請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林亮宇 | zh_TW |
| dc.contributor.advisor | Lian-Yu Lin | en |
| dc.contributor.author | Nicola Marino | zh_TW |
| dc.contributor.author | Nicola Marino | en |
| dc.date.accessioned | 2025-06-18T16:11:55Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-07 | - |
| dc.identifier.citation | World Health Organization: WHO. (2020, March 11). Hepatitis. https://www.who.int/health-topics/hepatitis.
Hepatitis C - symptoms and causes. (n.d.). https://www.pennmedicine.org/for-patients-and-visitors/patient-information/conditions-treated-a-to-z/hepatitis-c Hepatitis. (2025, February 28). Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/hepatitis Hepatitis. (n.d.). Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/hepatitis World Health Organization: WHO. (2025, February 12). Hepatitis A. https://www.who.int/news-room/fact-sheets/detail/hepatitis-a World Health Organization: WHO. (2023, July 20). Hepatitis E. https://www.who.int/news-room/fact-sheets/detail/hepatitis-e World Health Organization: WHO. (2023, July 20). Hepatitis D. https://www.who.int/news-room/fact-sheets/detail/hepatitis-d World Health Organization: WHO & World Health Organization: WHO. (2024, April 9). Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b World Health Organization: WHO & World Health Organization: WHO. (2024, April 9). Hepatitis C. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c Laugi, H. (2021). Discovery of Hepatitis C virus: 2020 Nobel Prize in Medicine. Euroasian Journal of Hepato-Gastroenterology, 10(2), 105–108. https://doi.org/10.5005/jp-journals-10018-1326 Hepatitis C | CDC Yellow Book 2024. (n.d.). https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/hepatitis-c Ball, J. K., Tarr, A. W., & McKeating, J. A. (2014). The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Research, 105, 100–111. https://doi.org/10.1016/j.antiviral.2014.02.013 Oancea, C. N., Butaru, A. E., Streba, C. T., Pirici, D., Rogoveanu, I., Diculescu, M. M., & Gheonea, D. I. (2021). Global hepatitis C elimination: history, evolution, revolutionary changes and barriers to overcome. Romanian Journal of Morphology and Embryology, 61(3), 643–653. https://doi.org/10.47162/rjme.61.3.02 Hoofnagle, J. H., Mullen, K. D., Jones, D. B., Rustgi, V., Di Bisceglie, A., Peters, M., Waggoner, J. G., Park, Y., & Jones, E. A. (1986). Treatment of Chronic Non-A, Non-B Hepatitis with Recombinant Human Alpha Interferon. New England Journal of Medicine, 315(25), 1575–1578. https://doi.org/10.1056/nejm198612183152503 Alberti, A., Chemello, L., Noventa, F., Cavalletto, L., & De Salvo, G. (1997). Therapy of hepatitis C: Re-treatment with alpha interferon. Hepatology, 26(Supplement 3), 137S-142S. https://doi.org/10.1002/hep.510260724 Nawaz, A., Manzoor, A., Ahmed, S., Ahmed, N., Abbas, W., Mir, M. A., Bilal, M., Sheikh, A., Ahmad, S., Jeelani, I., & Nakagawa, T. (2024). Therapeutic approaches for chronic hepatitis C: a concise review. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1334160 Pegylated interferons. (2001). PubMed. https://pubmed.ncbi.nlm.nih.gov/12120178/ Fabrizi, F., Dixit, V., Messa, P., & Martin, P. (2010). Pegylated interferon monotherapy of chronic hepatitis C in dialysis patients: Meta‐analysis of clinical trials. Journal of Medical Virology, 82(5), 768–775. https://doi.org/10.1002/jmv.21542 Patient adherence to antiviral treatment for chronic hepatitis B and C: a systematic review. (2013, June 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/23619254/ Geddawy, A., Ibrahim, Y. F., Elbahie, N. M., & Ibrahim, M. A. (2017). Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. Journal of Translational Internal Medicine, 5(1), 8–17. https://doi.org/10.1515/jtim-2017-0007 Monitoring patients who are starting HCV treatment, are on treatment, or have completed therapy | HCV Guidance. (n.d.). https://www.hcvguidelines.org/evaluate/monitoring National Institute of Diabetes and Digestive and Kidney Diseases. (2022, January 26). Boceprevir. LiverTox - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK548247/ Glecaprevir/pibrentasvir ultra-short treatment to cure HCV infection: case report and literature review. (2020, December 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/33257639/ EPCLUSA | European Medicines Agency (EMA). (n.d.). European Medicines Agency (EMA). https://www.ema.europa.eu/en/medicines/human/EPAR/epclusa Pawlotsky, J., Negro, F., Aghemo, A., Berenguer, M., Dalgard, O., Dusheiko, G., Marra, F., Puoti, M., & Wedemeyer, H. (2020). EASL recommendations on treatment of hepatitis C: Final update of the series☆. Journal of Hepatology, 73(5), 1170–1218. https://doi.org/10.1016/j.jhep.2020.08.018 Omata, M., Kanda, T., Wei, L., Yu, M., Chuang, W., Ibrahim, A., Lesmana, C. R. A., Sollano, J., Kumar, M., Jindal, A., Sharma, B. C., Hamid, S. S., Dokmeci, A. K., Mamun-Al-Mahtab, N., McCaughan, G. W., Wasim, J., Crawford, D. H. G., Kao, J., Yokosuka, O., . . . Sarin, S. K. (2016). APASL consensus statements and recommendation on treatment of hepatitis C. Hepatology International, 10(5), 702–726. https://doi.org/10.1007/s12072-016-9717-6 Esteban, R., Domínguez-Hernández, R., Cantero, H., & Casado, M. Á. (2024). Evaluation of the clinical and economic value of sofosbuvir/velpatasvir (SOF/VEL) in patients with chronic hepatitis C in Spain during the last 5 years. Gastroenterología Y Hepatología, 47(10), 502199. https://doi.org/10.1016/j.gastrohep.2024.502199 Mangia, A., Milligan, S., Khalili, M., Fagiuoli, S., Shafran, S. D., Carrat, F., Ouzan, D., Papatheodoridis, G., Ramji, A., Borgia, S. M., Wedemeyer, H., Losappio, R., Pérez‐Hernandez, F., Wick, N., Brown, R. S., Lampertico, P., Doucette, K., Ntalla, I., Ramroth, H., . . . Turnes, J. (2020). Global real‐world evidence of sofosbuvir/velpatasvir as simple, effective HCV treatment: Analysis of 5552 patients from 12 cohorts. Liver International, 40(8), 1841–1852. https://doi.org/10.1111/liv.14537 The value of sofosbuvir/velpatasvir (SOF/VEL) as a pangenotypic and panfibrotic HCV treatment in implementing a test-and-treat strategy in prisons: real-world care management from 6 countries. (n.d.). https://www.natap.org/2020/AASLD/AASLD_14.htm Zignego, A. L., Monti, M., & Gragnani, L. (2018). Sofosbuvir/Velpatasvir for the treatment of Hepatitis C Virus infection. PubMed, 89(3), 321–331. https://doi.org/10.23750/abm.v89i3.7718 Mangia, A., Cenderello, G., Copetti, M., Verucchi, G., Piazzolla, V., Lorusso, C., Santoro, R., Squillante, M. M., Orlandini, A., Minisini, R., & Ciancio, A. (2019). SVR12 Higher than 97% in GT3 Cirrhotic Patients with Evidence of Portal Hypertension Treated with SOF/VEL without Ribavirin: A Nation-Wide Cohort Study. Cells, 8(4), 313. https://doi.org/10.3390/cells8040313 Office of the Commissioner. (2017, August 3). FDA approves Mavyret for Hepatitis C. U.S. Food And Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-mavyret-hepatitis-c Liu, C., Liu, C., Hung, C., Hsieh, S., Su, T., Sun, H., Tseng, T., Chen, P., Chen, D., & Kao, J. (2019). Glecaprevir/pibrentasvir for patients with chronic hepatitis C virus infection: Real‐world effectiveness and safety in Taiwan. Liver International, 40(4), 758–768. https://doi.org/10.1111/liv.14295 Liu, C., Yang, S., Peng, C., Lin, W., Liu, C., Su, T., Tseng, T., Chen, P., Chen, D., & Kao, J. (2020). Glecaprevir/pibrentasvir for patients with chronic hepatitis C virus infection and severe renal impairment. Journal of Viral Hepatitis, 27(6), 568–575. https://doi.org/10.1111/jvh.13265 Liu, C., Peng, C., Liu, C., Chen, C., Lo, C., Tseng, K., Su, P., Kao, W., Tsai, M., Tung, H., Cheng, H., Lee, F., Huang, C., Huang, K., Shih, Y., Yang, S., Wu, J., Lai, H., Fang, Y., . . . Kao, J. (2023). Sofosbuvir/velpatasvir/voxilaprevir