "Bilayer PbS quantum dots for high‐performance photodetectors." Advanced materials 29.33 (2017): 1702055.
[267] Du, Junli, et al. "Strain engineering in 2D material‐based flexible optoelectronics." Small Methods 5.1 (2021): 2000919.
[268] Liu, Jun, et al. "Reduction in thermal conductivity of mono-layer MoS2 by large mechanical strains for efficient thermal management." Scientific Reports 15.1 (2025): 1976.
[269] Lu, Ang‐Yu, et al. "Unraveling the Correlation between Raman and Photoluminescence in Mono-layer MoS2 through Machine‐Learning Models." Advanced Materials 34.34 (2022): 2202911.
[270] Shi, Wei, et al. "Raman and photoluminescence spectra of two-dimensional nanocrystallites of mono-layer WS2 and WSe2." 2D Materials 3.2 (2016): 025016.
[271] Li, Hai, et al. "Preparation and applications of mechanically exfoliated single-layer and multi-layer MoS2 and WSe2 nanosheets." Accounts of chemical research 47.4 (2014): 1067-1075.
[272] Deng, Wenjie, et al. "High detectivity from a lateral graphene–MoS2 Schottky photodetector grown by chemical vapor deposition." Advanced Electronic Materials 4.9 (2018): 1800069.
[273] Zhang, Wenjing, et al. "Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures." Scientific reports 4.1 (2014): 3826.
[274] Xu, Hua, et al. "High responsivity and gate tunable graphene‐MoS2 hybrid phototransistor." Small 10.11 (2014): 2300-2306.
[275] Roy, Kallol, et al. "Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices." Nature nanotechnology 8.11 (2013): 826-830.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97519-
dc.description.abstract本研究系統性的探討了二維材料於光學元件可能的應用,其中包括透明電極、垂直與橫向光電偵測器,以及柔性元件等。在透明導電電極的部分,我們使用單層二硫化鉬作為薄金與鈣鈦礦太陽能電池主動層間的介面層,透過二維材料表面的凡德瓦磊晶的幫助,< 10 nm 的薄金展現出良好的導電特性,以薄金/單層二硫化鉬作為透明導電電極,我們成功的製作出雙面鈣鈦礦太陽能電池。利用轉移單層二硫化鉬製備的雙面太陽能電池,在沉積 8 nm 薄金電極後達成 89.6% 的高雙面發電效率,其優異表現可歸因於薄金屬膜的高光學穿透率與良好匹配的二硫化鉬/金界面,有效抑制載子復合。在光偵測器的應用,我們透過高溫硫化非晶二硫化鉬薄膜,成功的成長出晶圓級多層二硫化鉬,其層數可達到 30 層,我們將所成長出的多層二硫化鉬薄膜應用於垂直型光伏與橫向型光導元件中,並探討其在不同結構下的光電特性。垂直元件採用簡單的金屬/半導體/金屬(金/二硫化鉬/鋁)架構,藉由上下電極的功函數差異觸發有效的光伏反應;橫向元件則結合多層二硫化鉬為光吸收層與石墨烯為載子傳輸層,實現高效的載子分離與高響應度,並進一步分析二硫化鉬吸光層的層數對於元件反應時間的影響,我們也透過不同的元件製作流程來最佳化橫向二維材料光偵測器的元件表現。最後,我們也將具不同吸光材料的石墨烯/過渡金屬硫族化物異質結構光電偵測器製作於可撓性基板上,得益於過渡金屬硫族化物層可調變的能隙與石墨烯高的載子遷移率,這些元件展現出偵測波長可調性、高響應度以及高偵測度的優異表現,相較於製作於剛性基板上的元件,製作於可撓性聚對苯二甲酸乙二酯基板上的元件依然維持 102-103 A/W 的高響應度,並展現出在機械彎曲條件下的穩定光電性能。特別是以二硫化鎢與二硒化鎢為吸光層的元件於不同彎曲狀態下僅顯示出極小的性能衰退,突顯其在柔性與穿戴式光子元件中之機械穩定性與整合潛力。綜合而言,本研究驗證了單層及多層二維材料於透明電極、光伏結構以及高性能光電偵測器等不同的潛在應用。其可擴展的材料堆疊順序及層數、優異的機械柔韌性、波長選擇性以及高光響應度等特性,皆奠定了其於新世代剛性與柔性光電元件應用中的發展潛力。zh_TW
dc.description.abstractIn this thesis, we have investigated the applications of 2D materials for optical devices including transparent electrodes, vertical and lateral photodetectors and flexible devices. On transparent electrodes, with the assist of van der Waals epitaxy on 2D material surfaces, thin and conductive gold (Au) film can be grown on mono-layer MoS2 surfaces. By using 8 nm Au/mono-layer MoS2 as transparent electrodes, bifacial perovskite solar cells with high bifaciality 89.6 % are fabricated. The good light transmittance of the Au/MoS2 electrode and the minimum carrier recombination in the thin mono-layer MoS2 layer are the key parameters resulting in the high performances of the device. Through the sulfurization of amorphous MoS2 films, wafer-scale and multi-layer MoS2 with layer numbers up to 30 can be grown on sapphire substrates. Based on the multi-layer MoS2, vertical photodetectors with photovoltaic responses and lateral photodetectors with high responsivities are fabricated. The vertical devices utilized a simple Au/MoS2/Al configuration, where the work function difference between the electrodes enabled efficient photovoltaic response. The lateral devices adopted a hybrid structure with multi-layer MoS2 as the light absorption layer and graphene as the carrier transport layer, enabling efficient carrier separation and high responsivities. We have also investigated the influence of MoS2 layer numbers to response times and optimized the device performances through different device fabrication procedures. By using different transition metal dichalcogenides (TMDs) such as WS2, MoS2 and WSe2, graphene/TMD heterostructure photodetectors are fabricated on PET substrates. The devices exhibit tunable detection wavelengths based on the bandgaps of different TMDs. Compared with the devices fabricated on rigid substrates, the flexible 2D material photodetectors exhibit high responsivities up to 102-103 A/W, which indicate their high endurance to mechanical deformations. Devices with WS2 and WSe2 light absorption layers exhibited minimal performance degradation under various bending conditions, indicating the mechanical robustness and integration potential of these heterostructures for flexible and wearable photonic applications. In conclusion, this study demonstrates the potential of 2D materials for optical device applications. Their scalable synthesis, easy stacking, and wavelength-tunable photo-response make 2D materials promising candidates for next-generation optical device applications on either rigid or flexible substrates.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:16:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:16:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures x
List of Tables xxiii
Chapter 1 Introduction 1
1.1 The Rise of 2D Materials in Optics 1
1.1.1 History and Evolution of 2D Materials 1
1.1.2 Potential Applications of 2D Materials in Optics 5
1.2 Fundamental Properties of 2D Materials 10
1.2.1 Classification of 2D Materials 10
1.2.2 Crystal Structure of 2D Materials 15
1.2.3 Combinations of 2D Materials and Their Applications 19
1.3 Challenges and Opportunities of 2D Materials Optical Devices 22
1.3.1 Challenges in the Synthesis of 2D Materials 22
1.3.2 Stability and Endurance of 2D Materials 25
1.3.3 Integration of 2D Materials in Device Architecture 28
1.4 Applications of 2D Materials in Next-Generation Optical Technologies 32
1.4.1 Transparent Electrode 32
1.4.2 Energy Harvesting Systems 34
1.4.3 Sensitive Photodetectors 37
Chapter 2 Growth Approaches and Characterizations of 2D Materials 41
2.1 Synthesis of 2D Materials 41
2.1.1 Low Pressure Chemical Vapor Deposition System 41
2.1.2 Sputtering System 43
2.1.3 Atomic Layer Deposition System 45
2.1.4 Low Pressure Sulfurization System 48
2.2 2D Material Transferring Techniques 51
2.2.1 PDMS Stamp Transferring 51
2.2.2 PMMA Assisted Transferring 56
2.3 Characterization of 2D Materials 58
2.3.1 Micro-Raman Spectrum 58
2.3.2 Photoluminescence Spectrum 60
2.3.3 Atomic Force Microscopy 61
2.3.4 High Resolution Transmission Electron Microscope 63
2.3.5 Ultraviolet-Visible Spectroscopy 65
2.3.6 Four-Point Probe 66
2.4 Fabrication Systems for Optical Devices 68
2.4.1 Spin Coater 68
2.4.2 Mask Aligner 69
2.4.3 Electron Beam Evaporator 70
2.4.4 Thermal Evaporator 72
2.4.5 Reactive-Ion Etching 73
2.5 Measurement Systems for Optical Devices 74
2.5.1 Solar Cell Measurement System 74
2.5.2 Three-Terminal Measurement System 75
2.5.3 Photo-Response Measurement System 76
Chapter 3 Bifacial Solar Cells Utilizing Gold Transparent Electrodes Grown on Molybdenum Disulfide 78
3.1 Development and Challenges in Transparent Electrodes 78
3.1.1 Challenges and Bottlenecks of Common Transparent Electrodes 78
3.1.2 Exploring the Potential of Van der Waals Epitaxy for Transparent Electrodes 79
3.2 Fabrication and Characterization of Transparent Electrodes 82
3.2.1 Gold Electrodes Deposited on Mono-layer MoS2 82
3.2.2 Characterization and Properties of Au/MoS2 Transparent Electrodes 87
