Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬劍清zh_TW
dc.contributor.advisorChien-Ching Maen
dc.contributor.author何祥瑋zh_TW
dc.contributor.authorHsiang-Wei Hoen
dc.date.accessioned2025-06-18T16:13:25Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-06-05-
dc.identifier.citation[1] 吳亦莊, 馬劍清, “應用Mindlin板理論與高階剪切形變理論解析固體耦合的振動特性”, 國立台灣大學機械工程研究所博士論文, 2018.
[2] Ritz, W. (1909).“Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern.” Annalen der Physik 333(4): 737-786.
[3] Young, D. (1950). “Vibration of rectangular plates by the Ritz method.” Journal of Applied Mechanics-Transactions of the ASME 17(4): 448-453.
[4] Warburton, G. (1954). “The vibration of rectangular plates.” Proceedings of the Institution of Mechanical Engineers 168(1): 371-384.
[5] Leissa, A. (1978). “Vibration of plates, NASA SP-160,(1969).”US Washington. W. Leissa. J. Sound and Vibration 56: 313.
[6] Dickinson, S. and A. Di Blasio(1986).“On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates.” Journal of Sound and Vibration 108(1): 51-62.
[7] Gorman, D. (1976). “Free vibration analysis of cantilever plates by the method of superposition.” Journal of Sound and Vibration 49(4): 453-467.
[8] Gorman, D. (1978). “Free vibration analysis of the completely free rectangular plate by the method of superposition.” Journal of Sound and Vibration 57(3): 437-447.
[9] Gorman, D. J. (1999). “Vibration analysis of plates by the superposition method”, World Scientific.
[10] Forsyth, E. and G. Warburton (1960). “Transient vibration of rectangular plates.” Journal of Mechanical Engineering Science 2(4): 325-330.
[11] Craggs, A. (1968). “Transient vibration analysis of linear systems using transition matrices.”, National Aeronautics and Space Administration.
[12] Abrate, S. (2007). “Transient response of beams, plates, and shells to impulsive loads.” ASME 2007 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers.
[13] Mochida, Y. (2010). “Free vibration analysis of plates and shells by using the Superposition Method.”, University of Waikato.
[14] Won, S. G., Bae, S. H., Jeong, W. B., Cho, J. R., and Bae, S. R. (2012). “ Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element.” Structural Engineering and Mechanics, 43(1), 15-30. https://doi.org/10.12989/sem.2012.43.1.015
[15] Avramov, K. V., and Mikhlin, Y. V. (2013). “Review of applications of Nonlinear Normal Modes for Vibrating Mechanical Systems.” Applied Mechanics Reviews, 65(2), Article 020801.
[16] Sayyad, A. S.,and Ghugal, Y. M. (2015). “On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numericalresults.”CompositefStructures
[17] Wang, Q., Shi, D., Pang, F., & Liang, Q. (2016). “Vibrations of composite laminated circular panels and shells of revolution with general elastic boundary conditions via Fourier-Ritz method.” Curved and Layered Structures, 3(1) 105-136.
[18] Demir, Ç., Ersoy, H., Mercan, K., and Civalek, Ö. (2017). “ Free vibration analysis of annular sector plates via conical shell equations.” Curved and Layered Structures, 4(1), 146-157.
[19] Duc, N. D., Seung-Eock, K., Tuan, N. D., Tran, P., and Khoa, N. D. (2017). “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer.” Aerospace Science and Technology, 70, 396-404.
[20] Sayyad, A. S., & Ghugal, Y. M. (2017). “Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature .” Composite Structures,171,486-504.
[21] Kumar, Y. (2018). “The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review.”JVC/JournaldoffVibrationfandfControl,24(7),1205-1227.
[22] Pu, Y., Zhou, H., and Meng, Z. (2019). “Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches.” Mechanical Systems and Signal Processing, 120, 166-179.
[23] Chang, C. Y., and Huang, C. W. (2020). “Non-contact measurement of inter-story drift in three-layer RC structure under seismic vibration using digital image correlation.” Mechanical Systems and Signal Processing, 136, Article 106500.
[24] Liao, C. Y., and Ma, C. C. (2020). “Transient behavior of a cantilever plate subjected to impact loading: Theoretical analysis and experimental measurement”. International Journal of Mechanical Sciences, 166, Article 105217.
[25] Kawai, H. (1969). “The piezoelectricity of poly (vinylidene fluoride) ”. Japanese Journal of Applied Physics 8(7): 975.
[26] Bacon, D. R. (1982). “Characteristics of a PVDF membrane hydrophone for use in the range 1-100 MHz”. IEEE transactions on sonics and ultrasonics 29(1): 18-25.