for patients with chronic hepatitis C virus infection previously treated with NS5A direct-acting antivirals: a real-world multicenter cohort in Taiwan. Hepatology International, 17(2), 291–302. https://doi.org/10.1007/s12072-022-10475-9 Martinello, M., Solomon, S. S., Terrault, N. A., & Dore, G. J. (2023). Hepatitis C. The Lancet, 402(10407), 1085–1096. https://doi.org/10.1016/s0140-6736(23)01320-x Borgia, S. M., Hedskog, C., Parhy, B., Hyland, R. H., Stamm, L. M., Brainard, D. M., Subramanian, M. G., McHutchison, J. G., Mo, H., Svarovskaia, E., & Shafran, S. D. (2018). Identification of a novel hepatitis C virus genotype from Punjab, India: Expanding classification of hepatitis C virus into 8 genotypes. The Journal of Infectious Diseases, 218(11), 1722–1729. https://doi.org/10.1093/infdis/jiy401 Sarrazin, C. (2021). Treatment failure with DAA therapy: Importance of resistance. Journal of Hepatology, 74(6), 1472–1482. https://doi.org/10.1016/j.jhep.2021.03.004 Transforming our World: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. (n.d.). https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 Hiv/Aids. (2016, May 3). Global health sector strategy on HIV: 2016-2021. https://www.who.int/publications/i/item/WHO-HIV-2016.05 Gamkrelidze, I., Pawlotsky, J., Lazarus, J. V., Feld, J. J., Zeuzem, S., Bao, Y., Santos, A. G. P. D., Gonzalez, Y. S., & Razavi, H. (2021). Progress towards hepatitis C virus elimination in high‐income countries: An updated analysis. Liver International, 41(3), 456–463. https://doi.org/10.1111/liv.14779 Programmes, G. H. H. a. S. (2012, July 19). Prevention and Control of Viral hepatitis Infection: Framework for Global Action. https://www.who.int/publications/i/item/prevention-and-control-of-viral-hepatitis-infection-framework-for-global-action Global health sector strategies. (2025, March 25). https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/strategies/global-health-sector-strategies Programmes, G. H. H. a. S. (2024, April 9). Global hepatitis report 2024: action for access in low- and middle-income countries. https://www.who.int/publications/i/item/9789240091672 Gamkrelidze, I., Pawlotsky, J., Lazarus, J. V., Feld, J. J., Zeuzem, S., Bao, Y., Santos, A. G. P. D., Gonzalez, Y. S., & Razavi, H. (2021). Progress towards hepatitis C virus elimination in high‐income countries: An updated analysis. Liver International, 41(3), 456–463. https://doi.org/10.1111/liv.14779 Solomon, S. S., Wagner-Cardoso, S., Smeaton, L., Sowah, L. A., Wimbish, C., Robbins, G., Brates, I., Scello, C., Son, A., Avihingsanon, A., Linas, B., Anthony, D., Nunes, E. P., Kliemann, D. A., Supparatpinyo, K., Kityo, C., Tebas, P., Bennet, J. A., Santana-Bagur, J., . . . Sulkowski, M. (2022). A minimal monitoring approach for the treatment of hepatitis C virus infection (ACTG A5360 [MINMON]): a phase 4, open-label, single-arm trial. the Lancet. Gastroenterology & Hepatology, 7(4), 307–317. https://doi.org/10.1016/s2468-1253(21)00397-6 Yu, M., Tai, C., Mo, L., Kuo, H., Huang, C., Tseng, K., Lo, C., Bair, M., Wang, S., Huang, J., Yeh, M., Chen, C., Tsai, M., Huang, C., Lee, P., Yang, T., Huang, Y., Chong, L., Chen, C., . . . Peng, C. (2024). An algorithm for simplified hepatitis C virus treatment with non-specialist care based on nation-wide data from Taiwan. Hepatology International, 18(2), 461–475. https://doi.org/10.1007/s12072-023-10609-7 Pan, C. Q., & Park, J. S. (2024). Revamping hepatitis C global eradication efforts: towards simplified and enhanced screening, prevention, and treatment. Translational Gastroenterology and Hepatology, 9, 30. https://doi.org/10.21037/tgh-23-104 Klein, M. B. (2022). Simplifying HCV treatment: a pathway to elimination and model for delivering health care to vulnerable