請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恭如 | zh_TW |
| dc.contributor.advisor | Gong-Ru Lin | en |
| dc.contributor.author | 許仕錩 | zh_TW |
| dc.contributor.author | Shih-Chang Hsu | en |
| dc.date.accessioned | 2025-06-18T16:18:07Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-28 | - |
| dc.identifier.citation | [1] P. Sharma, A. Agrawal, V. Bhatia, S. Prakash, and A. K. Mishra, “Quantum Key Distribution Secured Optical Networks: A Survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 2049-2083, Aug. 2021.
[2] O. Amer, V. Garg, and W. O. Krawec, “An Introduction to Practical Quantum Key Distribution,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 3, pp. 30-55, Mar. 2021. [3] Y. Cao et al., “The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839-894, Jan. 2022. [4] M. Sasaki, “Quantum Key Distribution and Its Applications,” IEEE Security & Privacy, vol. 16, no. 5, pp. 42-48, Oct. 2018. [5] V. Scarani et al., “The security of practical quantum key distribution,” Rev. Mod. Phys., vol. 81, no. 3, pp. 1301-1350, Aug. 2009. [6] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett., vol. 89, no. 3, pp. 037902, Jun. 2002. [7] K. Inoue, and T. Honjo, “Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack,” Phys. Rev. A, vol. 71, no. 4, pp. 042305, Apr. 2005. [8] K. Inoue, H. Takesue, and T. Honjo, “DPS Quantum Key Distribution and Related Technologies,” Proc. SPIE Quantum Communications Realized II, vol. 7236, pp. 72360I, Jan. 2009. [9] M. Gong, and H. Wu, “Silicon Highly Over-Coupled Microring Phase Shifter and Its Application in Ring Assisted Mach–Zehnder Modulator,” J. Lightwave Technol., vol. 41, no. 22, pp. 6987-6996, Nov. 2023. [10] D. M. Dourado, G. B. de Farias, R. H. Gounella, M. de L. Rocha, and J. P. Carmo, “Challenges in silicon photonics modulators for data center interconnect applications,” Opt. & Laser Technol., vol. 144, pp. 107376, Dec. 2021. [11] D. Bunandar et al., “Metropolitan Quantum Key Distribution with Silicon Photonics,” Phys. Rev. X, vol. 8, no. 2, pp. 021009, Apr. 2018. [12] LC. Kwek et al., “Chip-based quantum key distribution,” AAPPS Bull., vol. 31, Art. no. 15, Jun. 2021. [13] J. Dai, L. Zhang, X. Fu, X. Zheng, and L. Yang, “Pass-block architecture for distributed-phase-reference quantum key distribution using silicon photonics,” Opt. Lett., vol. 45, no. 7, pp. 2014-2017, Apr. 2020. [14] S. Shekhar et al., “Roadmapping the next generation of silicon photonics,” Nat Commun., vol. 15, Art. no. 751, Jan. 2024. [15] S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Appl. Phys. Rev., vol. 6, no. 4, pp. 041303, Dec. 2019. [16] J. E. Nordholt et al., “Present and future free-space quantum key distribution,” Proc. SPIE, Free-Space Laser Communication Technologies XIV, vol. 4635, Apr. 2002. [17] J.-P. Bourgoin et al., “Free-space quantum key distribution to a moving receiver,” Opt. Express, vol. 23, no. 26, pp. 33437-33447, Dec. 2015. [18] M. Kim et al., “Free-space quantum key distribution transmitter system using WDM filter for channel integration,” ETRI Journal, vol. 46, no. 5, pp. 806-816, Oct. 2024. [19] J. Wang et al., “Integrated photonic quantum technologies,” Nat. Photonics, vol. 14, pp. 273-284, Oct. 2020. [20] T. Giordani et al., “Integrated photonics in quantum technologies.” Riv. Nuovo Cim., vol. 46, pp. 71-103, Mar. 2023. [21] F. Honz et al., “Towards an All-Silicon QKD Transmitter Sourced by a Ge-on-Si Light Emitter,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 30, no. 1, Set. 2023. [22] C. Ma et al., “Silicon photonic transmitter for polarization-encoded quantum key distribution,” Optica, vol. 3, no. 11, pp. 1274-1278, Oct. 2016. [23] P. Sibson et al., “Chip-based quantum key distribution,” Nat Commun., vol. 8, pp. 13984, Feb. 2017. [24] M. Avesani et al., “Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics,” npj Quantum Inf., vol. 7, pp. 93, Jun. 2021. [25] J. A. Dolphin et al., “A hybrid integrated quantum key distribution transceiver chip,” npj Quantum Inf., vol. 9, pp. 84, Sep. 2023. [26] P.P. Yupapin, “Generalized quantum key distribution via micro ring resonator for mobile telephone network,” Optik, vol. 121, no. 5, pp. 422-425, Mar. 2010. [27] S. Suchat, N. Pornsuwancharoen, and P.P. Yupapin, “Continuous variable quantum key distribution via a simultaneous optical-wireless up–down-link system,” Optik, vol. 121, no. 17, pp. 1540-1544, Sep. 2010. [28] P. Yooplao, P. Pongwongtragull, S. Mitatha, and P. P. Yupapin, “Crosstalk effects of quantum key distribution via a quantum router,” Microw. Opt. Technol. Lett., vol. 53, no. 5, pp. 1094-1099, May. 2011. [29] P. Juleang, P. Phongsanam, S. Mitatha, and P. P. Yupapin, “Public key suppression and recovery using a PANDA ring resonator for high security communication,” Optical Engineering, vol. 50, no. 3, pp. 035002, Mar. 2011. [30] R. Wakabayashi et al., “Time-bin entangled photon pair generation from Si micro-ring resonator,” Opt. Express, vol. 23, no. 2, pp. 1103-1113, Jan. 2015. [31] F. Honz et al., “Shortwave DPS-QKD Employing a SiN Micro-Ring Resonator as Compact Quantum State Analyser,” ECOC 2024; 50th European Conference on Opt. Commun., Frankfurt, Germany, pp. 290-293, 2024. [32] N. Tagliavacche et al., “Frequency-bin entanglement-based Quantum Key Distribution,” npj Quantum Inf., vol. 11, pp. 60, Apr. 2025. [33] H. Li et al., “Fano Resonance Thermo-Optic Modulator Based on Double T-Bus Waveguides-Coupled Micro-Ring Resonator,” Photonics, vol. 11, no. 3, pp. 255, Mar 2024. [34] M. Jofre Cruanyes, “Integrated photonic transmitters for secure space quantum communication,” Tesi doctoral, UPC, Institut de Ciències Fotòniques, 2013. [35] C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3762-3764, May. 2004. [36] T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, no. 16, pp. 630-631, Jul. 1980. [37] L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol., vol. 9, no. 4, pp. 485-493, Apr. 1991. [38] D. Derickson, “Fiber optic test and measurement,” Prentice Hall PTR, 1998. [39] S. Deng, M. Li, H. Gao, and Y. Dai, “A recirculating delayed self-heterodyne method using a Mach–Zehnder modulator for kHz-linewidth measurement,” Opt. Fiber Technol., vol. 31, pp. 156-160, Sep. 2016. [40] K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE Journal of Quantum Electronics, vol. 40, no. 7, pp. 900-908, Jul. 2004. [41] S. Hashemi, “Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” 2012. [42] A. G. Ullrich, “Determination of the instantaneous linewidth of a monolithic Nd:YAG laser from RIN measurements,” IEEE Photonics Technology Letters, vol. 3, no. 4, pp. 318-319, Apr. 1991. [43] N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Measurement of Temperature-Dependent Relaxation Oscillation Frequency and Linewidth Enhancement Factor of a 1550 nm VCSEL,” IEEE Journal of Quantum Electronics, vol. 49, no. 11, pp. 990-996, Nov. 2013. [44] M.-A. Chung, M.-C. Lee, C.-C. Hsu, and C.-W. Lin, “Multi-Band Coupled-Fed Antenna for 4G LTE, Sub-6G, and WLAN Frequency Bands in Various Electronic Devices,” IEEE Access, vol. 12, pp. 45398-45422, 2024. [45] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 18, no. 2, pp. 259-264, Feb. 1982. [46] H. Fatoorehchi, M. Alidadi, R. Rach, and A. Shojaeian, “Theoretical and Experimental Investigation of Thermal Dynamics of Steinhart–Hart Negative Temperature Coefficient Thermistors,” ASME. J. Heat Transfer, vol. 141, no. 7, pp. 072003, Jul. 2019. [47] S.-C. Lin et al., “Gibbs-Phenomenon-Reduced Digital PWM for Power Amplifiers Using Pulse Modulation,” IEEE Access, vol. 7, pp. 178788-178797, 2019. [48] T. Y. Elganimi, “Studying the BER performance, power- and bandwidth- efficiency for FSO communication systems under various modulation schemes,” 2013 IEEE Jordan Conference on AEECT, Amman, Jordan, pp. 1-6, 2013. [49] H. Nagata, N. F. O'Brien, W. R. Bosenberg, G. L. Reiff, and K. R. Voisine, “DC-Voltage-induced thermal shift of bias point in LiNbO/sub 3/ optical Modulators,” IEEE Photonics Technology Letters, vol. 16, no. 11, pp. 2460-2462, Nov. 2004. [50] J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Gille, “Analysis and Control of the DC Drift in LiNbO3Based Mach–Zehnder Modulators,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1522-1534, May. 2011. [51] M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Lončar, “Integrated lithium niobate electro-optic modulators: when performance meets scalability,” Optica, vol. 8, no. 5, pp. 652-667, May. 2021. [52] E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A, vol. 73, no. 1, pp. 012344, Jan. 2006. [53] Q. Zhang et al., “Megabits secure key rate quantum key distribution,” New J. Phys., vol. 11, pp. 045010, Apr. 2009. [54] E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express, vol. 14, no. 26, pp. 13073-13082, Dec. 2006. [55] N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A, vol. 61, no. 5, pp. 052304, Apr. 2000. [56] B. Pile, and G. Taylor, “Small-signal analysis of microring resonator modulators,” Opt. Express, vol. 22, no. 12, pp. 14913-14928, Jun. 2014. [57] H. K. Volbeda, “Integrated optical networks of microring resonators: a comparison between theory and experiment,” BS thesis. University of Twente, May. 2016. [58] Y. Ban, “Silicon Micro-Ring Modulator Modeling,” Graduate School of Yonsei University, Feb. 2015. [59] A. Tanaka et al., “High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation,” IEEE J. Quantum Electronics, vol. 48, no. 4, pp. 542-550, Apr. 2012. [60] S. Matsuo et al., “Photonic crystal lasers using wavelength-scale embedded active region,” J. Phys. D: Appl. Phys., vol. 47, no. 2, pp. 023001, Jan. 2014. [61] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stalnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” Proc. SPIE, High-Speed Semiconductor Laser Sources, vol. 2684, pp. 138-152, Apr. 1996. [62] H. Long et al., “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. China Phys. Mech. Astron., vol. 58, Art. no. 114205, Oct. 2015. [63] S. E. Hashemi, “Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” 2012. [64] A. C. Sparavigna, “Poissonian Distributions in Physics: Counting Electrons and Photons,” hal-03126250, Jan. 2021. [65] D. F. Yu, and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol., vol. 45, no. 7, pp. 2043, Aug. 2000. [66] T. Xing et al., “Characterization of intensity correlation via single-photon detection in quantum key distribution,” Opt. Express, vol. 32, no. 18, pp. 31767-31782 Aug. 2024. [67] J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP Single-photon Detector Systems for Quantum Communication.” Light: Sci. Appl., vol. 4, no. e286, May. 2015. [68] M. V. Chekhova, and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photon., vol. 8, no.1, pp. 104-155, Mar. 2016. [69] A. Tanaka et al., “High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation,” IEEE J. Quantum Electronics, vol. 48, no. 4, pp. 542-550, Apr. 2012. [70] C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3762-3764, May. 2004. [71] K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution,” Phys. Rev. Lett., vol. 103, no. 17, pp. 170503, Oct. 2009. [72] M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Key Reconciliation with Low-Density Parity-Check Codes for Long-Distance Quantum Cryptography,” arXiv:1702.07740 Apr. 2017. [73] D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros, “Efficient reconciliation protocol for discrete-variable quantum key distribution,” 2009 IEEE ISIT, Seoul, Korea, pp. 1879-1883, Jun. 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97473 | - |
| dc.description.abstract | 為順應矽光子時代的來臨,應用於需要大頻寬的資料傳輸以及高穩定的訊號調變的量子加密通訊系統中的元件逐漸由傳統的塊材轉向整合多功能的積體化矽晶片。其中,光強度調變器的調變響應直接反映光量子位元的訊號雜訊比,並且顯著地影響量子誤碼率以及資訊安全性。
第二章探討差分相移鍵控量子金鑰分發(DPSK-QKD)的實現受限於單光子源與光強度調變器(IM)的調變性能,這些元件的穩定性及其操作條件的選擇是一大挑戰。在本研究中,以高穩定性的溫度控制器與低雜訊的驅動電流源來穩定分佈式回饋雷射二極體(DFBLD)的輸出功率及波長。此外,採用被動絕熱封裝系統使DFBLD和延遲線干涉儀(DLI)的功率擾動(dP/P)由±0.015%降低至±0.0025%以及由±6.25%降低至±0.1%,此封裝方式有效地抑制了回授驅動電路的阻尼振盪與熱對流。用一千兆赫(1-GHz)的歸零開閉鍵控(RZ-OOK)調製訊號來分析用於將連續波(CW)脈衝化的鈮酸鋰(LiNbO3, LNO)和矽光子(SiPh)強度調變器的傳遞函數的最佳操作條件。以30%佔空比的電調變訊號操作LNO-IM進行脈衝調變時,解調成功率相對較高;相較之下,對於SiPh-IM而言,潛在的非線性調變效應需要以10%佔空比的電調變訊號在具有較低半波電壓(Vπ)的高偏壓區域內操作以達到最佳的消光比(ER)。在平均光子數為每脈衝含有0.25顆的條件下,透過以LNO-IM和SiPh-IM調變的光脈衝來進行DPSK-QKD,其量子誤碼率(QBER)、篩選密鑰率(RSifted)和安全密鑰率(RSecure)在背靠背(Back-to-Back, BtB)傳輸中分別為(1.91%, 28.75 kbit/s, 5.78 kbit/s)以及(1.67%, 33.19 kbit/s, 7.72 kbit/s),並且在平均光子數衰減至每脈衝含有0.016顆的狀況下逐漸升高至(3.32%, 1.79 kbit/s, 0.06 kbit/s)以及(2.96%, 1.86 kbit/s, 0.14 kbit/s)。 第三章描述近年來隨著高密度光子積體電路(PIC)中光互連的突破,對緊湊的設備空間、低工作偏壓和寬頻寬的需求推動了從馬赫任德調變器(MZM)到微環調變器(MRM)的轉變。與實驗室實驗不同,基於時序的DPSK-QKD在現場實驗中不可避免地會受到各種自然現象的影響。在本研究中,採用DFBLD作為單光子源來攜帶量子位元(Qubits),其具有約100 kHz的窄時域光譜拓展線寬和相對較低的瞬態響應D因子(D-Factor) 1.21 GHz/√mA。在接收端採用絕熱及防震式封裝的光纖式解調器可有效抑制因溫度擾動和機械振動等環境因素所造成的隨機相位波動。光損耗因光纖固有的吸收和散射效應而隨傳播距離呈指數增加,嚴重限制了長距離傳輸並加劇相干性的退化。以單光子偵測器進行光子偵測來分析經模擬修改的光子出現機率公式,得出了當準單光子干涉可見度具有最佳值95.86%時,對應的平均光子數與QBER為每脈衝含有0.25顆以及3.17%。採用自製的微環脈衝調變器作為量子位元產生器,在與中華電信(CHT)合作部署的13公里商用城域光纖鏈路上實現DPSK-QKD。透過具有編碼/解碼、低密度奇偶檢查碼(LDPC)和明文加密/解密的圖形化使用者介面(GUI)程式的輔助下,得出QBER以及篩選/安全密鑰率(Si/SeKRs)分別為3.51%, 24.22 kbit/s以及0.39 kbit/s。 | zh_TW |
| dc.description.abstract | With the silicon photonics era advancing, the components employed for quantum crypto-communication systems demanding wide-band data throughput and high modulation stability have gradually evolved from conventional bulk materials to multifunctional and integrated silicon photonic chips. The modulation response of the optical intensity modulator directly reflects the signal-to-noise ratio of the optical Qubits and significantly influences the QBER and information security.
In chapter 2, the realization of differential phase shift keying quantum key distribution (DPSK-QKD) is constrained by the performance of the single-photon source and the optical intensity modulator (IM). Notably, the stability of these components and operating conditions presents considerable challenges. The steady output of the distributed feedback laser diode (DFBLD) is managed by a high-stability temperature controller and a low-noise driving current source. Additionally, the power perturbations (dP/P) of the DFBLD and delayed line interferometer (DLI) are mitigated from ±0.015% to ±0.0025% and from ±6.25% to ±0.1% with the passively adiabatic packaging system, effectively reducing the damping oscillations induced by feedback driving circuits and thermal convection. By analyzing the transfer functions of the lithium niobate (LNO) and silicon photonics (SiPh) IMs, the optimal operating conditions for pulsating the continuous wave (CW) are investigated by applying 1-GHz return-to-zero on-off-keying (RZ-OOK) modulation signals. For the LNO-IM, the success rate of demodulation is comparably elevated when the electrical modulating signal functions at a 30% duty cycle. Conversely, for the SiPh-IM, the potential non-linear modulation effects necessitate establishing the operating point within the higher bias region with a 10% duty cycle modulating signal, characterized by a lower half-wave voltage (Vπ) for attaining an optimal extinction ratio (ER). The DPSK-QKD is executed with an initial mean photon number (μ) of 0.25 #/pulse. The quantum bit error rate (QBER), the sifted key rate (RSifted) and the secure key rate (RSecure) with the optical pulse streams modulated by the LNO-IM and the SiPh-IM result in (1.91%, 28.75 kbit/s, 5.78 kbit/s) and (1.67%, 33.19 kbit/s, 7.72 kbit/s) in back-to-back (BtB) transmission, gradually escalate into (3.32%, 1.79 kbit/s, 0.06 kbit/s) and (2.96%, 1.86 kbit/s, 0.14 kbit/s) with the mean photon number being attenuated to 0.016 #/pulse. In chapter 3, the transition from Mach-Zehnder modulators (MZM) to micro-ring modulators (MRM) has been driven by the requirements in recent years for compact device dimensions, reduced operating bias, and broad bandwidth, with the breakthrough of photonic interconnections in high-density photonic integrated circuits (PICs). Unlike laboratory experiments, the time-bin-based DPSK-QKD is inevitably impacted by various naturally-occurring phenomena in the field experiments. In this work, a DFBLD with a reduced temporal spectral broadening linewidth of ~100 kHz and a relatively low transient response D-factor of 1.21 GHz/√mA is employed as a single-photon source to carry the quantum bits (Qubits). With thermal- and vibration-insulated packaging for a fiberized demodulator, the random phase fluctuations caused by environmental factors such as temperature perturbations and mechanical vibrations can be effectively mitigated at the receiving end. The photon loss, exponentially increasing with propagation distance owing to inherent absorption and scattering in optical fiber, imposes a severe restriction and aggravates the coherence degradation over long distances. After simulating the modified photon emergence probability formula and performing photon detection analysis by single-photon detectors, the optimal quasi-single-photon interferometric visibility of 95.86% and a QBER of 3.17% are yielded for a mean photon number of 0.25 #/pulse. A homemade micro-ring pulsator is utilized as a quantum bits generator for realizing the DPSK-QKD over a 13-km commercially available metropolitan fiber link deployed by Chunghwa Telecom. Assisted by a graphical user interface (GUI) program incorporating the encoding/decoding, the low-density parity-check (LDPC) error correction code, and the text encryption/decryption, the QBER and the sifted/secure key rates (Si/SeKRs) are obtained to be 3.51%, 24.22 kbit/s and 0.39 kbit/s, respectively. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:18:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:18:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv ABSTRACT vi CONTENTS ix LIST OF FIGURES xiii LIST OF TABLES xvii Chapter 1 Introduction 1 1.1 Historical Review 1 1.1.1 Quantum Key Distribution (QKD) 1 1.1.2 Evolution of Integrated Silicon Photonic System-on-Chip 2 1.2 Motivation 3 1.3 Thesis Architecture 5 Chapter 2 O-band Single-Photon DPSK Quantum Key Distributor Based on LiNbO3/SiPh Modulators 7 2.1 Experimental Setup 8 2.2 Result and Discussion 11 2.2.1 DFBLD Output Performance Optimization and Noise Spectrum Analyses 11 2.2.2 Driver Selection, DLI Output Tolerance, and Adiabatic Packaging 18 2.2.3 Modulation Performance of LiNbO3 and SiPh Intensity Modulator 23 2.3 Summary 38 Chapter 3 Enabling Metropolitan DPSK-QKD with Silicon Photonic Micro-Ring Modulator 41 3.1 Experimental Setup 41 3.1.1 DPSK-QKD Schematic Diagram and SBW MRM Transfer Function 41 3.1.2 Quantum Communication Flowchart and Quantum Bits Stream Generation, Transmission, Receiving, and Sifting 47 3.2 Result and Discussion 51 3.2.1 Intrinsic Noise Analysis of the Single-Photon Carrier and Optimal Configuration of the Demodulator 51 3.2.2 Analysis of Single-Photon Detection Performance 54 3.2.3 Metropolitan DPSK-QKD Transmission through Intracity Fiber Network 64 3.3 Summary 67 Chapter 4 Conclusion 70 REFERENCE 73 作者簡介 81 期刊論文與研討會論文投稿及發表紀錄 82 | - |
| dc.language.iso | en | - |
| dc.subject | O波段 | zh_TW |
| dc.subject | 差分相移鍵控 | zh_TW |
| dc.subject | 量子密鑰分發 | zh_TW |
| dc.subject | 矽光子 | zh_TW |
| dc.subject | 馬赫任德調變器 | zh_TW |
| dc.subject | 微環調變器 | zh_TW |
| dc.subject | 雷射雜訊 | zh_TW |
| dc.subject | 絕熱封裝 | zh_TW |
| dc.subject | 卜瓦松分布 | zh_TW |
| dc.subject | 光子分析 | zh_TW |
| dc.subject | Photon Statistics | en |
| dc.subject | O-band | en |
| dc.subject | Differential-Phase-Shift Keying | en |
| dc.subject | Quantum Key Distribution | en |
| dc.subject | Silicon Photonics | en |
| dc.subject | Mach-Zehnder Modulator | en |
| dc.subject | Micro-Ring Modulator | en |
| dc.subject | Laser Noise | en |
| dc.subject | Adiabatic Packaging | en |
| dc.subject | Poisson Distribution | en |
| dc.title | O波段矽光子馬赫任德與微環元件實現脈衝位元差分相移量子密鑰城域傳輸 | zh_TW |
| dc.title | O-band Si-Photonic Mach-Zehnder and Micro-Ring Qubit Pulsators for Metropolitan DPSK-QKD | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 果尚志;吳育任;黃定洧 | zh_TW |
| dc.contributor.oralexamcommittee | Shang-Jr Gwo;Yuh-Renn Wu;Ding-Wei Huang | en |
| dc.subject.keyword | O波段,差分相移鍵控,量子密鑰分發,矽光子,馬赫任德調變器,微環調變器,雷射雜訊,絕熱封裝,卜瓦松分布,光子分析, | zh_TW |
| dc.subject.keyword | O-band,Differential-Phase-Shift Keying,Quantum Key Distribution,Silicon Photonics,Mach-Zehnder Modulator,Micro-Ring Modulator,Laser Noise,Adiabatic Packaging,Poisson Distribution,Photon Statistics, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202501004 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-05-28 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