[27] Gaul, L. and S. Hurlebaus (1999). “Determination of the impact force on a plate by piezoelectric film sensors.” Archive of Applied Mechanics 69(9-10): 691-701.
[28] Sirohi, J. and I. Chopra (2000). “Fundamental understanding of piezoelectric strain sensors.” Journal of Intelligent Material Systems and Structures 11(4): 246-257.
[29] Fukada, E. (2000). “History and recent progress in piezoelectric polymers.” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control 47(6): 1277-1290.
[30] Bauer, F. (2000). “PVDF shock sensors: applications to polar materials and high explosives.” IEEE transactions on ultrasonics, ferroelectrics, and frequency control 47(6): 1448-1454.
[31] D'Acquisto, L. and R. Montanini (2008).“A Study on the Measurement Instrumentation for a Custom-Made Bipendulum Impact Testing Machine.” IEEE Transactions on Instrumentation and Measurement 57(11): 2487-2494.
[32] 潘善盈, 馬劍清, “應用PVDF 感測器於懸臂樑之主動抑振與揚聲器音壓之控制”, 國立台灣大學機械工程研究所碩士論文, 2009.
[33] 張鈞凱, 馬劍清, “位移與應變暫態波傳之實驗量測、理論分析以及數值計算”, 國立台灣大學機械工程研究所碩士論文, 2011.
[34] 劉泓嶔, 馬劍清, “PVDF感測器應用於結構系統之動態量測能力探討”, 國立台灣大學機械工程研究所碩士論文, 2011.
[35] Butters, J. and J. Leendertz (1971). “Speckle pattern and holographic techniques in engineering metrology.” Optics & laser technology 3(1): 26-30.
[36]Høgmoen, K. and O. J. Løkberg (1977). “Detection and measurement of small vibrations using electronic speckle pattern interferometry.” Applied Optics 16(7): 1869-1875.
[37] Slettemoen, G. A. (1980). “Electronic speckle pattern interferometric system based on a speckle reference beam.” Applied Optics 19(4): 616-623.
[38] Koyuncu, B. (1980). “The investigation of high frequency vibration modes of PZT-4 transducers using ESPI techniques with reference beam modulation.” Optics and Lasers in Engineering 1(1): 37-49.
[39]Wykes, C. (1982). “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements.” Optical Engineering 21(3): 213400-213400-.
[40]Nakadate, S., H. Saito and T. Nakajima (1986). “Vibration measurement using phase-shifting stroboscopic holographic interferometry.” Journal of Modern Optics 33(10): 1295-1309.
[41] Oswin, J., P. Salter, F. M. Santoyo and J. Tyrer (1994). “Electronic speckle pattern interferometric measurement of flextensional transducer vibration patterns: in air and water.” Journal of sound and vibration 172(4): 433-448.
[42]Wang, W.-C., C.-H. Hwang and S.-Y. Lin (1996). “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods.” Applied optics 35(22): 4502-4509.
[43] Ma, C.-C. and C.-H. Huang (2001). “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies.” Experimental Mechanics 41(1): 8-18.
[44] Ma, C.-C. and C.-H. Huang (2002). “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method.” Experimental mechanics 42(2): 140-146.
[45] Lin, H.-Y. and C.-C. Ma (2006). “The influence of electrode designs on the resonant vibrations for square piezoceramic plates.” IEEE transactions on ultrasonics, ferroelectrics, and frequency control 53(5): 825-837.
[46] 林育志, 馬劍清, “壓電元件於不同介質中的動態特性研究與實驗量測”, 國立台灣大學機械工程研究所博士論文, 2003.
[47]黃育熙, 馬劍清, “壓電石英晶體之平板結構的動態特性研究”, 國立台灣大學機械工程研究所碩士論文, 2003.
[48] 吳亦莊, 馬劍清, “理論解析與實驗量測壓電平板的面外振動及特性探討”, 國立台灣大學機械工程研究所碩士論文, 2009.
[49] 黃育熙, 馬劍清, “壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論解析”, 國立台灣大學機械工程研究所博士論文,2009.
[50] Hill, K. O., Fujii, Y., Johnson, D. C., and Kawasaki, B. S. (1978). “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication”. Applied Physics Letters, 647-649.
[51] Meltz, G., Morey, W., and Glenn, W. H. (1989). “Formation of Bragg gratings in optical fibers by a transverse holographic method”. Optics Letters, 823-825.
[52] Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., and Albert, J. (1993). “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”. Applied Physics Letters, 1035-1037.
[53] Anderson, D. Z., Mizrahi, V., Erdogan, T., and White, A. E. (1993). “Production of in-fiber gratings using a diffractive optical element”. Electronics Letters, 566-568.
[54] Bennion, I., Williams, J. A. R., Zhang L., Doran, S. K., & Doran, N. J. (1996). “UV-written in-fiber Bragg gratings”. Optics Quantum Electronics, 93-135.
[55] Hill, K. O., and Meltz, G. (1997). “Fiber Bragg grating technology fundamentals and overview. Journal of Light wave Technology”, 1263-1276.
[56] Kashyap, R. (1999). “Fiber Bragg Gratings”. Academic press.
[57] Erdogan, T. (1997). “Fiber grating spectra. Journal of Lightwave Technology”, 1277-1294.
[58] Nye, J. F. (1957). “Physical Properties of Crystals:Their Representation by Tensors and Matrices.”,Oxford university press.
[59] Bertholds, A., and Dandliker, R. (1988). “Determination of the individual strain-optic coefficients in single-mode optical fibres.”,Journal of Lightwave Technology, vol. 6, 17-20.
[60] Takahashi, S., and Shibata, S. (1979). “Thermal variation of attenuation for optical fibers.” Journal of Non-Crystalline Solids, vol. 30, 359-370.
[61] Tao, X., Tang, L., Du, W. C., and Choy, C. L. (2000). “Internal strain measurement by fiber Bragg grating sensors in textile composites.” Composites Science and Technology, vol. 60, 657-669.
[62] Kersey, A. D., Berkoff, T. A. and Morey, W. W. (1993). “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. ”Optics Letters, 1370-1372.
[63] Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., & Shum, P. (2008). “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating.” Photonics Technology Letters, IEEE, 933-935.
[64] Murukeshan, V. M., Chan, P. Y., Ong, L. S. and Seah, L. K. (2000). “Cure monitoring of smart composites using fiber Bragg grating based embedded sensors.” Sensors and Actuators A: Physical, 153-161.
[65] Zhao, X., Song, G., Fernandez, M.,and Ou, J. (2009). “One kind of fiber Bragg grating displacement sensor using micro-elastic spring.” Second International Conference on Smart Materials and Nanotechnology in Engineering, 74932X-74932X-6.
[66] Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., and asgupta, K. (2010). “Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure.”Sensors and Actuators A: Physical, vol. 157, 77-83.
[67] Ball, G. A., and Morey, W. W. (1992). “Continuously tunable single-mode erbium fiber laser.” Optics Letters, vol. 17, 420-422.
[68] Ball, G., and Morey, W. W. (1994). “Compression-tuned single-frequency Bragg grating fiber laser.” Optics Letters, vol. 19, 1979-1981.
[69] Yoon Kim, S., BaeLee, S., WonKwon, S., and SamChoi, S. (1998). “Channel-switching active add/drop multiplexer with tunable gratings.” Electronics Letters, vol. 34, 104-105.
[70] Mavoori, H., Jin, S., Espindola, R. P., and Strasser, T. A. (1999). “Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices.”Optics Letters, vol. 24, 714-716.
[71] Inui, T., Komukai, T., and Nakazawa, M. (2001). “Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers.” Optics Communications, vol. 190, 1-4.
[72] Yoffe, G. W., Krug, P. A, Ouellette, F., and Thorncraft, D. A. (1995). “Passive temperature-compensation package for optical fiber gratings.” Applied Optics, vol. 34, 6859-6861.
[73] Melle, S. M., and Liu, K. (1992). “A passive wavelength demodulation system for guided-wave Bragg grating sensors.” IEEE Photonics Technology Letters, 516-518.
[74] Kersey, A. D., Berkoff, T. A., and Morey, W. W. (1993). “Two-channel fiber Bragg-grating strain sensor with high-resolution interferometric wavelength-shift detection.” Fibers', 48-55.
[75] 蔣彥儒,王立康, “溫度無感之布拉格式光纖光柵應變感測系統之研究, ” 博士論文, 電機工程學系, 國立清華大學, 2003.
[76] 江家慶,單秋成, “能量調變型光纖光柵感測器, ” 第二十屆機械工程研討會, 2003.
[77] 葉耀文,馬劍清, “短週期光纖光柵在動態系統的量測與應用, ”碩士論文, 機械工程研究所, 台灣大學, 2004
[78] 許碩修,馬劍清, “能量調變型光纖光柵感測器在動態系統的量測與應用, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2005.
[79] 莊國志,馬劍清, “以長週期光纖光柵作為能量調變之光纖光柵感測系統動態實驗, ” 中華民國力學學會第二十九屆全國力學會議, 2005.
[80] 林伯睿,馬劍清, “高靈敏度光纖濾波器與高感度光纖光柵之開發及應用於量測穩態和暫態波傳研究, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2006.
[81] 粱正言,馬劍清, “高頻面內光纖光柵感測器及其動態量測系統之開發與研究, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2007.
[82] 汪政緯,馬劍清, “應用布拉格光纖光柵感測器於結構件承受撞擊之暫態應變量測,” 碩士論文, 機械工程學研究所, 臺灣大學, 2008.
[83] 莊國志,馬劍清, “多維高解析度布拉格光纖光柵動態位移及應變量測系統之研發並應用於暫態波傳之量測,” 博士論文, 機械工程學研究所, 臺灣大學, 2008.
[84] 王兆祥,馬劍清, “布拉格光纖光柵感測器之理論分析以及應用動態量測與監測之探討,” 碩士論文, 機械工程學研究所, 臺灣大學, 2010.
[85] 王俊耀,馬劍清, “布拉格光纖光柵感測器應用於三維結構物邊點之暫態應變量測,” 士論文, 機械工程學研究所, 臺灣大學, 2012.
[86] 王華均,馬劍清, “智慧懸臂樑結構的主動抑振研究以及布拉格光纖光柵多點量測的技術開發, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2013.
[87] 林建鐘,馬劍清, “探討質量效應對於樑結構頻率域之影響以及移動質量的動態特性分析,” 碩士論文, 機械工程學研究所, 臺灣大學, 2014.
[88] 柯秉良,馬劍清, “布拉格光纖光柵應用於壓力感測器設計與製作以及動態應變量測,” 碩士論文, 機械工程學研究所, 臺灣大學, 2015.
[89] 黃康哲,馬劍清, “聚偏二氟乙烯薄膜與布拉格光纖光柵感測器之動態量測技術研發與應用,” 博士論文, 機械工程學研究所, 臺灣大學, 2015.
[90] 李冠德,馬劍清, “以布拉格光纖光柵器量測與分析固液耦合結構物的動態特性及暫態波傳問題,” 碩士論文, 機械工程學研究所, 臺灣大學, 2016.
[91] 許詠荏,馬劍清, “布拉格光纖光柵感測器於高速內藏式主軸及超精密平面磨床動態特性、溫升及變形之精密量測,” 碩士論文, 機械工程學研究所, 臺灣大學, 2016.
[92] 龔瑞清,馬劍清, “開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測,” 碩士論文, 機械工程學研究所, 臺灣大學, 2017.
[93] Ko, P. L., Chuang, K. C., and Ma, C. C. (2018). “A fiber bragg grating-based thin-film sensor for measuring dynamic water pressure.” IEEE Sensors Journal, 18(18), 7383-7391, Article 8413096.
[94] Shang, K., Zhang, Y., Galea, M., Brusic, V., & Korposh, S. (2021). “ Fibre optic sensors for the monitoring of rotating electric machines: a review. ” Optical and Quantum Electronics, 53(2), Article 75.
[95] Mao, Y., Tong, X., Zhang, C., & Wei, J. (2021). “High temperature in-situ sensing system based on fiber Bragg grating for reciprocating compressor. ”Optical Fiber Technology, 64, Article 102545.
[96] M. M. Frocht, “Photoelasticity, ”,J. Wiley, 1941.
[97] A. J. Durelli and V. J. Parks, “Moiré Analysis of Strain.” Prentice-Hall Englewood Cliffs, New Jersey, 1970.
[98] T. Kreis, “Handbook of Holographic Interferometry: Optical and Digital Methods. ” Wiley-VCH, 2005.
[99] M. A. Sutton, J. J. Orteu, and H. W. Schreier, “Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. ” Springer Verlag, 2009.
[100] C. C. Ma and K. M. Hung, “Exact Full-Field Analysis of Strain and Displacement for Circular Disks Subjected to Partially Distributed Compressions,” International Journal of Mechanical Sciences, pp. 275–292, 2008.
[101] J. N. Butters and J. A. Leendertz, “Speckle Pattern and Holographic Techniques in Engineering Metrology,” Optics and Laser Technology, pp. 26–30, 1971.
[102] Y. H. Huang and C. C. Ma, “Experimental Measurements and Finite Element Analysis of the Coupled Vibrational Characteristics of Piezoelectric Shells,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, pp. 785–798, 2012.
[103] C. Y. Chang, S. H. Lin, and C. C. Ma, “High-Resolution Electronic Interferometry for the Measurement of In-Plane Vibration,” Applied Optics, pp. 5773–5779, 2012.
[104] T. Siebert, H. R. Schubach, and K. Splitthof, “Recent Developments and Applications for Optical Full Field Strain Measurement Using ESPI and DIC,” Proceedings of SPIE, 79972B, 2010.
[105] D. Zhang, X. Zhang, and G. Cheng, “Compression Strain Measurement by Digital Speckle Correction,” Experimental Mechanics, pp. 62-65, 1999.
[106] B. K. Bay, “Texture Correlation: a Method for the Measurement of Detailed Strain Distributions within Trabecular Bone,” Journal of Orthopaedic Research, pp. 258–267, 1995.
[107] D.J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital Speckle-Displacement Measurement Using a Complex Spectrum Method,” Applied Optics, pp. 1839–1849, 1993.
[108]G. R. Gaudette, J. Todaro, I. B. Krukenkamp, and F. P. Chiang, “Computer Aided Speckle Interferometry: a Technique for Measuring Deformation of the Surface of the Heart,” Annals of Biomedical Engineering, pp. 775–780, 2001.
[109] M.Sjodahl, and L. R. Benckert, “Electronic Speckle Photography: Analysis of an Algorithm Giving the Displacement with Subpixel Accuracy,” Applied Optics, pp. 2278–2284, 1993.
[110]M. Sjodahl, “Accuracy in Electronic Speckle Photography,” Applied Optics, pp. 2875–2885, 1997.
[111]R. J. Adrian, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, 159–169, 2005.
[112] D. J. White, W. A. Take, and M. D. Bolton “Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry,” Geotechnique, 619–631, 2003.
[113] B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate Measurement of Satellite Antenna Surface Using Three-Dimensional Digital Image Correlation Technique,” Strain, 194–200, 2009.
[114] B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography,” Experimental Mechanics, pp. 217–226, 1999.
[115] Z. Sun, J. S. Lyons, and S. R. McNeill, “Measuring Microscopic Deformations with Digital Image Correlation,” Optics And Lasers in Engineering, pp. 409–428, 1997.
[116] M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning Electron Microscopy for Quantitative Small and Llarge Deformation Measurements Part II: Experimental Validation for Magnifications from 200 to 10,000,” Experimental Mechanics, pp. 789–804, 2007.
[117] C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Full-Field Measurements of Large Deformations in Soft Materials Using Confocal Microscopy and Digital Volume Correlation,” Experimental Mechanics, pp. 427–438, 2007.
[118] X. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale Deformation and Cracking Studies of Advanced Metal Evaporated Magnetic Tapes Using Atomic Force Microscopy and Digital Image Correlation Techniques,” Materials Science and Technology, pp. 835–844, 2006.
[119] H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Experimental Mechanics, pp. 261–267, 1989.
[120] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, pp. 21–36, 2003..
[121] Bar-Kochba, E., Toyjanova, J., Andrews, E., Kim, K. S., & Franck, C. (2015). “A Fast Iterative Digital Volume Correlation Algorithm for Large Deformation”Experimental Mechanics, 55(1), 261-274.https://doi.org/10.1007/s11340-014-9874-2
[122] Grassi, L., & Isaksson, H. (2015). “Extracting accurate strain measurements in bone mechanics: A critical review of current methods.” Journal of the Mechanical Behavior of Biomedical Materials, 50, 43-54. https://doi.org/10.1016/j.jmbbm.2015.06.006
[123] Palanca, M., Tozzi, G., & Cristofolini, L. (2016). “The use of digital image correlation in the biomechanical area: A review.” International Biomechanics, 3(1), 1-21. https://doi.org/10.1080/23335432.2015.1117395
[124] Chang, C. Y., & Ma, C. C. (2017). “Increasing the computational efficient of digital cross correlation by a vectorization method.” Mechanical Systems and Signal Processing, 92, 293-314.
[125]張景媖,馬劍清,“數位影像相關法應用於跨尺度跨領域靜態及動態全域位移與應變精密量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2013
[126]周宛萱,馬劍清, “建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測,” 碩士論文, 機械工程學研究所, 臺灣大學, 2014。
[127]簡宸煜,馬劍清, “應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2015。
[128]陳亮至,馬劍清, “建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2016。
[129]彭柏勳,馬劍清, “應用數位影像相關法於機械系統與土木結構之變形及動態特性量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2016。
[130]黃右年,馬劍清, “建立即時立體數位影像相關法於三維工程問題的動態量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2018。
[131]毛英澤,馬劍清, “即時數位影像相關法系統於高速主軸即時監測及車輛追跡跨領域量測, ” 碩士論文, 機械工程學研究所, 臺灣大學, 2019。
[132] Pan, B. (2018). “Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals.” Measurement Science and Technology, 29(8), Article 082001.
[133] Ma, C. C., Ho, H. W., Chou, W. H., Chen, D. R., and Chang, C. Y. (2020). “In-situ measurements of strain distribution by coupling digital image correlation and an optical microscope. ” Microsystem Technologies.
[134] Chang, C. Y., & Huang, C. W. (2020). “Non-contact measurement of inter-story drift in three-layer RC structure under seismic vibration using digital image correlation. ” Mechanical Systems and Signal Processing, 136, Article 106500.
[135] Yoon, S., Jung, H. J., Knowles, J. C., & Lee, H. H. (2021). “Digital image correlation in dental materials and related research: A review. ” Dental Materials, 37(5), 758-771.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97456-
dc.description.abstract本篇論文研究目的,主要應用實驗室所開發精密量測技術,包括電子斑點干涉數(ESPI)、光纖光柵感測器(FBG)以及數位影像相關法(DIC),針對學術研究板結構系統的動態特性,與工業應用所研究懸吊系統避震器的動態特性及Micro LED瑕疵檢測進行深入研究探討,突顯本論文所應用量測技術與傳統量測方法,具有優異且精確的量測結果。
理論分析上,對於厚度呈現階梯變化之固定邊界圓板,運用模態展開法數學方式,將自由振動理論分析所得到的模態形狀,視為圓板暫態位移的基底函數,採用模態形狀正交特性,可分析圓板承載動態外力下所生成暫態的波傳行為。藉由全域光學系統電子斑點干涉術(AF-ESPI) 量測實驗方法,來量測圓板共振模態與頻率,並比較有限元素數值計算、實驗的量測與理論上解析等結果。另一實驗上,也利用壓電薄膜感測器PVDF來量測鋼珠落擊圓板的波源歷時,探討動態外負載與在不同觀察點位置,對於圓板暫態行為之影響,並將波源歷時代入理論的解析解和進行有限元素模擬,並比較實驗的量測結果。
在量測壓電方板實驗研究上,主要參照吳亦莊(107)博士論文依據Mindlin理論推導,應用於分析全自由邊界壓電長方板,分別在彎曲振動與伸展振動主導動態特性的共振頻率及模態分析結果,藉由全域光學系統電子斑點干涉術(AF-ESPI) 實驗來量測共振模態與頻率,並進行有限元素軟體分析壓電板振動時產生的位移場、應力場與電場等模擬結果,進一步探討彼此間關聯性,作為激振壓電板有效方法之參考依據,成功驗證理論分析與實際工程應用具有高度相關性。
本文在實驗部分也著重應用於工業上相關問題的探討,將光纖光柵感測器黏貼於避震器表面進行多點量測,並利用MATLAB軟體所開發的即時訊號分析系統,透過分析計算即時將溫升與熱應變進行解耦合,直接獲得避震器試驗過程中溫升及熱變形歷程,同時與熱電偶與熱像儀進行比較,進而分析得到避震器表面材料的熱膨脹係數,藉由量測避震器各區段熱變形後,可得到避震器作動時整體伸長量,並經由頻譜分析得到避震器作動頻率。本文也將光纖光柵感測器黏貼在彈簧表面量測壓縮彈簧變形量,也藉由MATLAB程式語言開發即時量測系統,針對彈簧系統在各種不同頻率作動下動態行為進行精密且多點變形量測,並以交互相關的方式解析彈簧壓縮過程產生交變應力訊號差異性,可預先診測彈簧系統是否達到損壞或疲勞情況。
本文應用精密量測方法係數位影像相關法(DIC),應用於量測跨領域與跨尺度工程問題,藉由這個量測技術所量到的結果,與MTS萬能試驗機輸出負載及位移計算彈簧係數進行分析與驗證彈簧係數正確性。也利用數位影像相關法(DIC)進行Micro LED良品與瑕疵品影像辨視檢測與分類,驗證實驗中所開發量測系統可靠性與量測優勢。
zh_TW
dc.description.abstractThe research purpose of this thesis is mainly to apply the experimental measurement technology developed in the laboratory, including electronic speckle pattern interferometry (ESPI)、fiber grating sensor (FBG) and digital image correlation (DIC) for subjects investigated in this study. The dynamic characteristics of the plate system in academic research, the dynamic characteristics of the suspension system shock absorbers of the industrial application research and the defect detection in Micro LED will be analyzed and discussed. The experimental result measurement by the proposed technology is compared with the traditional method and excellent performance is shown in this thesis.
This theoretical analysis combined theoretical methods and experimental measurements to investigate the transient behavior of a fixed-boundary circular plate with varying thickness subjected to impact loading. The dynamic displacement, defined as a product of time and spatial functions (mode shapes), formed the basis of the theoretical derivation. The superposition method determined the mode shapes and resonant frequencies of free vibrations, while the orthogonality of the mode functions solved the time function. In the experimental phase, Amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) measured resonant frequencies and precise mode shapes of the circular plate. Comparisons between the theoretical analysis, the finite element method, and experimental measurements validated the accuracy of the theoretical analysis. Experimental PVDF sensors recorded the time history of the external force, which was incorporated into the theoretical analysis to determine transient responses, including displacement and strain.
The experimental research of the piezoelectric plate in this thesis is mainly based on the theoretical derivation of Wu Yi-Chuang(107) doctoral dissertation based on Mindlin theory. This technique is applied to analyze the resonance frequency and mode shape of the full-free piezoelectric rectangular plate in the dynamic characteristics of flexural and extensional dominated vibration. Theoretical analysis results, the electronic speckle interferometry (AF-ESPI) experimental measurement of to measure the resonance frequency and modal shape, and the finite element software analysis were presented when the piezoelectric plate vibrates in resourance. To further explore the correlation between each other, as a reference basis for effective methods of exciting piezoelectric plates, this research verify that theoretical analysis is highly correlated with practical engineering applications.
This thesis also applies digital image correlation method to the precision measurement of multi-scale and multi-field engineering problems. The measurement results of the digital image correlation and the output load and displacement datas from MTS are used to calculation spring coefficient. According to the DIC measurement results , the correctness of the spring constant is verified. Digital image correlation (DIC) are also used to identify and classify the defect Micro LED.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:13:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:13:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 vii
圖次 xii
表次 xxiv
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 3
1.3內容簡介 14
第二章 實驗設備與量測原理介紹 18
2.1電子斑點干涉術 18
2.1.1面外振動量測 19
2.1.2面內振動量測 21
2.2阻抗分析原理與儀器介紹 23
2.2.1阻抗分析儀的基本原理 23
2.2.2阻抗分析儀的實驗設備 24
2.3 壓電薄膜PVDF量測系統 24
2.4光纖光柵基本理論與製作方法 27
2.4.1光纖光學基本原理 27
2.4.2光纖光柵基本原理 31
2.4.3光彈效應與熱光效應 32
2.4.4共振波長飄移理論 36
2.4.5光纖光柵類型 41
2.4.6光纖光柵的製作方法 43
2.5光纖光柵量測技術與實驗設備 46
2.5.1布拉格光纖光柵量測系統 46
2.5.2光纖光柵量測系統所需之相關儀器 50
第三章 厚度階梯變化圓板承受動態負載理論分析與實驗量測 84
3.1厚度階梯變化圓板受動態負載之動態分析 84
3.1.1厚度階梯變化圓板自由振動分析 85
3.1.2理論計算、實驗量測與有限元素法之比較 92
3.2厚度階梯變化圓板暫態分析理論推導 95
3.2.1圓板暫態分析理論推導 95
3.2.2實驗架設說明 99
3.2.3實驗結果(時間域比較) 101
第四章 應用Mindlin板理論於矩形壓電厚板振動分析與實驗量測 120
4.1線性壓電理論與壓電矩形板彎曲、伸展振動方程式 120
4.2實驗測量、數值計算及理論分析結果 130
4.2.1壓電矩形板理論與模擬共振頻率之討論 131
4.2.2壓電矩形板理論與有限元素分析位移總量場 131
4.2.3壓電矩形板理論與有限元素分析應力場與電場 132
4.2.4壓電矩形板實驗與理論分析共振模態 133
第五章 避震器系統之溫升、變形及振動量測 161
5.1光纖光柵分析流程 161
5.1.1共振波長飄移理論 162
5.1.2光纖光柵感測器應用於應變量測 162
5.1.3光纖光柵感測器應用於溫升量測 163
5.1.4待測物溫升與熱應變解耦合 163
5.1.5雙光纖法(裸光纖與套管光纖) 163
5.1.6可利用光纖光柵進行量測問題 165
5.2第一款避震器系統(活塞、彈簧)實驗架設說明 166
5.3第一款避震器系統(活塞、彈簧) 以3Hz來回25mm作動量測分析(實驗一) 166
5.3.1避震器活塞部分以3Hz作動下之溫升、熱應變與熱膨脹係數實驗結果 166
5.3.2即時分析程式的畫面呈現 167
5.3.3避震器系統(活塞、彈簧)3Hz作動下量測結果 168
5.3.4避震器活塞外桶熱像儀量測結果 168
5.4第一款避震器系統(活塞、彈簧)以5Hz來回25mm作動量測說明(實驗二) 169
5.5第一款避震器以5Hz來回25mm作動之實驗結果 169
