請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97452完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒 | zh_TW |
| dc.contributor.advisor | Chih-Hsuan Chen | en |
| dc.contributor.author | 張耕維 | zh_TW |
| dc.contributor.author | Keng-Wei Chang | en |
| dc.date.accessioned | 2025-06-18T16:12:13Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-05-13 | - |
| dc.identifier.citation | [1] J. Oliveira, R. Miranda, N. Schell, F.B. Fernandes, High strain and long duration cycling behavior of laser welded NiTi sheets, International Journal of Fatigue 83 (2016) 195-200.
[2] Z. Zeng, J. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Materials & Design 114 (2017) 282-287. [3] 李芝媛、吳錫侃, "淺談形狀記憶合金", 科儀新知第十六卷 6 (1995) 6. [4] A.V. Shuitcev, M.G. Khomutov, R.N. Vasin, L. Li, I.S. Golovin, Y.F. Zheng, Y.X. Tong, The role of H-phase in thermal hysteresis and shape memory properties in Ni50Ti30Hf20 alloy, Scripta Materialia 230 (2023) 115391. [5] G.S. Firstov, T.A. Kosorukova, Y.N. Koval, P.A. Verhovlyuk, Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials, Shape Memory and Superelasticity 1(4) (2015) 400-407. [6] F. G.S, T.A.Kosorukova,Y.N.Koval,V.V.Odnosum, Materials Today:Proceedings 2 (2015) S499-S504. [7] A. Ölander, An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society 54(10) (1932) 3819-3833. [8] L.B. Vernon, H.M. Vernon, Process of manufacturing articles of thermoplastic synthetic resins, (1941) United States Patent No. US2234993A. Washington, DC: U.S. Patent and Trademark Office. [9] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52. [10] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2 (1997) 1-21. [11] R. Wasilewski, S. Butler, J. Hanlon, D. Worden, Homogeneity range and the martensitic transformation in TiNi, Metallurgical Transactions 2 (1971) 229-238. [12] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113. [13] S. Kujala, A. Pajala, M. Kallioinen, A. Pramila, J. Tuukkanen, J. Ryhänen, Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon, Biomaterials 25(2) (2004) 353-358. [14] H. Kessler, W. Pitsch, On the nature of the martensite to austenite reverse transformation, Acta Metall Mater 15(2) (1967) 401-405. [15] G. Bartkowiak, A. Dąbrowska, M. Okrasa, G. Włoch, Preliminary study on the thermomechanical treatment of shape memory alloys for applications in clothing protecting against heat, Advances in Mechanical Engineering 9(6) (2017) 1.-9. [16] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible shape memory effect, Scripta Metallurgica 8(9) (1974) 1055-1060. [17] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metallurgica 8(12) (1974) 1363-1367. [18] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metallurgica 9(9) (1975) 941-948. [19] K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews 31(1) (1986) 93-114. [20] K. Otsuka, C. Wayman, P. Feltham, Reviews on the deformation behavior of materials, Felthman ed., Freund, Israel 2 (1977) 81. [21] R. Doherty, B. Cantor, Proc. Int. Conf. on Solid-Solid Phase Transformations, (1982) 547. [22] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [23] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [24] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110 (1972). [25] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Physica status solidi (a) 5(2) (1971) 457-470. [26] M. Nishida, H. Ohgi, I. Itai, A. Chiba, K. Yamauchi, Electron microscopy studies of twin morphologies in B19′ martensite in the Ti-Ni shape memory alloy, Acta metallurgica et materialia 43(3) (1995) 1219-1227. [27] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron microscopy study of twins in martensite in a Ti-50.0 at% Ni alloy, Materials Transactions, JIM 33(4) (1992) 354-359. [28] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678. [29] T. Tadaki, C. Wayman, Crystal structure and microstructure of a cold worked TiNi alloy with unusual elastic behavior, Scripta metallurgica 14(8) (1980) 911-914. [30] A. McKelvey, R. Ritchie, Fatigue‐crack propagation in Nitinol, a shape‐memory and superelastic endovascular stent material, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 47(3) (1999) 301-308. [31] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metall Mater 25(7) (1991) 1529-1532. [32] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys, Acta Mater 90 (2015) 213-231. [33] S. Wu, C. Wayman, Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys, Metallography 20(3) (1987) 359-376. [34] P. Potapov, A. Shelyakov, A. Gulyaev, E. Svistunov, N. Matveeva, D. Hodgson, Effect of Hf on the structure of Ni-Ti martensitic alloys, Materials Letters 32(4) (1997) 247-250. [35] Y. Lo, S. Wu, C. Wayman, Transformation heat as a function of ternary Pd additions in Ti50Ni50-zPdz alloys with x: 20∼ 50 at.%, Scripta Metall Mater 24(8) (1990) 1571-1576. [36] G. Firstov, J. Van Humbeeck, Y.N. Koval, High-temperature shape memory alloys: some recent developments, Materials Science and Engineering: A 378(1-2) (2004) 2-10. [37] G. Liu, S. Li, C. Song, Z. Liu, J. Du, X. Xie, Y. Wang, D. Cong, High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage, Intermetallics 166 (2024) 108177. [38] O. Benafan, G.S. Bigelow, A. Garg, L.G. Wilson, R.B. Rogers, E.J. Young-Dohe, D.F. Johnson, D.A. Scheiman, J.W. Lawson, Z. Wu, Ultra-High Temperature Shape Memory Behavior in Ni–Ti–Hf Alloys, Shape Memory and Superelasticity 10(1) (2024) 55-69. [39] T. Duerig, A. Pelton, C. Trepanier, Nitinol - PART I Mechanism and Behavior, SMST e-Elastic newsletter, ASM International (2011). [40] H. Hosoda, T. Fukul, K. Inoue, Y. Mishima, T. Suzuki, Change of Ms Temperatures and its Correlation to Atomic Configurations of Offstoichiometric NiTi-Cr and NiTi-Co Alloys, MRS Online Proceedings Library (OPL) 459 (1996) 287. [41] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions, Intermetallics 6(4) (1998) 291-301. [42] M. Piao, S. Miyazaki, K. Otsuka, N. Nishida, Effects of Nb addition on the microstructure of Ti–Ni alloys, Materials Transactions, JIM 33(4) (1992) 337-345. [43] Y. Kishi, Z. Yajima, K.i. Shimizu, Relation between tensile deformation behavior and microstructure in a Ti-Ni-Co shape memory alloy, Materials Transactions 43(5) (2002) 834-839. [44] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50Ni50-xCux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245. [45] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50Ni50-xCux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [46] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226. [47] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi 0.8Cu0.2, Bull. Res. Inst. Miner. Dressing Metall. (1987) 117-126. [48] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40Ni-10Cu (at.%) Alloy, Mater T Jim 31(4) (1990) 262-269. [49] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056. [50] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967. [51] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40Ni-10Cu (at.%) Alloy, Mater T Jim 32(9) (1991) 814-820. [52] T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman, Engineering Aspects of Shape Memory Alloys, (1990) 21. [53] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709. [54] W. Kim, Y. Kim, J. Kim, Y. Kim, M. Na, W. Kim, D.H. Kim, Correlation between the thermal and superelastic behavior of Ni50-xTi35Zr15Cux shape memory alloys, Intermetallics 107 (2019) 24-33. [55] J. Pang, P. Dang, J. Tian, L. Zhang, Y. Zhou, X. Ding, J. Sun, D. Xue, Effect of Cu content on martensitic transformation and shape memory behavior in Ti31. 5Hf15Zr5Ni48.5-xCux alloys, Journal of Materials Science (2024) 1-14. [56] Y. Furuya, M. Matsumoto, H.S. Kimura, T. Masumoto, Thermoelastic phase transformation of melt-spun Ti50Ni50-xCux (x = 0-20 at.%) ribbons, Materials Science and Engineering: A 147(1) (1991) L7-L11. [57] H.-C. Lee, Y.-J. Chen, C.-H. Chen, Effect of Solution Treatment on the Shape Memory Functions of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Entropy 21(10) (2019) 1027-1027. [58] 林鎮川, 國立台灣大學材料科學與工程研究所碩士論文, (1991). [59] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33. [60] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, T Jpn I Met 26(9) (1985) 646-652. [61] G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, Z.Y. Gao, Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys, Intermetallics 72 (2016) 30-35. [62] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051. [63] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120. [64] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290. [65] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. [66] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom 67(10) (2015) 2254-2261. [67] Jien-Wei Yeh, B.S. Murty, S. Ranganathan, High-Entropy Alloys, 2014. [68] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218. [69] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158. [70] O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of alloys and compounds 509(20) (2011) 6043-6048. [71] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim-Sci Mat 31(6) (2006) 633-648. [72] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [73] X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications, Journal of Materials Chemistry A (2020) 663-701. [74] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238. [75] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015) 2254-2261. [76] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Cham: Springer International Publishing (2016). [77] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85(10) (2003) 1404-1406. [78] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, Journal of Alloys and Compounds 488(1) (2009) 57-64. [79] G. Firstov, T. Kosorukova, Y.N. Koval, V. Odnosum, High entropy shape memory alloys, Materials Today: Proceedings 2 (2015) S499-S503. [80] C.-H. Chen, Y.-J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189. [81] G. Bigelow, O. Benafan, A. Garg, R. Noebe, Effect of Hf/Zr ratio on shape memory properties of high temperature Ni50. 3Ti29. 7 (Hf, Zr) 20 alloys, Scripta Materialia 194 (2021) 113623. [82] Y.-T. Chang, M.-H. Lee, M.-W. Chu, Y.-T. Hsu, C.-H. Chen, Ti30Zr10Hf10Ni35Cu15 high-entropy shape memory alloy with tunable transformation temperature and elastocaloric performance by heat treatment, Materials Today Advances 20 (2023) 100440. [83] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy, Acta Mater 83 (2015) 48-60. [84] M. Prasher, D. Sen, R. Tewari, M. Krishnan, Tuning the thermal cyclic stability of martensitic transformation in Ni50.3Ti29.7Hf20 high temperature shape memory alloy, Materials Research Bulletin 133 (2021) 111056. [85] Y.-T. Chang, M.-H. Lee, M.-W. Chu, C.