3.3 Fabrication and Analysis of Bifacial Perovskite Solar Cells 92
3.3.1 Fabrication of Bifacial Perovskite Solar Cells with Au/MoS2 Transparent Electrodes 92
3.3.2 Fabrication of Perovskite Solar Cells 95
3.3.3 Performance Comparison of Bifacial Solar Cells with Reference Devices 96
3. 4 Application Potential and Future Directions 105
3.4.1 Potential of Different Metals as Transparent Electrodes 105
Chapter 4 Vertical and Planar 2D Material Photodetectors 108
4.1 Opportunities and Challenges in Multi-layer 2D Material-Based Devices 108
4.1.1 Advantages of Multi-layer 2D Material-Based Applications 108
4.1.2 Challenges in Multi-layer 2D Material Growth 110
4.2 Two-stage Growth Procedure of Multi-layer MoS2 112
4.2.1 Wafer-Scale Multi-layer MoS2 Growth 112
4.2.2 Layer Number Determination and Property Characterization of Multi-layer MoS2 116
4.3 Vertical Photovoltaic Photodetectors with Multi-layer MoS2 126
4.3.1 Fabrication of Vertical Photodetectors 126
4.3.2 Vertical Photodetectors with Different MoS2 Layers 130
4.3.3 The Role of Carrier Transport Layers 134
4.3.4 Impact of Heterostructure Integration on the Performance of Photovoltaic Devices 136
4.4 Planar Photoconductive Photodetectors with Multi-layer MoS2 139
4.4.1 Fabrication of Planar Photodetectors 139
4.4.2 Fabrication of Reference Planar Photodetectors 149
4.4.3 The Influence of Channel Lengths to Device Performance 150
4.4.4 Comparison of Planar Photodetectors with Single- and Multi- Layer MoS2 Light Absorption Layers 158
4.5 Application Potential and Future Directions 161
4.5.1 Performance Optimization of Vertical Photovoltaic Devices Based on 2D Materials 161
4.5.2 Performance Optimization of Planar Photoconductive Devices Based on 2D Materials 163
Chapter 5 High-Responsivity and Wavelength-Tunable Flexible Photodetectors Based on 2D Material Heterostructures 165
5.1 Development and Challenges of Multi-Band or Flexible Photodetectors 165
5.1.1 Challenges and Bottlenecks of Multi-Band Photodetectors 165
5.1.2 Challenges and Bottlenecks of Flexible Photodetectors 167
5.2 Fabrication and Analysis of Multi-Band Photodetectors 169
5.2.1 Fabrication of Multi-Band Photodetectors 169
5.2.2 Evaluating the Performance of Multi-Band Photodetectors 172
5.3 Fabrication and Analysis of Flexible Photodetectors 178
5.3.1 Fabrication of Flexible Photodetectors 178
5.3.2 Evaluating the Performance of Flexible Photodetectors 181
5.4 Application Potential and Future Directions 192
5.4.1 Broadening the Detection Spectrum of Photodetectors Using Diverse 2D Absorbing Layers 192
Chapter 6 Conclusion 194
Reference 197
Publication List 227
 
-
dc.language.isoen-
dc.subject凡德瓦磊晶zh_TW
dc.subject可撓性元件zh_TW
dc.subject波長選擇性zh_TW
dc.subject光電偵測器zh_TW
dc.subject高響應度zh_TW
dc.subject晶圓級薄膜zh_TW
dc.subject透明電極zh_TW
dc.subject二維材料zh_TW
dc.subjectflexible devicesen
dc.subject2D Materialen
dc.subjectvan der Waals epitaxyen
dc.subjecttransparent electrodesen
dc.subjectwafer-scale synthesisen
dc.subjecthigh responsivityen
dc.subjectphotodetectoren
dc.subjectwavelength tunabilityen
dc.title二維材料在光學元件的應用zh_TW
dc.title2D Materials for Optical Device Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林時彥;吳育任;陳奕君;張子璿;李柏璁;張守進;裴靜偉zh_TW
dc.contributor.oralexamcommitteeShih-Yen Lin;Yuh-Renn Wu;I-Chun Cheng;Tzu-Hsuan Chang;Po-Tsung Lee;Shoou-Jinn Chang;Zing-Way Peien
dc.subject.keyword二維材料,凡德瓦磊晶,透明電極,晶圓級薄膜,高響應度,光電偵測器,波長選擇性,可撓性元件,zh_TW
dc.subject.keyword2D Material,van der Waals epitaxy,transparent electrodes,wafer-scale synthesis,high responsivity,photodetector,wavelength tunability,flexible devices,en
dc.relation.page228-
dc.identifier.doi10.6342/NTU202501239-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-07-03-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf34.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved