Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97509
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author陳仕依zh_TW
dc.contributor.authorShih-Yi Chenen
dc.date.accessioned2025-07-02T16:13:27Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-21-
dc.identifier.citationAkhtar, N., & Mannan, M. A.-u. (2020). Mycoremediation: expunging environmental pollutants. Biotechnology Reports, 26, e00452.
Akpasi, S. O., Anekwe, I. M. S., Tetteh, E. K., Amune, U. O., Shoyiga, H. O., Mahlangu, T. P., & Kiambi, S. L. (2023). Mycoremediation as a potentially promising technology: current status and prospects—a review. Applied Sciences, 13(8), 4978.
Albert, Q., Baraud, F., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J.-P., Sage, L., & Garon, D. (2019). Use of soil fungi in the biosorption of three trace metals (Cd, Cu, Pb): promising candidates for treatment technology? Environmental Technology.
Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267.
Bai, Y. L., Zhang, C. C., Rong, F., Guo, Z. X., & Wang, K. X. (2024). Biomass‐derived carbon materials for electrochemical energy storage. Chemistry–A European Journal, 30(23), e202304157.
Basova, Y. V., Edie, D. D., Badheka, P. Y., & Bellam, H.-C. (2005). The effect of precursor chemistry and preparation conditions on the formation of pore structure in metal-containing carbon fibers. Carbon, 43(7), 1533-1545.
Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511.
Chen, J., Zhou, X., Mei, C., Xu, J., Zhou, S., & Wong, C.-P. (2017). Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. Journal of power sources, 342, 48-55.
Cheng, B.-H., Zeng, R. J., & Jiang, H. (2017). Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource technology, 246, 224-233.
Das, N. (2010). Recovery of precious metals through biosorption—a review. Hydrometallurgy, 103(1-4), 180-189.
Dhankhar, R., & Hooda, A. (2011). Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491.
El Sayed, M. T., & El-Sayed, A. S. (2020a). Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon, 6(9).
El Sayed, M. T., & El-Sayed, A. S. (2020b). Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon, 6(5).
Enock, T. K., King’ondu, C. K., Pogrebnoi, A., & Jande, Y. A. C. (2017). Status of biomass derived carbon materials for supercapacitor application. International Journal of Electrochemistry, 2017(1), 6453420.
Fan, C., Tian, Y., Bai, S., Zhang, C., & Wu, X. (2021). Nitrogen-doped porous carbon nanosheets for high-performance supercapacitors. Journal of Energy Storage, 44, 103492.
Girgis, B. S., Temerk, Y. M., Gadelrab, M. M., & Abdullah, I. D. (2007). X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon science, 8(2), 95-100.
Grey, C., & Tarascon, J. (2017). Sustainability and in situ monitoring in battery development. Nature materials, 16(1), 45-56.
Hasdi, N. D., Ahmad, N., Ahya, M. K., & Puasa, S. W. (2023). An overview of activated carbon preparation from various precursors. Scientific Research Journal, 20(1), 51-87.
Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, 393-415.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60.
Kalak, T. (2023). Potential use of industrial biomass waste as a sustainable energy source in the future. Energies, 16(4), 1783.
Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M. U., Haleem, K. S., & Touseef, I. (2019). Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental monitoring and assessment, 191, 1-11.
Kim, H., Kang, S., Li, K., Jung, D., Park, K., & Lee, J. (2021). Preparation and characterization of various chitin-glucan complexes derived from white button mushroom using a deep eutectic solvent-based ecofriendly method. International Journal of Biological Macromolecules, 169, 122-129.
Kumar, V., & Dwivedi, S. K. (2021). Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environmental Science and Pollution Research, 28(9), 10375-10412.
Kurniawan, T. A., Chan, G. Y., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98.
Li, D., Zhao, L., Cao, X., Xiao, Z., Nan, H., & Qiu, H. (2021). Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar. Chemical Engineering Journal, 406, 126856.
Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., & Xia, H. (2008). Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial crops and products, 28(2), 190-198.
Liaquat, F., Haroon, U., Munis, M. F. H., Arif, S., Khizar, M., Ali, W., Shengquan, C., & Qunlu, L. (2021). Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity. Environmental Technology & Innovation, 21, 101237.
Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 46(5), 1059-1063.
Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., & Shen, Z. X. (2018). Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Advanced science, 5(1), 1700322.