5.5.1活塞部分的溫升、熱應變與熱膨脹係數 169
5.5.2夾具部分的溫升、熱應變與熱膨脹係數 170
5.5.3即時分析程式的畫面呈現 170
5.5.4避震器活塞、彈簧部分5Hz作動下的量測結果 170
5.5.5熱像儀量測結果 171
5.6第一款避震器系統以7Hz來回25mm作動實驗量測結果(實驗三) 172
5.6.1活塞部分的溫升、熱應變與熱膨脹係數 172
5.6.2夾具部分的溫升、熱應變與熱膨脹係數 172
5.6.3即時分析程式的畫面呈現 173
5.6.4避震器活塞、彈簧部分7Hz作動下的量測結果 173
5.6.5熱像儀量測結果 174
5.6.6第一款避震器系統實驗結論 174
5.7第二款避震器系統(僅活塞部分)實驗架設說明 175
5.8第二款避震器系統(僅活塞)以3Hz來回25mm作動之說明(實驗四) 175
5.8.1即時分析程式的畫面呈現 176
5.8.2熱像儀量測結果 176
5.8.3第二款避震器系統(僅活塞) 以5Hz來回25mm作動之說明(實驗五) 176
5.8.4即時分析程式的畫面呈現 177
5.8.5熱像儀量測結果 177
5.8.6第二款避震器系統的實驗結論 178
第六章 彈簧的動態量測與遠端監控系統 208
6.1布拉格光纖光柵實驗的訊號解析流程 209
6.1.1布拉格光纖光柵共振波長飄移理論 209
6.1.2光纖光柵感測器於應變與變形量量測 210
6.2數位影像相關法基本原理與實驗儀器介紹 210
6.2.1數位影像相關法基本原理 210
6.2.2數位影像相關法數據分析之重要參數 212
6.2.3正規化交叉相關法 214
6.2.4相關係數極值搜尋演算法 215
6.2.5數位影像相關法實驗操作流程 217
6.2.6實驗儀器介紹 218
6.3實驗架設 219
6.4光纖光柵與數位影像相關法實驗結果分析 220
6.4.1試驗機設定5Hz往復壓縮彈簧 220
6.4.2試驗機設定3Hz往復壓縮彈簧 222
6.4.3試驗機設定1Hz往復壓縮彈簧 224
6.5光纖光柵感測器與數位影像相關法量測彈簧變形實驗結論 227
6.5.1光纖光柵感測器量測彈簧變形結論 227
6.5.2數位影像相關法量測彈簧變形結論 228
6.6即時量測系統與遠端警戒系統之串聯 228
6.6.1遠端警戒系統 229
6.6.2雲端監看系統 (Cloud Monitoring System,CMS) 230
6.6.3光纖即時量測資料輸出系統 230
6.6.4警戒簡訊發送/雲端畫面顯示 230
第七章 應用數位影像相關法Micro LED瑕疵檢測 270
7.1 數位影像相關法Micro LED瑕疵檢測 270
7.1.1 Micro LED概述 270
7.1.2數位影像相關法 271
7.1.3 Micro LED良品與瑕疵品樣態 272
7.2 Micro LED影像瑕疵檢測標準樣板特徵搜尋與檢測結果 273
7.2.1 Micro LED影像瑕疵檢測標準樣板特徵搜尋 273
7.2.2 Micro LED影像檢測結果 273
第八章 結論與未來展望 297
8.1本文成果 297
8.2未來展望 301
參考文獻 303
-
dc.language.isozh_TW-
dc.subject微發光二極體zh_TW
dc.subject電子斑點干涉數zh_TW
dc.subject模態展開法zh_TW
dc.subject有限元素zh_TW
dc.subject共振頻率zh_TW
dc.subject光纖光柵感測器zh_TW
dc.subject振動zh_TW
dc.subject數位影像相關法zh_TW
dc.subject暫態zh_TW
dc.subjectMicro LEDen
dc.subjectAF-ESPIen
dc.subjectFiber Bragg Gratingen
dc.subjectresonant frequenciesen
dc.subjectfinite element methoden
dc.subjectnormal mode expansionen
dc.subjectDigital Image Correlationen
dc.subjectVibrationen
dc.subjecttransienten
dc.title應用先進光學量測技術探討板結構及避震系統的即時動態實驗結果和其工業應用zh_TW
dc.titleApplication of advanced optical measurement technology for the real-time dynamic experimental results of plate structure and shock absorber system and its industrial applicationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor覺文郁zh_TW
dc.contributor.coadvisorWen-Yuh Jyween
dc.contributor.oralexamcommittee趙振綱;單秋成;劉昭華;尹慶中zh_TW
dc.contributor.oralexamcommitteeChing-Kong Chao;Chow-Shing Shin;Chao-Hwa Liu;Ching-Chung Yinen
dc.subject.keyword電子斑點干涉數,光纖光柵感測器,共振頻率,有限元素,模態展開法,數位影像相關法,振動,暫態,微發光二極體,zh_TW
dc.subject.keywordAF-ESPI,Fiber Bragg Grating,resonant frequencies,finite element method,normal mode expansion,Digital Image Correlation,Vibration,transient,Micro LED,en
dc.relation.page317-
dc.identifier.doi10.6342/NTU202500968-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-06-19-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf28.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved