請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳丕燊 | zh_TW |
| dc.contributor.advisor | Pisin Chen | en |
| dc.contributor.author | 林冠男 | zh_TW |
| dc.contributor.author | Kuan-Nan Lin | en |
| dc.date.accessioned | 2025-07-02T16:08:26Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-18 | - |
| dc.identifier.citation | [1] Kuan-Nan Lin, Evgenii Ievlev, Michael RR Good, and Pisin Chen. Classical acceleration temperature from evaporated black hole remnants and accelerated electron mirror radiation. The European Physical Journal C, 84(6):641, 2024.
[2] Julian Schwinger. On gauge invariance and vacuum polarization. Physical Review, 82(5):664, 1951. [3] Daniel G Figueroa and Francisco Torrenti. Parametric resonance in the early universe—a fitting analysis. Journal of Cosmology and Astroparticle Physics, 2017(02):001, 2017. [4] Leonard Parker. Quantized fields and particle creation in expanding universes. i. Physical Review, 183(5):1057, 1969. [5] William G Unruh. Notes on black hole evaporation. Physical Review D, 14(4):870, 1976. [6] Kuan-Nan Lin and Pisin Chen. Reflections on reflections, 2022. arXiv:2212.00550 [gr-qc]. [7] Gary W Gibbons and Stephen W Hawking. Cosmological event horizons, thermodynamics, and particle creation. Physical Review D, 15(10):2738, 1977. [8] Stephen W Hawking. Black hole explosions? Nature, 248(5443):30–31, 1974. [9] Stephen W Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43(3):199–220, 1975. [10] Stephen A Fulling and Paul CW Davies. Radiation from a moving mirror in two dimensional spacetime: conformal anomaly. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348(1654):393–414, 1976. [11] Paul CW Davies and Stephen A Fulling. Radiation from moving mirrors and from black holes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 356(1685):237–257, 1977. [12] Jeff Steinhauer. Observation of quantum hawking radiation and its entanglement in an analogue black hole. Nature Physics, 12(10):959–965, 2016. [13] Richard A Dudley, Alessandro Fabbri, Paul R Anderson, and Roberto Balbinot. Correlations between a hawking particle and its partner in a 1+ 1 d boseeinstein condensate analog black hole. Physical Review D, 102(10):105005, 2020. [14] William G Unruh. Experimental blackhole evaporation? Physical Review Letters, 46(21):1351, 1981. [15] William G Unruh. Dumb holes: analogues for black holes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1877):2905–2913, 2008. [16] Ralf Schützhold and William G Unruh. Hawking radiation in an electromagnetic waveguide? Physical Review Letters, 95(3):031301, 2005. [17] James B Hartle and Stephen W Hawking. Path integral derivation of blackhole radiance. Physical Review D, 13(8):2188, 1976. [18] Maulik K Parikh and Frank Wilczek. Hawking radiation as tunneling. Physical Review Letters, 85(24):5042, 2000. [19] Pisin Chen, Misao Sasaki, and Dong-han Yeom. Hawking radiation as instantons. The European Physical Journal C, 79:1–11, 2019. [20] Michael RR Good, Paul R Anderson, and Charles R Evans. Mirror reflections of a black hole. Physical Review D, 94(6):065010, 2016. [21] Michael RR Good. Extremal hawking radiation. Physical Review D, 101(10):104050, 2020. [22] Michael RR Good and Yen Chin Ong. Particle spectrum of the reissner–nordström black hole. The European Physical Journal C, 80(12):1169, 2020. [23] Michael RR Good, Joshua Foo, and Eric V Linder. Accelerating boundary analog of a kerr black hole. Classical and Quantum Gravity, 38(8):085011, 2021. [24] Joshua Foo and Michael RR Good. Hawking radiation particle spectrum of a kerr-newman black hole. Journal of Cosmology and Astroparticle Physics, 2021(01):019, 2021. [25] Gerald T Moore. Quantum theory of the electromagnetic field in a variable-length one dimensional cavity. Journal of mathematical physics, 11(9):2679–2691, 1970. [26] Bryce S DeWitt. Quantum field theory in curved spacetime. Physics Reports, 19(6):295–357, 1975. [27] G Barton and A Calogeracos. On the quantum electrodynamics of a dispersive mirror.: I. mass shifts, radiation, and radiative reaction. Annals of Physics, 238(2):227–267, 1995. [28] Viktor V Dodonov. Dynamical casimir effect: 55 years later. Physics, 7(2):10, 2025. [29] Nistor Nicolaevici. Quantum radiation from a partially reflecting moving mirror. Classical and Quantum Gravity, 18(4):619, 2001. [30] Nistor Nicolaevici. Semitransparency effects in the moving mirror model for hawking radiation. Physical Review D, 80(12):125003, 2009. [31] Kuan-Nan Lin, Chih-En Chou, and Pisin Chen. Particle production by a relativistic semitransparent mirror in (1+ 3) d minkowski spacetime. Physical Review D, 103(2):025014, 2021. [32] Kuan-Nan Lin and Pisin Chen. Particle production by a relativistic semitransparent mirror of finite size and thickness. The European Physical Journal C, 84(1):53, 2024. [33] Jaume Haro and Emilio Elizalde. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Physical Review D, 77(4):045011, 2008. [34] Emilio Elizalde and Jaume Haro. Comment on “semitransparency effects in the moving mirror model for hawking radiation”. Physical Review D, 81(12):128701, 2010. [35] L. Hadasz, M. Sadzikowski, and P. Wegrzyn. Quantum radiation from spherical mirrors, 1998. arXiv:hepth/9803032. [36] V Frolov and D Singh. Quantum radiation of uniformly accelerated spherical mirrors. Classical and Quantum Gravity, 18(15):3025, 2001. [37] Philip Candelas and David Deutsch. On the vacuum stress induced by uniform acceleration or supporting the ether. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 354(1676):79–99, 1977. [38] LH Ford and Alexander Vilenkin. Quantum radiation by moving mirrors. Physical Review D, 25(10):2569, 1982. [39] PA Maia Neto and S Reynaud. Dissipative force on a sphere moving in vacuum. Physical Review A, 47(3):1639, 1993. [40] PA Maia Neto and LAS Machado. Quantum radiation generated by a moving mirror in free space. Physical Review A, 54(4):3420, 1996. [41] PA Maia Neto and LAS Machado. Radiation reaction force for a mirror in vacuum. BRAZILIAN JOURNAL OF PHYSICS, 25:324–334, 1995. [42] Mohammad F Maghrebi, Ramin Golestanian, and Mehran Kardar. Scattering approach to the dynamical casimir effect. Physical Review D, 87(2):025016, 2013. [43] Andreson LC Rego, BW Mintz, C Farina, and Danilo T Alves. Inhibition of the dynamical casimir effect with robin boundary conditions. Physical Review D, 87(4):045024, 2013. [44] Jeferson D Lima Silva, Alessandra N Braga, Andreson LC Rego, and Danilo T Alves. Interference phenomena in the dynamical casimir effect for a single mirror with robin conditions. Physical Review D, 92(2):025040, 2015. [45] Pisin Chen and Gerard Mourou. Accelerating plasma mirrors to investigate the black hole information loss paradox. Physical Review Letters, 118(4):045001, 2017. [46] Pisin Chen and Gerard Mourou. Trajectory of a flying plasma mirror traversing a target with density gradient. Physics of Plasmas, 27(12), 2020. [47] Pisin Chen, Gerard Mourou, Marc Besancon, Yuji Fukuda, Jean-Francois Glicenstein, Jiwoo Nam, Ching-En Lin, Kuan-Nan Lin, Shu-Xiao Liu, Yung-Kun Liu, et al. Anabhel (analog black hole evaporation via lasers) experiment: Concept, design, and status. In Photonics, volume 9, page 1003. MDPI, 2022. [48] Yung-Kun Liu, Pisin Chen, and Yuan Fang. Reflectivity and spectrum of relativistic flying plasma mirrors. Physics of Plasmas, 28(10), 2021. [49] HC Wu and Jürgen Meyerter Vehn. The reflectivity of relativistic ultrathin electron layers. The European Physical Journal D, 55:443–449, 2009. [50] SV Bulanov, Francesco Califano, GI Dudnikova, T Zh Esirkepov, IN Inovenkov, FF Kamenets, TV Liseikina, M Lontano, K Mima, NM Naumova, et al. Relativistic interaction of laser pulses with plasmas. Reviews of Plasma Physics, pages 227–335, 2001. [51] Chih-En Chou. Finite thickness and semitransparent effects in 1+1d flying mirrors as analog black holes. Master’s thesis, National Taiwan University, January 2021. [52] Hsin-Yeh Wu, Marc Besançon, Jia-Wern Chen, Pisin Chen, Jean-François Glicenstein, Shu-Xiao Liu, Yu-Jung Lu, Xavier-François Navick, Stathes Paganis, Boris Tuchming, et al. Dualmode calorimetric superconducting nanowire single photon detectors. APL Quantum, 2(2), 2025. [53] Alexei A Starobinsky. A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1):99–102, 1980. [54] Alan H Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2):347, 1981. [55] Andrei D Linde. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108(6):389–393, 1982. [56] Andreas Albrecht and Paul J Steinhardt. Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48(17):1220, 1982. [57] Alan H Guth. Inflation and eternal inflation. Physics Reports, 333:555–574, 2000. [58] Bryce S DeWitt. Quantum theory of gravity. i. the canonical theory. Physical Review, 160(5):1113, 1967. [59] James B Hartle and Stephen W Hawking. Wave function of the universe. Physical Review D, 28(12):2960, 1983. [60] Jonathan J Halliwell and Stephen W Hawking. Origin of structure in the universe. Physical Review D, 31(8):1777, 1985. [61] Raymond Laflamme. The euclidean vacuum: justification from quantum cosmology. Physics Letters B, 198(2):156–160, 1987. [62] Jonathan J Halliwell. Introductory lectures on quantum cosmology. In Quantum Cosmology and Baby Universes, pages 159–243. World Scientific, 1991. [63] Gary W Gibbons, Stephen W Hawking, and Malcolm J Perry. Path integrals and the indefiniteness of the gravitational action. Nuclear Physics B, 138(1):141–150, 1978. [64] James B Hartle, Stephen W Hawking, and Thomas Hertog. Classical universes of the no-boundary quantum state. Physical Review D, 77(12):123537, 2008. [65] Pisin Chen, Kuan-Nan Lin, Wei-Chen Lin, and Dong-han Yeom. Possible origin of α-vacua as the initial state of the universe. Physical Review D, 111(8):083520, 2025. [66] Ch Schomblond and Ph Spindel. Unicity conditions of the scalar field propagator delta (1)(x, y) in de sitter universe. Ann. Inst. H. Poincare Phys. Theor, 25:67, 1976. [67] NA Chernikov and EA Tagirov. Quantum theory of scalar field in de sitter space time. In Annales de l’institut Henri Poincaré. Section A, Physique Théorique, volume 9, pages 109–141, 1968. [68] Emil Mottola. Particle creation in de sitter space. Physical Review D, 31(4):754, 1985. [69] Bruce Allen. Vacuum states in de sitter space. Physical Review D, 32(12):3136, 1985. [70] Raphael Bousso, Alexander Maloney, and Andrew Strominger. Conformal vacua and entropy in de sitter space. Physical Review D, 65(10):104039, 2002. [71] Richard Easther, Brian R Greene, William H Kinney, and Gary Shiu. Inflation as a probe of short distance physics. Physical Review D, 64(10):103502, 2001. [72] Richard Easther, Brian R Greene, William H Kinney, and Gary Shiu. Im prints of short distance physics on inflationary cosmology. Physical Review D, 67(6):063508, 2003. [73] Ulf H Danielsson. Note on inflation and transplanckian physics. Physical Review D, 66(2):023511, 2002. [74] Richard Easther, Brian R Greene, William H Kinney, and Gary Shiu. Generic estimate of trans-planckian modifications to the primordial power spectrum in inflation. Physical Review D, 66(2):023518, 2002. [75] Richard Easther, William H Kinney, and Hiranya Peiris. Observing trans-planckian signatures in the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2005(05):009, 2005. [76] Stephen W Hawking. Wormholes in spacetime. Physical Review D, 37(4):904, 1988. [77] N Aghanim et al. Planck 2018 results. vi. cosmological parameters. Astron. Astrophys, 641:A6, 2020. [78] Patrick Peter and Jean-Philippe Uzan. Primordial cosmology. Oxford University Press, 2009. [79] Claus Kiefer and Tatevik Vardanyan. Power spectrum for perturbations in an inflationary model for a closed universe. General Relativity and Gravitation, 54(4):30, 2022. [80] Pisin Chen, Hsiao-Heng Yeh, and Dong-han Yeom. Suppression of the long-wavelength cmb spectrum from the hartle–hawking wave function in the starobinskytype inflation model. Physics of the Dark Universe, 27:100435, 2020. [81] Raymond Laflamme. Geometry and thermofields. Nuclear Physics B, 324(1):233–252, 1989. [82] Pisin Chen, Kuan-Nan Lin, Wei-Chen Lin, and Dong-han Yeom. Entanglement between pair-created universes bridged by a wormhole and its implications to big bang cosmology, 2025. arXiv:2505.02807 [gr-qc]. [83] Stephen W Hawking. Baby universes ii. Modern Physics Letters A, 5:453, 1990. [84] Sayan Kar, Sayantani Lahiri, and Soumitra SenGupta. Can extra dimensional effects allow wormholes without exotic matter? Physics Letters B, 750:319–324, 2015. [85] Sidney Coleman. Why there is nothing rather than something: a theory of the cosmological constant. Nuclear Physics B, 310(34):643–668, 1988. [86] Stephen W Hawking and Don N Page. Spectrum of wormholes. Physical Review D, 42(8):2655, 1990. [87] Stephen W Hawking. The effective action for wormholes. Nuclear Physics B, 363(1):117–131, 1991. [88] Salvador J Robles Pérez. Quantum cosmology with third quantisation. Universe, 7(11):404, 2021. [89] Salvador J Robles Pérez. Third quantization: modeling the universe as a ’particle’ in a quantum field theory of the minisuperspace. In Journal of Physics: Conference Series, volume 410, page 012133. IOP Publishing, 2013. [90] Igor Klebanov, Leonard Susskind, and Tom Banks. Wormholes and the cosmological constant. Nuclear Physics B, 317(3):665–692, 1989. [91] Albert Einstein and Nathan Rosen. The particle problem in the general theory of relativity. Physical Review, 48(1):73, 1935. [92] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum mechanical description of physical reality be considered complete? Physical Review, 47(10):777, 1935. [93] Juan Maldacena and Leonard Susskind. Cool horizons for entangled black holes. Fortschritte der Physik, 61(9):781–811, 2013. [94] Stephen W Hawking. Occurrence of singularities in open universes. Physical Review Letters, 15(17):689, 1965. [95] Stephen W Hawking. The occurrence of singularities in cosmology. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 294(1439):511–521, 1966. [96] Stephen W Hawking. The occurrence of singularities in cosmology. iii. causality and singularities. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 300(1461):187–201, 1967. [97] Roger Penrose. Gravitational collapse and spacetime singularities. Physical Review Letters, 14(3):57, 1965. [98] Stephen W Hawking. Breakdown of predictability in gravitational collapse. Physical Review D, 14(10):2460, 1976. [99] Masahiro Hotta, Ralf Schützhold, and William G Unruh. Partner particles for moving mirror radiation and black hole evaporation. Physical Review D, 91(12):124060, 2015. [100] Takeshi Tomitsuka, Koji Yamaguchi, and Masahiro Hotta. Partner formula for an arbitrary moving mirror in 1+ 1 dimensions. Physical Review D, 101(2):024003, 2020. [101] Yuki Osawa, Kuan-Nan Lin, Yasusada Nambu, Masahiro Hotta, and Pisin Chen. Final burst of the moving mirror is unrelated to the partner mode of analog hawking radiation. Physical Review D, 110(2):025023, 2024. [102] Frank Wilczek. Quantum purity at a small price: Easing a black hole paradox. In International symposium on black holes, membranes, wormholes and superstrings, pages 1–21, 1993. [103] Robert M Wald. Particle and energy cost of entanglement of hawking radiation with the final vacuum state. Physical Review D, 100(6):065019, 2019. [104] Ronald J Adler, Pisin Chen, and David I Santiago. The generalized uncertainty principle and black hole remnants. General Relativity and Gravitation, 33:2101– 2108, 2001. [105] Pisin Chen. Generalized uncertainty principle and dark matter. In Frontiers Of Science, pages 497–503. World Scientific, 2003. [106] Pisin Chen, Yen Chin Ong, and Dong-han Yeom. Generalized uncertainty principle: implications for black hole complementarity. Journal of High Energy Physics, 2014(12):1–14, 2014. [107] Pisin Chen, Yen Chin Ong, and Dong-han Yeom. Black hole remnants and the information loss paradox. Physics Reports, 603:1–45, 2015. [108] WR Walker. Negative energy fluxes and moving mirrors in curved space. Classical and Quantum Gravity, 2(2):L37, 1985. [109] Michael RR Good and Yen Chin Ong. Signatures of energy flux in particle production: a black hole birth cry and death gasp. Journal of High Energy Physics, 2015(7):1–13, 2015. [110] Masahiro Hotta. Quantum measurement information as a key to energy extraction from local vacuums. Physical Review D, 78(4):045006, 2008. [111] Jose Trevison, Koji Yamaguchi, and Masahiro Hotta. Pure state entanglement harvesting in quantum field theory. Progress of Theoretical and Experimental Physics, 2018(10):103A03, 2018. [112] Michael RR Good, Khalykbek Yelshibekov, and Yen Chin Ong. On horizon less temperature with an accelerating mirror. Journal of High Energy Physics, 2017(3):1–33, 2017. [113] Don N Page. Average entropy of a subsystem. Physical Review Letters, 71(9):1291, 1993. [114] Don N Page. Information in black hole radiation. Physical Review Letters, 71(23):3743, 1993. [115] Don N Page. Time dependence of hawking radiation entropy. Journal of Cosmology and Astroparticle Physics, 2013(09):028, 2013. [116] Netta Engelhardt and Aron C Wall. Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime. Journal of High Energy Physics, 2015(1):1–27, 2015. [117] Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian, and Amirhossein Tajdini. Replica wormholes and the entropy of hawking radiation. Journal of High Energy Physics, 2020(5):1–42, 2020. [118] Geoffrey Penington. Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9):1–84, 2020. [119] Sidney Coleman. Fate of the false vacuum: Semiclassical theory. Physical Review D, 15(10):2929, 1977. [120] Ruth Gregory, Ian G Moss, and Benjamin Withers. Black holes as bubble nucleation sites. Journal of High Energy Physics, 2014(3):1–27, 2014. [121] Philipp Burda, Ruth Gregory, and Ian G Moss. Vacuum metastability with black holes. Journal of High Energy Physics, 2015(8):1–31, 2015. [122] Gary W Gibbons and Stephen W Hawking. Action integrals and partition functions in quantum gravity. Physical Review D, 15(10):2752, 1977. [123] James W York Jr. Role of conformal three-geometry in the dynamics of gravitation. Physical Review Letters, 28(16):1082, 1972. [124] Alice Di Tucci, Michal P Heller, and Jean-Luc Lehners. Lessons for quantum cosmology from anti–de sitter black holes. Physical Review D, 102(8):086011, 2020. [125] W Israel. Gravitational collapse and causality. Physical Review, 153(5):1388, 1967. [126] Eric Poisson. A relativist’s toolkit: the mathematics of black-hole mechanics. Cambridge university press, 2004. [127] Claudio Teitelboim. Proper-time gauge in the quantum theory of gravitation. Physical Review D, 28(2):297, 1983. [128] Pisin Chen, Guillem Domenech, Misao Sasaki, and Donghan Yeom. Thermal activation of thin-shells in anti-de sitter black hole spacetime. Journal of High Energy Physics, 2017(7):1–17, 2017. [129] Pisin Chen, Misao Sasaki, Dong-han Yeom, and Junggi Yoon. Resolving information loss paradox with euclidean path integral. International Journal of Modern Physics D, 31(14):2242001, 2022. [130] Pisin Chen, Misao Sasaki, Dong-han Yeom, and Junggi Yoon. Tunneling between multiple histories as a solution to the information loss paradox. Entropy, 25(12):1663, 2023. [131] Jacob D Bekenstein. Entropy bounds and black hole remnants. Physical Review D, 49(4):1912, 1994. [132] Jacob D Bekenstein. How does the entropy/information bound work? Foundations of Physics, 35:1805–1823, 2005. [133] Don N Page. The bekenstein bound. In Jacob Bekenstein: The Conservative revolutionary, pages 159–171. World Scientific, 2020. [134] Bryce S DeWitt. Quantum gravity: the new synthesis. General Relativity: An Einstein centenary survey, pages 680–745, 1979. [135] Luca Buoninfante, Francesco Di Filippo, and Shinji Mukohyama. On the assumptions leading to the information loss paradox. Journal of High Energy Physics, 2021(10):1–26, 2021. [136] Pisin Chen and Dong-han Yeom. Entropy evolution of moving mirrors and the information loss problem. Physical Review D, 96(2):025016, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97490 | - |
| dc.description.abstract | 本論文主要由三個與量子重力相關的篇章所組成。在第一部分,我們以平坦 時空中的相對論性飛翔鏡來類比彎曲時空中的黑洞所輻射出的半古典霍京輻射。 然而,要把傳統的相對論性飛翔鏡應用到現實的實驗中,有幾件事項需要新的擴 展。我們研究該如何把鏡子的反射率、幾何形狀、以及不同的時空維度納入考 量。這些考量對於未來的實驗設計至關重要。
在本論文的第二個部分,我們研究歐幾里德氏量子宇宙學。在歐氏量子宇宙 學中,我們所生存的宇宙的誕生可以藉由無中生有來解釋。此外,憑藉量子效應 而凝結出的多重宇宙可以藉由歐氏蟲洞建立起彼此的連結。我們研究了歐氏蟲洞 對於原初宇宙的起始條件的影響,以及蟲洞兩端的宇宙之間的量子糾纏對於觀測 天文學中的宇宙微波背景輻射所可能遺留的訊號特徵。 在本論文的最終章,我們將在歐氏量子宇宙學中學到的技巧應用到黑洞蒸發 來解決黑洞資訊悖論。我們將黑洞蒸發想像成一個衰變過程,而這衰變正是藉由 凝結時空泡膜所達成的。凝結出的時空泡膜不再具有黑洞,並且原本半古典霍京 輻射的量子糾纏對可以藉由時空泡膜的擴張而被原本黑洞外的觀察者所觀察到, 進而提供一種另類解決黑洞資訊悖論的方法。 | zh_TW |
| dc.description.abstract | This thesis mainly consists of three pieces related to quantum gravity. In the first part, we first investigate the semiclassical black hole Hawking radiation with the conventional relativistic flying mirror model in flat spacetime, which is one of the earliest analogue gravity models proposed right after the discovery of Hawking radiation. We subsequently make extension of the flying mirror model to incorporate the effects of the mirror’s non-trivial reflectivity and geometry in higher spacetime dimension, which are essential for laboratory experiments.
The second part of the thesis investigates quantum cosmology with the Euclidean approach, in which the cosmological singularity is resolved by considering the universe as a nucleation of something from nothing. In Euclidean quantum cosmology, nucleated multiverse can be bridged by a Euclidean wormhole. We investigate the effect of the wormhole on the initial condition of the perturbation of inflaton, and we search for the imprint of the quantum entanglement across the wormhole in the observed cosmic microwave background power spectrum. In the final part of this thesis, we apply the Euclidean approach learned in quantum cosmology to the black hole information loss paradox. In particular, we consider a black hole to decay by nucleating a spacetime bubble without black holes. The entangled pair of the Hawking radiation will be released along with the expansion of the bubble, which provides an alternative scenario for resolving the long-standing information paradox. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:08:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:08:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | PhD Dissertation Acceptance Certificate i
致謝 iii 中文摘要 vii Abstract ix Contents xi List of Figures xv List of Tables xxiii 1 Introduction 1 2 Quantum radiation by classical black holes and flying mirrors 7 2.1 Unifying the notions of particle creation...........................7 2.2 Generic recipe of particle creation...........................9 2.3 Analogue black holes...........................22 2.4 Black holes as mirrors...........................24 2.4.1 Mimicking black hole radiation with a perfect mirror..............27 2.4.2 Flying mirrors with generic reflectivity in (1+1)-dimensions..............33 2.5 Laboratory black holes with flying mirrors...........................42 2.5.1 Semitransparent mirror in (3+1)-dimensions..............42 2.5.2 Bogoliubov transformation..............46 2.5.3 Geometry of the mirror..............52 2.5.4 Analogue Hawking radiation spectrum..............54 3 Cosmological singularity and the origin of the Universe 65 3.1 Euclidean wormhole as the origin of α-vacua...........................65 3.1.1 The elegant complex Universe..............66 3.1.2 On-shell wave function of the Universe..............71 3.1.3 No-boundary instanton vs. Bunch-Davies vacuum..............74 3.1.4 Massaging vacua with Euclidean wormholes..............81 3.1.5 Euclidean wormhole vs. α-vacua..............84 3.1.6 Primordial power spectrum in the heaven..............87 3.2 Physics101: a simple harmonic oscillator...........................95 3.2.1 Euclidean path integral quantization..............95 3.2.2 Canonical operator quantization..............98 3.3 Entanglement across the wormhole bridge...........................105 3.3.1 Wormhole cosmology as a simple harmonic oscillator..............106 3.3.2 Tails of wormholes in the inflaton power spectrum..............114 3.3.3 A brief history of the Universe: from the past to the present..............118 3.3.4 Searching for quantum wormholes in the CMB sky..............124 3.3.5 Emergence of non-standard α-vacua..............133 3.3.6 No wormhole, no entanglement..............135 4 Black hole singularity and the fate of black holes 139 4.1 Black hole information loss paradox...........................139 4.2 False vacuum decay vs. spacetime decay...........................150 4.3 Partition of spacetime...........................152 4.4 Junction conditions and the tunneling of thin shell...........................154 4.5 Spacetime bubble with a static and critical thin shell boundary...........................159 4.5.1 Decay of a Schwarzschild black hole to AdS..............164 4.5.2 Decay of a Schwarzschild black hole to SAdS..............169 4.5.3 Sequential decay of black holes to trivial spacetimes..............181 4.6 Decay rates of black holes...........................184 4.6.1 Euclidean action (instanton) of seed configurations..............184 4.6.2 Decay rates of multiple periods and channels..............185 4.6.3 Resolving the information paradox with spacetime bubbles..............186 5 Conclusion 197 Appendix A-Unit conversion 201 Appendix B-Alternative analytic wormhole solution 203 B.1 Analytic model..............203 B.2 Other cases..............205 Appendix C-Reduced density matrix calculation 207 C.1 Two-point function..............207 C.2 Entanglement entropy..............208 Bibliography 209 | - |
| dc.language.iso | en | - |
| dc.subject | 歐幾里德氏量子宇宙學 | zh_TW |
| dc.subject | 量子重力 | zh_TW |
| dc.subject | 相對論性飛翔鏡 | zh_TW |
| dc.subject | 黑洞 | zh_TW |
| dc.subject | 霍京輻射 | zh_TW |
| dc.subject | 反射率 | zh_TW |
| dc.subject | 幾何 | zh_TW |
| dc.subject | 高維時空維度 | zh_TW |
| dc.subject | 量子宇宙學 | zh_TW |
| dc.subject | 奇異點 | zh_TW |
| dc.subject | 凝結 | zh_TW |
| dc.subject | 無中生有 | zh_TW |
| dc.subject | 多重宇宙 | zh_TW |
| dc.subject | 歐氏蟲洞 | zh_TW |
| dc.subject | 起始條件 | zh_TW |
| dc.subject | 量子糾纏 | zh_TW |
| dc.subject | 宇宙微波背景輻射 | zh_TW |
| dc.subject | 黑洞蒸發 | zh_TW |
| dc.subject | 資訊悖論 | zh_TW |
| dc.subject | 衰變 | zh_TW |
| dc.subject | 時空泡膜 | zh_TW |
| dc.subject | Hawking radiation | en |
| dc.subject | reflectivity | en |
| dc.subject | geometry | en |
| dc.subject | higher spacetime dimension | en |
| dc.subject | quantum cosmology | en |
| dc.subject | singularity | en |
| dc.subject | nucleation | en |
| dc.subject | something from nothing | en |
| dc.subject | Euclidean quantum cosmology | en |
| dc.subject | multiverse | en |
| dc.subject | Euclidean wormhole | en |
| dc.subject | initial condition | en |
| dc.subject | quantum entanglement | en |
| dc.subject | cosmic microwave background | en |
| dc.subject | black hole evaporation | en |
| dc.subject | information paradox | en |
| dc.subject | decay | en |
| dc.subject | spacetime bubble | en |
| dc.subject | Quantum gravity | en |
| dc.subject | relativistic flying mirror | en |
| dc.subject | black hole | en |
| dc.title | 量子重力場三重奏: 從飛翔鏡、蟲洞橋、到黑洞蒸發 | zh_TW |
| dc.title | Three Tales/Tails of Quantum Gravity: From Flying Mirrors, Wormhole Bridges, to Evaporation of Black Holes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳俊瑋;陳江梅;沈家賢;Daniel Baumann;Dong-han Yeom;Masahiro Hotta | zh_TW |
| dc.contributor.oralexamcommittee | Jiunn-Wei Chen;Chiang-Mei Chen;Chia-Hsien Shen;Daniel Baumann;Dong-han Yeom;Masahiro Hotta | en |
| dc.subject.keyword | 量子重力,相對論性飛翔鏡,黑洞,霍京輻射,反射率,幾何,高維時空維度,量子宇宙學,奇異點,凝結,無中生有,歐幾里德氏量子宇宙學,多重宇宙,歐氏蟲洞,起始條件,量子糾纏,宇宙微波背景輻射,黑洞蒸發,資訊悖論,衰變,時空泡膜, | zh_TW |
| dc.subject.keyword | Quantum gravity,relativistic flying mirror,black hole,Hawking radiation,reflectivity,geometry,higher spacetime dimension,quantum cosmology,singularity,nucleation,something from nothing,Euclidean quantum cosmology,multiverse,Euclidean wormhole,initial condition,quantum entanglement,cosmic microwave background,black hole evaporation,information paradox,decay,spacetime bubble, | en |
| dc.relation.page | 224 | - |
| dc.identifier.doi | 10.6342/NTU202501170 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-19 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-07-03 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