-H. Chen, Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions, Materials Today Advances 14 (2022) 100223. [86] 莊昀樸, 國立台灣大學機械工程研究所碩士論文, Ti30Zr15Hf5Ni35Cu15與Ti30Zr5Hf15Ni35Cu15高熵形狀記憶合金中Zr與Hf元素換置對於顯微結構與相變態之影響 (2023). [87] K.C. Atli, I. Karaman, R.D. Noebe, Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Mat Sci Eng a-Struct 613 (2014) 250-258. [88] D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun, Z. Chaudhry, Ultra-high temperature multi-component shape memory alloys, Scripta Materialia 158 (2019) 83-87. [89] H. Okamoto, Cu-Hf (Copper-Hafnium), Journal of Phase Equilibria and Diffusion 28(6) (2007) 583-584. [90] H. Okamoto, Cu-Zr (Copper-Zirconium), Journal of Phase Equilibria and Diffusion 33(5) (2012) 417-418. [91] X. Han, R. Wang, Z. Zhang, D. Yang, A new precipitate phase in a TiNiHf high temperature shape memory alloy, Acta Mater 46(1) (1998) 273-281. [92] R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H. Karaca, R. Noebe, TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys, Acta Mater 61(16) (2013) 6191-6206. [93] A. Evirgen, J. Pons, I. Karaman, R. Santamarta, R.D. Noebe, H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys, Shape Memory and Superelasticity 4(1) (2018) 85-92. [94] S. Li, D. Cong, Z. Chen, S. Li, C. Song, Y. Cao, Z. Nie, Y. Wang, A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery, Materials Research Letters 9(6) (2021) 263-269. [95] S. Li, D. Cong, X. Sun, Y. Zhang, Z. Chen, Z. Nie, R. Li, F. Li, Y. Ren, Y. Wang, Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy, Materials Research Letters 7(12) (2019) 482-489. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97452 | - |
| dc.description.abstract | 本研究針對Ti30Hf20-xZrxNi35Cu15 (x=0, 5, 10, 15, 20) 擬二元中、高熵形狀記憶合金進行Hf、Zr元素相互替換的影響,分別命名為Hf20、Hf15、Hf10Zr10、Zr15、Zr20。特別針對Hf20及Zr20兩種尚未被研究之合金的相變態溫度、顯微結構、晶體結構、形狀記憶效應進行研究。Hf20合金在經過400℃、500℃時效處理後,相變溫度下降,且循環穩定性增加;Zr合金在經過400℃、500℃時效處理後相變溫度消失,推測降至低於儀器量測範圍;Hf20與Zr20合金皆在600℃、700℃時效處理後相變溫度上升。在掃描電子顯微鏡及場發射電子微探儀成分分析實驗中,400℃與500℃時效處理後的五種合金中,唯有Zr20被觀察到明顯的H相析出物,在穿透式電子顯微鏡中也觀察到相關繞射圖;在600℃時效處理後,在Hf20及Hf15觀察到層狀結構,Zr元素含量越高之合金則有更密集的Zr7Cu10白色析出物,證明Hf元素因沒有Zr元素的ZrCu中間相,更容易產生Hf7Cu10與Ti2Cu組成的層狀析出物;700℃時效處理後,五種合金皆展現出對比略有差異之新生Ti2Ni以及白色(Hf,Zr)7Cu10析出物,與600℃時效後的顯微結構趨勢一致,Zr元素含量與析出物密度呈正相關。X光繞射儀實驗中,驗證顯微結構與成分分析觀察結果外,也觀察到此兩種合金皆在完全相變(或逆相變)後仍有殘留的B2 相(B19’相),顯示有部分材料體積沒有參與相變過程。Hf20及Zr20合金固溶後皆擁有優秀的形狀記憶效應,Hf20合金在不同溫度的時效後皆有短暫的析出強化效果;而Zr20則是在時效處理後可恢復應變減少。總結所有實驗,相比於Hf元素,Zr元素使合金在熱處理後更容易產生析出物,因此相變溫度的變化更為劇烈。 | zh_TW |
| dc.description.abstract | This study investigates the effect of mutual substitution of Hf and Zr elements on the shape memory effect of Ti30Hf20-xZrxNi35Cu15 (x=0, 5, 10, 15, 20) pseudo-binary medium and high entropy shape memory alloys. The alloys were named Hf20, Hf15, Hf10Zr10, Zr15, and Zr20, respectively. The research particularly focuses on the transformation temperatures, microstructure, crystal structure, and shape memory effect of Hf20 and Zr20 alloys, which have not been studied before. The results showed that the transformation temperatures of Hf20 alloy decreased after aging at 400°C and 500°C, but its cyclic stability increased. The transformation temperatures of Zr20 alloy disappeared after aging at 400°C and 500°C, and it is speculated that they dropped below the measurement range of the instrument. The transformation temperatures of both Hf20 and Zr20 alloys increased after aging at 600°C and 700°C. In Scanning Electron Microscope microstructure and Electron Probe Microanalyzer composition analysis experiments, Zr20 among the five alloys aged at 400°C and 500°C was observed to have obvious H-phase precipitates, and the corresponding diffraction patterns were also observed in Transmission electron microscope. After aging at 600°C, layered structures were observed in Hf20 and Hf15, and alloys with higher Zr content had denser Zr7Cu10 white precipitates. This proves that Hf elements, which do not have the ZrCu intermediate phase of Zr elements, are more likely to produce layered precipitates composed of Hf7Cu10 and Ti2Cu. After aging at 700°C, all five alloys exhibited slightly different new Ti2Ni and white (Hf,Zr)7Cu10 precipitates, consistent with the trend of the microstructure after aging at 600°C. The atomic percentage of Zr elements fraction and precipitates is positively correlated. In X-ray diffractometer experiments, in addition to verifying the results of microstructure and composition analysis, it was also observed that both alloys still had residual B2 phases (B19' phases) after complete martensite transformation (or reverse transformation), indicating that part of the material volume did not participate in the transformation process. Both Hf20 and Zr20 alloys have excellent shape memory effect after solid solution. Hf20 alloy has a short-term precipitation strengthening effect after aging at different temperatures; while Zr20 alloy can restore strain reduction after aging. In summary, compared to Hf elements, Zr elements make alloys more prone to precipitates after heat treatment, and therefore the changes in transformation temperature are more drastic. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:12:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:12:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xv 第一章 前言 1 第二章 文獻回顧 2 2-1 形狀記憶合金簡介 2 2-2 形狀記憶特性 3 2-2-1 熱彈型麻田散體相變態 3 2-2-2 形狀記憶效應(Shape Memory Effect) 5 2-2-3 超彈性(Superelasticity) 8 2-2-4 彈熱效應(Elastocaloric Effect) 12 2-3 Ti-Ni基形狀記憶合金 14 2-4 不同元素添加對形狀記憶合金之影響 16 2-5 熱循環對合金之影響 21 2-6 高熵合金簡介 23 2-6-1 高熵效應(High Entropy Effect) 24 2-6-2 緩慢擴散效應(Sluggish Diffusion Effect) 25 2-6-3 晶格扭曲效應(Sever Lattice Distortion Effect) 26 2-6-4 雞尾酒效應(Cocktail Effect) 27 2-7 高熵形狀記憶合金簡介 28 2-8 高熵形狀記憶合金近年研究 30 2-9 時效處理對高熵形狀記憶合金之影響 32 第三章 實驗方法 38 3-1 合金配置與熔煉 39 3-2 合金之固溶處理與均質化處理 40 3-3 合金之時效處理 40 3-4 相變態溫度試驗(DSC) 41 3-5 DMA量測 43 3-5-1三點彎曲測試原理 44 3-6 場發射槍掃描式電子顯微鏡觀察(SEM) 45 3-7 場發射電子微探儀觀察(EPMA) 45 3-8 穿透式電子顯微鏡觀察(TEM) 45 3-9 晶體結構X光繞射儀觀察(XRD) 46 第四章 實驗結果與討論 47 4-1 相變溫度之實驗結果(DSC) 47 4-1-1 Hf20合金之相變溫度實驗結果 47 4-1-2 Zr20合金之相變溫度實驗結果 61 4-1-3 (Hf+Zr)20系列合金之相變溫度比較與討論 68 4-2 微觀組織之實驗結果(SEM、EDS、EPMA) 70 4-2-1 Hf20合金之顯微組織實驗結果 70 4-2-2 Zr20合金之顯微組織實驗結果 83 4-2-3 (Hf+Zr)20系列合金時效後顯微組織實驗結果與比較 96 4-3 穿透式電子顯微鏡觀察(TEM) 106 4-3-1 Zr20合金經過500℃時效之TEM 106 4-3-2 Hf15合金經過500℃時效之TEM 110 4-4晶體結構之實驗結果(XRD) 112 4-4-1 Hf20合金之晶體結構實驗結果 112 4-4-2 Zr20合金之晶體結構實驗結果 116 4-5 形狀記憶效應量測(SME) 120 4-5-1 Hf20合金之形狀記憶效應實驗結果 120 4-5-2 Zr20合金之形狀記憶效應實驗結果 126 第五章 結論 129 參考文獻 130 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 麻田散體相變態 | zh_TW |
| dc.subject | 析出物 | zh_TW |
| dc.subject | 時效處理 | zh_TW |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | 高熵合金 | zh_TW |
| dc.subject | precipitates | en |
| dc.subject | high-entropy alloy | en |
| dc.subject | shape memory alloy | en |
| dc.subject | aging treatment | en |
| dc.subject | phase transformation | en |
| dc.title | 中高熵Ti30(ZrHf)20Ni35Cu15形狀記憶合金中Zr與Hf元素換置對於相變態、顯微結構與形狀記憶效應之影響 | zh_TW |
| dc.title | Effects of Zr and Hf Elements on Phase Transformation, Microstructure, and Shape Memory Effect of Medium Entropy Ti30(ZrHf)20Ni35Cu15 Shape Memory Alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林哲宇;林新智 | zh_TW |
| dc.contributor.oralexamcommittee | Jhe-Yu Lin;XIN-ZHI LIN | en |
| dc.subject.keyword | 高熵合金,形狀記憶合金,時效處理,麻田散體相變態,析出物, | zh_TW |
| dc.subject.keyword | high-entropy alloy,shape memory alloy,aging treatment,phase transformation,precipitates, | en |
| dc.relation.page | 136 | - |
| dc.identifier.doi | 10.6342/NTU202500932 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-05-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 13.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