populations. the Lancet. Gastroenterology & Hepatology, 7(4), 277–279. https://doi.org/10.1016/s2468-1253(21)00467-2 Dore, G. J., Feld, J. J., Thompson, A., Martinello, M., Muir, A. J., Agarwal, K., Müllhaupt, B., Wedemeyer, H., Lacombe, K., Matthews, G. V., Schultz, M., Klein, M., Hezode, C., Mercade, G. E., Kho, D., Petoumenos, K., Marks, P., Tatsch, F., Santos, A. G. P. D., & Gane, E. (2019). Simplified monitoring for hepatitis C virus treatment with glecaprevir plus pibrentasvir, a randomised non-inferiority trial. Journal of Hepatology, 72(3), 431–440. https://doi.org/10.1016/j.jhep.2019.10.010 Oru, E., Trickey, A., Shirali, R., Kanters, S., & Easterbrook, P. (2021). Decentralisation, integration, and task-shifting in hepatitis C virus infection testing and treatment: a global systematic review and meta-analysis. The Lancet Global Health, 9(4), e431–e445. https://doi.org/10.1016/s2214-109x(20)30505-2 Jordan, A. E., Cleland, C. M., Schackman, B. R., Wyka, K., Perlman, D. C., & Nash, D. (2019). Hepatitis C virus (HCV) care continuum outcomes and HCV community viral loads among patients in an opioid treatment program. The Journal of Infectious Diseases, 222(Supplement_5), S335–S345. https://doi.org/10.1093/infdis/jiz686 A systematic literature review of interventions to increase linkage to care and adherence to treatment for hepatitis B and C, HIV and tuberculosis among people who inject drugs. (2022, November 22). European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/publications-data/systematic-literature-review-interventions-increase-linkage-care-and-adherence Lazarus, J. V., Wiktor, S., Colombo, M., & Thursz, M. (2017). Micro-elimination – A path to global elimination of hepatitis C. Journal of Hepatology, 67(4), 665–666. https://doi.org/10.1016/j.jhep.2017.06.033 Lazarus, J. V., Picchio, C. A., Byrne, C. J., Crespo, J., Colombo, M., Cooke, G. S., Dore, G. J., Grebely, J., Ward, J. W., & Dillon, J. F. (2022). A Global Systematic Review of Hepatitis C Elimination Efforts through Micro-Elimination. Seminars in Liver Disease, 42(02), 159–172. https://doi.org/10.1055/a-1777-6112 Alkhawaldeh, I. M., Moawad, M. H. E. D., & Al-Jafari, M. (2024). The impact of Hepatitis C Microelimination Strategies in HCV/HIC co-infected Individuals: A current state of art. JAP Academy Journal, 2(2). https://doi.org/10.58877/japaj.v2i2.133 Falade‐Nwulia, O., Sulkowski, M. S., Merkow, A., Latkin, C., & Mehta, S. H. (2018). Understanding and addressing hepatitis C reinfection in the oral direct‐acting antiviral era. Journal of Viral Hepatitis, 25(3), 220–227. https://doi.org/10.1111/jvh.12859 Wyles, D. L., Kang, M., Matining, R. M., Murphy, R. L., & Peters, M. G. (2021). Continued Low Rates of Hepatitis C Virus (HCV) Recurrence in HCV/HIV- and HCV-Infected Participants Who Achieved Sustained Virologic Response After Direct-Acting Antiviral Treatment: Final Results From the AIDS Clinical Trials Group A5320 Viral Hepatitis C Infection Long-term Cohort Study (V-HICS). Open Forum Infectious Diseases, 8(12). https://doi.org/10.1093/ofid/ofab511 Carson, J. M., Hajarizadeh, B., Hanson, J., O’Beirne, J., Iser, D., Read, P., Balcomb, A., Davies, J., Doyle, J. S., Yee, J., Martinello, M., Marks, P., Dore, G. J., & Matthews, G. V. (2021). Effectiveness of treatment for hepatitis C virus reinfection following direct acting antiviral therapy in the REACH-C cohort. International Journal of Drug Policy, 96, 103422. https://doi.org/10.1016/j.drugpo.2021.103422 Sacks-Davis, R., Van Santen, D. K., Boyd, A., Young, J., Stewart, A., Doyle, J. S., Rauch, A., Mugglin, C., Klein, M., Van Der Valk, M., Smit, C., Jarrin, I., Berenguer, J., Lacombe, K., Requena, M., Wittkop, L., Leleux, O., Bonnet, F., Salmon, D., . . . Vincensini, J. (2024). Changes in incidence of hepatitis C virus reinfection and access to direct-acting antiviral therapies in people with HIV from six countries, 2010–19: an analysis of data from a consortium of prospective cohort studies. The Lancet HIV, 11(2), e106–e116. https://doi.org/10.1016/s2352-3018(23)00267-9 Martinello, M., Carson, J. M., Van Der Valk, M., Rockstroh, J. K., Ingiliz, P., Hellard, M., Nelson, M., Lutz, T., Bhagani, S., Kim, A. Y., Hull, M., Cordes, C., Moon, J., Feld, J. J., Gane, E., Rauch, A., Bruneau, J., Tu, E., Applegate, T., . . . Matthews, G. V. (2023). Reinfection incidence and risk among people treated for recent hepatitis C virus infection. AIDS. https://doi.org/10.1097/qad.0000000000003651 Falade‐Nwulia, O., Sulkowski, M. S., Merkow, A., Latkin, C., & Mehta, S. H. (2018). Understanding and addressing hepatitis C reinfection in the oral direct‐acting antiviral era. Journal of Viral Hepatitis, 25(3), 220–227. https://doi.org/10.1111/jvh.12859 Deeks, S. G., Overbaugh, J., Phillips, A., & Buchbinder, S. (2015). HIV infection. Nature Reviews Disease Primers, 1(1). https://doi.org/10.1038/nrdp.2015.35 Palacio-Vieira, J., Reyes-Urueña, J.M., Imaz, A. et al. Strategies to reengage patients lost to follow up in HIV care in high income countries, a scoping review. BMC Public Health 21, 1596 (2021). https://doi.org/10.1186/s12889-021-11613-y Hiv.Gov. (2025, February 19). HIV.gov Archives: National HIV/AIDS Strategies and Reports. HIV.gov. https://www.hiv.gov/nhas-archives "Fast-Track Targets 90-90-90 95-95-95 ZERO - UNAIDS." https://www.unaids.org/sites/default/files/media_asset/201506_JC2743_Understanding_FastTrack_en.pdf. USAID’s leadership to sustain and Accelerate the HIV response | Global Health | U.S. Agency for International Development. (n.d.). U.S. Agency For International Development. https://web.archive.org/web/20250201195958/https://www.usaid.gov/global-health/health-areas/hiv-and-aids/hiv-sustainability Sepúlveda-Crespo, D., Volpi, C., Amigot-Sánchez, R., Yélamos, M. B., Díez, C., Gómez, J., Hontañón, V., Berenguer, J., González-García, J., Martín-Escolano, R., Resino, S., & Martínez, I. (2024). Sustained Long-Term Decline in Anti-HCV Neutralizing Antibodies in HIV/HCV-Coinfected Patients Five Years after HCV Therapy: A Retrospective Study. Pharmaceuticals, 17(9), 1152. https://doi.org/10.3390/ph17091152 Zarębska-Michaluk, D., Rzymski, P., Kanecki, K., Tyszko, P., Lewtak, K., Goryński, P., Genowska, A., Parczewski, M., & Flisiak, R. (2024). Hospitalizations and deaths among people coinfected with HIV and HCV. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-80289-2 Sikavi, C., Chen, P. H., Lee, A. D., Saab, E. G., Choi, G., & Saab, S. (2017). Hepatitis C and human immunodeficiency virus coinfection in the era of direct‐acting antiviral agents: No longer a difficult‐to‐treat population. Hepatology, 67(3), 847–857. https://doi.org/10.1002/hep.29642 Bartlett, S. R., Verich, A., Carson, J., Hosseini‐Hooshyar, S., Read, P., Baker, D., Post, J. J., Finlayson, R., Bloch, M., Doyle, J. S., Shaw, D., Hellard, M., Martinez, M., Marks, P., Dore, G. J., Matthews, G. V., Applegate, T., & Martinello, M. (2022). Patterns and correlates of hepatitis C virus phylogenetic clustering among people living with HIV in Australia in the direct‐acting antiviral era: A molecular epidemiology study among participants in the CEASE cohort. Health Science Reports, 5(5). https://doi.org/10.1002/hsr2.719 Kronfli, N., Bhatnagar, S. R., Hull, M. W., Moodie, E. E., Cox, J., Walmsley, S., Gill, J., Cooper, C., Martel-Laferrière, V., Pick, N., & Klein, M. B. (2019). Trends in cause-specific mortality in HIV–hepatitis C coinfection following hepatitis C treatment scale-up. AIDS, 33(6), 1013–1022. https://doi.org/10.1097/qad.0000000000002156 Chalouni, M., Pol, S., Sogni, P., Fontaine, H., Lacombe, K., Marc-Lacombe, J., Esterle, L., Dorival, C., Bourlière, M., Bani-Sadr, F., De Ledinghen, V., Zucman, D., Larrey, D., Salmon, D., Carrat, F., Wittkop, L., Salmon, D., Wittkop, L., Sogni, P., . . . Lebrasseur-Longuet, D. (2020). Increased mortality in HIV/HCV-coinfected compared to HCV-monoinfected patients in the DAA era due to non-liver-related death. Journal of Hepatology, 74(1), 37–47. https://doi.org/10.1016/j.jhep.2020.08.008 MacGregor, L., Martin, N. K., Mukandavire, C., Hickson, F., Weatherburn, P., Hickman, M., & Vickerman, P. (2017). Behavioural, not biological, factors drive the HCV epidemic among HIV-positive MSM: HCV and HIV modelling analysis including HCV treatment-as-prevention impact. International Journal of Epidemiology, 46(5), 1582–1592. https://doi.org/10.1093/ije/dyx075 Chen-Hua Liu, Hsin-Yun Sun, Cheng-Yuan Peng, Szu-Min Hsieh, Sheng-Shun Yang, Wei-Yu Kao, Yu-Lueng Shih, Chih-Lin Lin, Chun-Jen Liu, Wang-Hui Sheng, Yi-Chun Lo, Wen-Chun Liu, Jo-Hsuan Wu, Tung-Hung Su, Tai-Chung Tseng, Pei-Jer Chen, Chien-Ching Hung, Jia-Horng Kao, Hepatitis C Virus Reinfection in People With HIV in Taiwan After Achieving Sustained Virologic Response With Antiviral Treatment: The RECUR Study, Open Forum Infectious Diseases, Volume 9, Issue 8, August 2022, ofac348, https://doi.org/10.1093/ofid/ofac348 Russo, P., Pani, L., Staniscia, T., Romano, F., & Marzioni, M. (2020). Impact of reimbursement limits on patient access to direct-acting antivirals in Italy: analysis of data from national registries. DOAJ (DOAJ: Directory of Open Access Journals), 24(10), 5758–5768. https://doi.org/10.26355/eurrev_202005_21368 Snell, G., Marshall, A. D., Van Gennip, J., Bonn, M., Butler-McPhee, J., Cooper, C. L., Kronfli, N., Williams, S., Bruneau, J., Feld, J. J., Janjua, N. Z., Klein, M., Cunningham, N., Grebely, J., & Bartlett, S. R. (2023). Public reimbursement policies in Canada for direct-acting antiviral treatment of hepatitis C virus infection: A descriptive study. Canadian Liver Journal, 6(2), 190–200. https://doi.org/10.3138/canlivj-2022-0040 Salazar‐Vizcaya, L., Kouyos, R. D., Fehr, J., Braun, D., Estill, J., Bernasconi, E., Delaloye, J., Stöckle, M., Schmid, P., Rougemont, M., Wandeler, G., Günthard, H. F., Keiser, O., & Rauch, A. (2017). On the potential of a short‐term intensive intervention to interrupt HCV transmission in HIV‐positive men who have sex with men: A mathematical modelling study. Journal of Viral Hepatitis, 25(1), 10–18. https://doi.org/10.1111/jvh.12752 Amele, S., Sandri, A. K., Rodger, A., Vandekerckhove, L., Benfield, T., Milinkovic, A., Duvivier, C., Stellbrink, H., Sambatakou, H., Chkhartishvili, N., Caldeira, L., Laguno, M., Domingo, P., Wandeler, G., Gisinger, M., Kuzovatova, E., Dragovic, G., Knysz, B., Matulionyte, R., . . . Peters, L. (2021). HCV reinfection after HCV therapy among HIV/HCV‐coinfected individuals in Europe. HIV Medicine, 23(6), 684–692. https://doi.org/10.1111/hiv.13212 Scott, N., Hellard, M., & McBryde, E. S. (2016). Modeling hepatitis C virus transmission among people who inject drugs: Assumptions, limitations and future challenges. Virulence, 7(2), 201–208. Nixon, K., Jindal, S., Parker, F., Marshall, M., Reich, N. G., Ghobadi, K., Lee, E. C., Truelove, S., & Gardner, L. (2022). Real-time COVID-19 forecasting: challenges and opportunities of model performance and translation. The Lancet Digital Health, 4(10), e699–e701. https://doi.org/10.1016/s2589-7500(22)00167-4 Shepherd, M. (2020, May 23). People’s misunderstandings of coronavirus predictions are eerily similar to those about weather forecasts. Forbes. https://www.forbes.com/sites/marshallshepherd/2020/05/22/misunderstanding-of-coronavirus-predictions-is-eerily-similar-to-weather-forecasting/ Rui, J., Li, K., Wei, H., Guo, X., Zhao, Z., Wang, Y., Song, W., Abudunaibi, B., & Chen, T. (2024). MODELS: a six-step framework for developing an infectious disease model. Infectious Diseases of Poverty, 13(1). https://doi.org/10.1186/s40249-024-01195-3 Pollett, S., Johansson, M. A., Reich, N. G., Brett-Major, D., Del Valle, S. Y., Venkatramanan, S., Lowe, R., Porco, T., Berry, I. M., Deshpande, A., Kraemer, M. U. G., Blazes, D. L., Pan-Ngum, W., Vespigiani, A., Mate, S. E., Silal, S. P., Kandula, S., Sippy, R., Quandelacy, T. M., . . . Rivers, C. (2021). Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 18(10), e1003793. https://doi.org/10.1371/journal.pmed.1003793 Carvalho, A. R., & Pinto, C. M. (2014). A coinfection model for HIV and HCV. Biosystems, 124, 46–60. https://doi.org/10.1016/j.biosystems.2014.08.004 Virlogeux, V., Zoulim, F., Pugliese, P., Poizot-Martin, I., Valantin, M., Cuzin, L., Reynes, J., Billaud, E., Huleux, T., Bani-Sadr, F., Rey, D., Frésard, A., Jacomet, C., Duvivier, C., Cheret, A., Hustache-Mathieu, L., Hoen, B., Cabié, A., & Cotte, L. (2017). Modeling HIV-HCV coinfection epidemiology in the direct-acting antiviral era: the road to elimination. BMC Medicine, 15(1). https://doi.org/10.1186/s12916-017-0979-1 Salazar‐Vizcaya, L., Kouyos, R. D., Zahnd, C., Wandeler, G., Battegay, M., Darling, K. E. A., Bernasconi, E., Calmy, A., Vernazza, P., Furrer, H., Egger, M., Keiser, O., & Rauch, A. (2016). Hepatitis C virus transmission among human immunodeficiency virus‐infected men who have sex with men: Modeling the effect of behavioral and treatment interventions. Hepatology, 64(6), 1856–1869. https://doi.org/10.1002/hep.28769 Abiodun, O. E., Adebimpe, O., Ndako, J. A., Oludoun, O., Aladeitan, B., & Adeniyi, M. (2022). Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number. F1000Research, 11, 1153. https://doi.org/10.12688/f1000research.124555.2 Newsum, A. M., Stolte, I. G., Van Der Meer, J. T., Schinkel, J., Van Der Valk, M., Vanhommerig, J. W., Buvé, A., Danta, M., Hogewoning, A., & Prins, M. (2017). Development and validation of the HCV-MOSAIC risk score to assist testing for acute hepatitis C virus (HCV) infection in HIV-infected men who have sex with men (MSM). Eurosurveillance, 22(21). https://doi.org/10.2807/1560-7917.es.2017.22.21.30540 Feldman, J. (2016). The simplicity principle in perception and cognition. Wiley Interdisciplinary Reviews Cognitive Science, 7(5), 330–340. https://doi.org/10.1002/wcs.1406 McFadden, J. (2023). Razor sharp: The role of Occam’s razor in science. Annals of the New York Academy of Sciences, 1530(1), 8–17. https://doi.org/10.1111/nyas.15086 Antal, B. B., Chesebro, A. G., Strey, H. H., Mujica-Parodi, L. R., & Weistuch, C. (2024). Achieving Occam’s razor: Deep learning for optimal model reduction. PLoS Computational Biology, 20(7), e1012283. https://doi.org/10.1371/journal.pcbi.1012283 Liu, C., & Kao, J. (2023). Acute hepatitis C virus infection: clinical update and remaining challenges. Clinical and Molecular Hepatology, 29(3), 623–642. https://doi.org/10.3350/cmh.2022.0349 Ogawa, E., Kawano, A., Kohjima, M., Koyanagi, T., Dohmen, K., Ooho, A., Satoh, T., Takahashi, K., Furusyo, N., Kajiwara, E., Azuma, K., Ichiki, Y., Sugimoto, R., Amagase, H., Senju, T., Tanaka, M., Nakamuta, M., Nomura, H., & Hayashi, J. (2025). Long‐Term liver morbidity and mortality after hepatitis C virus elimination by Direct‐Acting antivirals. Journal of Gastroenterology and Hepatology. https://doi.org/10.1111/jgh.16892 CHIP – Centre of Excellence for Health, Immunity and Infections. (n.d.). https://chip.dk/Research/Studies/EuroSIDA | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97451 | - |
| dc.description.abstract | The aim of this thesis is to reconcile the disconnected and sparse, but ever growing, information being published on the phenomenon of reinfection of Hepatitis C in HCV/HIV coinfected individuals, as well as providing a purely theoretical and a functional mathematical model that can be expanded upon with future research.
The thesis can be divided into 2 parts. The first half focuses on providing the essential context, starting from the disease, how it was and currently is treated to then tackle the call to action by international organizations and what is impeding the eradication objectives set: reinfection. From exploring the context, starting from the main protagonists being the virus and the cures of pre-DAA and post-DAA. Regarding the eradication goals for 2030, the Sustainable Development Goals of the United Nations Agenda and the World Health Organization’s many handbooks and strategy guidelines. To highlight the world recognized importance of what appears to be a major obstacle in achieving the eradication goals, the reinfection and the micro-elimination of the virus in these target populations. There we find the argument for why this thesis is written. The second part instead focuses on the mathematical study of how prediction can be performed for this reinfection phenomena through compartmental models. Three models are constructed, one purely theoretical, a second simplified version as a bridge between the first, and the third being the functional model. In view of the possibility of application in a future where more data is available, with de-escalation of complexity in its second iteration as well as a practical application of said model in a third iteration constructed with one the co-advisor’s studies in mind: “Hepatitis C Virus Reinfection in People with HIV in Taiwan After Achieving Sustained Virologic Response with Antiviral Treatment: The RECUR Study.” (Liu et al., 2022) | zh_TW |
| dc.description.abstract | The aim of this thesis is to reconcile the disconnected and sparse, but ever growing, information being published on the phenomenon of reinfection of Hepatitis C in HCV/HIV coinfected individuals, as well as providing a purely theoretical and a functional mathematical model that can be expanded upon with future research.
The thesis can be divided into 2 parts. The first half focuses on providing the essential context, starting from the disease, how it was and currently is treated to then tackle the call to action by international organizations and what is impeding the eradication objectives set: reinfection. From exploring the context, starting from the main protagonists being the virus and the cures of pre-DAA and post-DAA. Regarding the eradication goals for 2030, the Sustainable Development Goals of the United Nations Agenda and the World Health Organization’s many handbooks and strategy guidelines. To highlight the world recognized importance of what appears to be a major obstacle in achieving the eradication goals, the reinfection and the micro-elimination of the virus in these target populations. There we find the argument for why this thesis is written. The second part instead focuses on the mathematical study of how prediction can be performed for this reinfection phenomena through compartmental models. Three models are constructed, one purely theoretical, a second simplified version as a bridge between the first, and the third being the functional model. In view of the possibility of application in a future where more data is available, with de-escalation of complexity in its second iteration as well as a practical application of said model in a third iteration constructed with one the co-advisor’s studies in mind: “Hepatitis C Virus Reinfection in People with HIV in Taiwan After Achieving Sustained Virologic Response with Antiviral Treatment: The RECUR Study.” (Liu et al., 2022) | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:11:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:11:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Dedica i Abstract ii Contents iii 1. Introduction 1 2. The Treatments for HCV over the years 5 2. Genotype Distribution 12 3. The Global Burden and the Eradication Goals 15 4. Micro-Elimination of High-Risk Populations 21 5. Reinfection 23 6. HCV/HIV co-infection 27 7. Modelling 38 8. Proposed Model v01 46 9. Proposed Model v02 – A bridging the gap, using available data 52 10. On the applications of this model and Proposal of ModelV03 56 11. Results: 72 12. Discussion, Limitations and Conclusion 89 Bibliography 95 | - |
| dc.language.iso | en | - |
| dc.subject | NONE | zh_TW |
| dc.subject | Hepatitis C Virus | en |
| dc.subject | RECUR subgroup | en |
| dc.subject | Observational Study | en |
| dc.subject | Model Simulations | en |
| dc.subject | Compartmental Modeling | en |
| dc.subject | Epidemiology | en |
| dc.subject | High-Risk Population | en |
| dc.subject | Coinfection HCV/HIV | en |
| dc.subject | Obstacle to Elimination of HCV | en |
| dc.subject | Reinfection | en |
| dc.subject | HCV | en |
| dc.subject | Taiwan Subpopulation | en |
| dc.title | Investigation on Hepatitis C Virus Reinfection in HCV/HIV Coinfected Individuals | zh_TW |
| dc.title | Investigation on Hepatitis C Virus Reinfection in HCV/HIV Coinfected Individuals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉振驊 | zh_TW |
| dc.contributor.coadvisor | Chen-Hua Liu | en |
| dc.contributor.oralexamcommittee | 劉志銘;林廷澤 | zh_TW |
| dc.contributor.oralexamcommittee | JYH-MING LIOU;Ting-Tse Lin | en |
| dc.subject.keyword | NONE, | zh_TW |
| dc.subject.keyword | HCV,Hepatitis C Virus,Reinfection,Obstacle to Elimination of HCV,Coinfection HCV/HIV,High-Risk Population,Epidemiology,Compartmental Modeling,Model Simulations,Observational Study,RECUR subgroup,Taiwan Subpopulation, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202501025 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-09 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 智慧醫療與健康資訊碩士學位學程 | - |
| dc.date.embargo-lift | 2025-06-19 | - |
| 顯示於系所單位: | 智慧醫療與健康資訊碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