Lua, A. C., & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of colloid and interface science, 274(2), 594-601.
Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian journal of microbiology, 49, 29-37.
Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. (2009). Introduction to spectroscopy, 4th. Brooks/Cole, USA, 691-695.
Priya, D. S., Kennedy, L. J., & Anand, G. T. (2023). Emerging trends in biomass-derived porous carbon materials for energy storage application: A critical review. Materials Today Sustainability, 21, 100320.
Rajamani, R., Vinoth Kumar, B., Sujith, A., & Karthick, E. (2018). Activated carbon production from waste biomass. Int. J. Eng. Technol, 7, 345-348.
Rawat, S., Wang, C.-T., Lay, C.-H., Hotha, S., & Bhaskar, T. (2023). Sustainable biochar for advanced electrochemical/energy storage applications. Journal of Energy Storage, 63, 107115.
Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., Taweekun, J., & Azad, A. K. (2020). Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences, 27(1), 208-238.
Rhodes, C. J. (2014). Mycoremediation (bioremediation with fungi)–growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26(3), 196-198.
Ruan, C., Ai, K., & Lu, L. (2014). Biomass-derived carbon materials for high-performance supercapacitor electrodes. Rsc Advances, 4(58), 30887-30895.
Shah, S. S. (2024). Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy. Batteries, 10(5), 168.
Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688.
Shulga, Y. M., Kabachkov, E. N., Korepanov, V. I., Khodos, I. I., Kovalev, D. Y., Melezhik, A. V., Tkachev, A. G., & Gutsev, G. L. (2021). The Concentration of C (sp 3) Atoms and Properties of an Activated Carbon with over 3000 m2/g BET Surface Area. Nanomaterials, 11(5), 1324.
Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2015). Spectrometric identification of organic compounds. In Spectrometric identification of organic compounds (pp. 455-455).
Singh, J., Kant, K., Sharma, H., & Rana, K. (2008). Bioaccumulation of cadmium in tissues of Cirrihna mrigala and Catla catla. Asian J Exp Sci, 22, 411-414.
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian journal of pharmacology, 43(3), 246-253.
Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons.
Sun, J., Zou, X., Ning, Z., Sun, M., Peng, J., & Xiao, T. (2012). Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. Science of the Total Environment, 441, 258-264.
Sun, K., Zhang, Z., Peng, H., Zhao, G., Ma, G., & Lei, Z. (2018). Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes. Materials Chemistry and Physics, 218, 229-238.
Tanger, P., Field, J. L., Jahn, C. E., DeFoort, M. W., & Leach, J. E. (2013). Biomass for thermochemical conversion: targets and challenges. Frontiers in plant science, 4, 218.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
Thomas, P., Lai, C. W., & Johan, M. R. B. (2019). Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 140, 54-85.
Viswanathan, B., Neel, P. I., & Varadarajan, T. (2009). Methods of activation and specific applications of carbon materials. India, Chennai, 600(36), 1-160.
Wang, H., Li, Z., & Mitlin, D. (2014). Tailoring biomass‐derived carbon nanoarchitectures for high‐performance supercapacitors. ChemElectroChem, 1(2), 332-337.
Wang, J., Senkovska, I., Kaskel, S., & Liu, Q. (2014). Chemically activated fungi-based porous carbons for hydrogen storage. Carbon, 75, 372-380.
Wang, Y., Song, Y., & Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical society reviews, 45(21), 5925-5950.
Wang, Y., Xu, T., Liu, K., Zhang, M., Cai, X. M., & Si, C. (2024). Biomass‐based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate, 5(1), e428.
Wu, X., Wang, Y., Zhong, R., & Li, B. (2021). Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor. Diamond and Related Materials, 116, 108447.
Xie, K., Zhang, W., Ren, K., Zhu, E., Lu, J., Chen, J., Yin, P., Yang, L., Guan, X., & Wang, G. (2023). Electrochemical performance of corn waste derived carbon electrodes based on the intrinsic biomass properties. Materials, 16(14), 5022.
Xie, Z., Shang, X., Yan, J., Hussain, T., Nie, P., & Liu, J. (2018). Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochimica Acta, 290, 666-675.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97509-
dc.description.abstract隨著人口快速成長與科技的日新月異,重金屬污染相關的環境問題日益受到重視。傳統的重金屬污染整治技術往往面臨成本高昂、易產生二次污染等限制,真菌修復 (mycoremediation) 因具備針對低濃度污染物之去除能力、現地處理潛力,以及成本低廉且環境友善的特性,成為備受矚目的替代方案。此外,人類社會對環境友善且永續的儲能材料需求持續增加,以生物質衍生碳材料及其複合材料作為低污染、高效、安全且經濟的電極材料,已成為研究焦點之一。
本研究選用真菌Fusarium solani作為研究對象,探討其活菌對不同重金屬的耐受性及其乾燥生物質之吸附效率。透過逐步提高培養環境中重金屬濃度的耐受試驗,驗證F. solani在嚴苛環境下之適應性與耐受能力;而使用乾燥真菌生物質進行的吸附實驗結果顯示,不同重金屬的去除機制與吸附效率存在差異,提供未來現地應用多元真菌修復策略的參考價值。為進一步探討吸附重金屬後之真菌生物質的資源化潛力,本研究透過化學活化與高溫熱裂解法製備真菌生物質活性碳,並以複合材料形式評估其電化學性能表現,同時利用材料特性分析探討不同重金屬參雜對材料性質的影響。結果顯示,活菌對鎳與鈷的耐受性明顯優於銅,而乾燥真菌生物質對銅則具有最高的吸附去除效率。此外,吸附銅後之乾燥真菌生物質經轉化成複合碳材料後,展現三種金屬中最佳的電化學性能;而未吸附重金屬之乾燥真菌生物質衍生的碳材料,其電容及電阻表現與商業活性碳相近,甚至在充放電循環測試中具有更優異的比電容保持率。
本研究證實F. solani具有重金屬移除與資源回收再利用的潛力,且其衍生活性碳材料具備作為儲能材料及污染控制應用的可行性,提供了一種創新且永續的環境污染解決方案。
zh_TW
dc.description.abstractWith rapid population growth and advancements in technology, environmental issues related to heavy metal pollution are increasingly gaining attention. Traditional remediation technologies for heavy metal contamination often face limitations such as high costs and the potential for secondary pollution. Mycoremediation has emerged as a promising alternative due to its capability of removing low-concentration pollutants, feasibility for in-situ treatment, cost-effectiveness, and environmental friendliness. Concurrently, there is a growing global demand for sustainable and environmentally friendly energy storage materials. Biomass-derived carbon materials and their composites have become significant research topics due to their advantages of low pollution, high efficiency, safety, and cost-effectiveness.
In this study, a fungus Fusarium solani was selected as the subject to investigate the heavy metal tolerance of its living cells and the adsorption efficiency of its dried biomass. Through tolerance tests involving gradually increasing concentrations of heavy metals, the adaptability and resistance of F. solani under harsh environmental conditions were verified. Adsorption experiments with dried fungal biomass indicated variations in removal mechanisms and efficiencies among different heavy metals, providing valuable references for future diversified in-situ mycoremediation strategies.
To further explore the resource recovery potential of fungal biomass adsorbents after heavy metal adsorption, activated carbon was prepared from fungal biomass using chemical activation and high-temperature pyrolysis methods. The electrochemical performance of the resulting composite materials was evaluated, while material characterization was employed to investigate the effects of different heavy metal incorporations. The results revealed that living cells exhibited superior tolerance to nickel and cobalt compared to copper, whereas dried fungal biomass showed the highest adsorption efficiency for copper. Moreover, dried fungal biomass adsorbent loaded with copper exhibited the best electrochemical performance among the three metals upon conversion into composite carbon materials. Additionally, carbon materials derived from dried fungal biomass without adsorbed heavy metals demonstrated comparable capacitance and resistance performance to commercial activated carbon, even exhibiting superior specific capacitance retention in charge-discharge cycling tests.
This research confirms that F. solani holds significant potential for heavy metal removal and resource recovery. Furthermore, the derived activated carbon materials demonstrate feasibility for application in energy storage and pollution control, offering an innovative and sustainable environmental solution.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:13:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:13:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
ABSTRACT vi
目次 ix
圖次 xiii
表次 xv
第一章 緒論 1
1.1 研究背景 1
1.1.1 真菌修復技術去除重金屬污染 1
1.1.2 生物質活性碳材料於能源上的應用 2
1.2 研究動機 3
1.3 研究目的 4
第二章 文獻回顧 5
2.1 真菌修復 (mycoremediation) 5
2.1.1 重金屬對於環境的危害 5
2.1.2 真菌修復的機制 8
2.2 生物質衍生活性碳 (Biomass-derived activated carbons, BDACs) 10
2.2.1 簡介 10
2.2.2 生物質原料 10
2.2.3 活性碳的製備 12
2.2.4 生物質衍生活性碳材料特性 14
2.2.5 電極應用 15
第三章 材料與方法 16
3.1 實驗藥品與設備 16
3.1.1 實驗用藥品 16
3.1.2 實驗儀器與設備 17
3.2 研究架構 19
3.3 真菌培養與活菌耐受性試驗 20
3.3.1 真菌菌種來源 20
3.3.2 真菌的培養與保存 20
3.3.3 活菌重金屬耐受性試驗 21
3.4 真菌生物質吸附劑製備與重金屬去除試驗 23
3.4.1 吸附劑製備 23
3.4.2 重金屬去除試驗 24
3.4.3 感應耦合電漿原子發射光譜儀 (ICP-OES) 26
3.5 真菌生物質吸附劑衍生活性碳及電極製備 28
3.5.1 重金屬吸附 28
3.5.2 碳化 28
3.5.3 活化 28
3.5.4 酸洗 29
3.5.5 電極材料製備 29
3.6 真菌生物質吸附劑及衍生活性碳之材料分析 30
3.6.1 元素分析 (Elemental analysis) 30
3.6.2 熱重分析法 (Thermogravimetry Analysis, TGA) 31
3.6.3 冷場發射掃描式電子顯微鏡 (CFE-SEM) 32
3.6.4 X光粉末繞射儀 33
3.7 真菌生物質衍生活性碳複合電極之電化學分析 34
3.7.1 電化學工作站 34
3.7.2 三電極系統 34
3.7.3 循環伏安法 (Cyclic Voltammetry, CV) 36
3.7.4 電化學阻抗頻譜分析 (Electrochemistry impedance spectroscopy, EIS) 38
3.7.5 電荷儲存機制與動力學分析 40
第四章 結果與討論 42
4.1 活菌重金屬耐受性試驗結果 42
4.2 乾燥真菌生物質重金屬去除試驗結果 44
4.3 真菌生物質吸附劑及衍生活性碳之材料特性 46
4.3.1 元素分析結果 46
4.3.2 熱重分析結果 47
4.3.3 傅立葉轉換紅外光譜分析結果 48
4.3.4 冷場發射掃描式電子顯微鏡成像結果 50
4.3.5 X光粉末繞射儀結果 52
4.4 活性碳複合電極之冷場發射掃描式電子顯微鏡成像結果 53
4.5 活性碳複合電極之電化學性能分析結果 54
4.5.1 循環伏安法 54
4.5.2 充放電循環測試 58
4.5.3 電化學阻抗頻譜分析 59
4.5.4 電化學動力學分析結果 61
第五章 結論與建議 65
5.1 結論 65
5.2 建議 68
附錄 69
參考文獻 71
-
dc.language.isozh_TW-
dc.subject複合電極zh_TW
dc.subject真菌修復zh_TW
dc.subject生物質衍生活性碳zh_TW
dc.subject再生資源zh_TW
dc.subject電化學性能zh_TW
dc.subjectBiomass-Derived Activated Carbonsen
dc.subjectMycoremediationen
dc.subjectComposite Electrodeen
dc.subjectElectrochemical Performanceen
dc.subjectRenewable Resourcesen
dc.title從重金屬生物吸附劑到活性碳:以真菌 Fusarium solani 為例zh_TW
dc.titleFrom Heavy Metal Biosorbents to Activated Carbon: A Case Study of the Fungus Fusarium solanien
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張朝欽;林居慶zh_TW
dc.contributor.oralexamcommitteeChao-Chin Chang;Chu-Ching Linen
dc.subject.keyword真菌修復,生物質衍生活性碳,再生資源,電化學性能,複合電極,zh_TW
dc.subject.keywordMycoremediation,Biomass-Derived Activated Carbons,Renewable Resources,Electrochemical Performance,Composite Electrode,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202501244-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-07-03-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved