請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97411完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李心予 | zh_TW |
| dc.contributor.advisor | Hsinyu Lee | en |
| dc.contributor.author | 虞智凱 | zh_TW |
| dc.contributor.author | Zhi-Kai Yu | en |
| dc.date.accessioned | 2025-06-05T16:09:20Z | - |
| dc.date.available | 2025-06-06 | - |
| dc.date.copyright | 2025-06-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-29 | - |
| dc.identifier.citation | Polychronopoulos, P.A., Bedoya-Reina, O.C., and Johnsen, J.I. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers, 2024. 16, DOI: 10.3390/cancers16101863.
Friedman, D.L., Kadan-Lottick, N.S., Whitton, J., Mertens, A.C., Yasui, Y., Liu, Y., . . . Strong, L.C., Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev, 2005. 14(8): p. 1922-7. Zage, P.E., Louis, C.U., and Cohn, S.L., New aspects of neuroblastoma treatment: ASPHO 2011 symposium review. Pediatr Blood Cancer, 2012. 58(7): p. 1099-105. Sainero-Alcolado, L., Sjoberg Bexelius, T., Santopolo, G., Yuan, Y., Liano-Pons, J., and Arsenian-Henriksson, M., Defining neuroblastoma: From origin to precision medicine. Neuro Oncol, 2024. 26(12): p. 2174-2192. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 362(23): p. 2202-11. Qiu, B. and Matthay, K.K., Advancing therapy for neuroblastoma. Nat Rev Clin Oncol, 2022. 19(8): p. 515-533. Irwin, M.S., Naranjo, A., Zhang, F.F., Cohn, S.L., London, W.B., Gastier-Foster, J.M., . . . Hogarty, M.D., Revised Neuroblastoma Risk Classification System: A Report From the Children's Oncology Group. J Clin Oncol, 2021. 39(29): p. 3229-3241. Cohn, S.L., Pearson, A.D., London, W.B., Monclair, T., Ambros, P.F., Brodeur, G.M., . . . Force, I.T., The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 289-97. Tonini, G.P., Neuroblastoma: The result of multistep transformation? 1993. 11(4): p. 276-282. Ploessl, C., Pan, A., Maples, K.T., and Lowe, D.K., Dinutuximab: An Anti-GD2 Monoclonal Antibody for High-Risk Neuroblastoma. Ann Pharmacother, 2016. 50(5): p. 416-22. Cohn, S.L. and Tweddle, D.A., MYCN amplification remains prognostically strong 20 years after its “clinical debut”. European Journal of Cancer, 2004. 40(18): p. 2639-2642. Peifer, M., Hertwig, F., Roels, F., Dreidax, D., Gartlgruber, M., Menon, R., . . . Fischer, M., Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature, 2015. 526(7575): p. 700-704. Norris, M.D., Bordow, S.B., Marshall, G.M., Haber, P.S., Cohn, S.L., and Haber, M., Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med, 1996. 334(4): p. 231-8. Jiang, R., Xue, S., and Jin, Z., Stable knockdown of MYCN by lentivirus-based RNAi inhibits human neuroblastoma cells growth in vitro and in vivo. Biochemical and Biophysical Research Communications, 2011. 410(2): p. 364-370. Wu, P.Y., Liao, Y.F., Juan, H.F., Huang, H.C., Wang, B.J., Lu, Y.L., . . . Lee, H., Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS One, 2014. 9(2): p. e88795. Bersten, D.C., Sullivan, A.E., Peet, D.J., and Whitelaw, M.L., bHLH–PAS proteins in cancer. Nature Reviews Cancer, 2013. 13(12): p. 827-841. Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40. Gruszczyk, J., Grandvuillemin, L., Lai-Kee-Him, J., Paloni, M., Savva, C.G., Germain, P., . . . Bourguet, W., Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. Nat Commun, 2022. 13(1): p. 7010. Ikuta, T., Tachibana, T., Watanabe, J., Yoshida, M., Yoneda, Y., and Kawajiri, K., Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J Biochem, 2000. 127(3): p. 503-9. Kazzaz, S.A., Tawil, J., and Harhaj, E.W., The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor. Journal of Biological Chemistry, 2024. 300(4). Zanger, U.M. and Schwab, M., Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther, 2013. 138(1): p. 103-41. Nebert, D.W. and Karp, C.L., Endogenous Functions of the Aryl Hydrocarbon Receptor (AHR): Intersection of Cytochrome P450 1 (CYP1)-metabolized Eicosanoids and AHR Biology. Journal of Biological Chemistry, 2008. 283(52): p. 36061-36065. Kohle, C. and Bock, K.W., Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol, 2007. 73(12): p. 1853-62. Zhang, L.M., Hatzakis, E., Nichols, R.G., Hao, R.X., Correll, J., Smith, P.B., . . . Patterson, A.D., Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. Environmental Science & Technology, 2015. 49(13): p. 8067-8077. Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T., Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences, 2008. 105(28): p. 9721-9726. Kimura, A., Naka, T., Nakahama, T., Chinen, I., Masuda, K., Nohara, K., . . . Kishimoto, T., Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. Journal of Experimental Medicine, 2009. 206(9): p. 2027-2035. Amit, I., Garber, M., Chevrier, N., Leite, A.P., Donner, Y., Eisenhaure, T., . . . Regev, A., Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses. Science, 2009. 326(5950): p. 257-263. Stockinger, B., Meglio, P.D., Gialitakis, M., and Duarte, J.H., The Aryl Hydrocarbon Receptor: Multitasking in the Immune System. 2014. 32(Volume 32, 2014): p. 403-432. Fu, J., Nogueira, S.V., Drongelen, V.v., Coit, P., Ling, S., Rosloniec, E.F., . . . Holoshitz, J., Shared epitope–aryl hydrocarbon receptor crosstalk underlies the mechanism of gene–environment interaction in autoimmune arthritis. Proceedings of the National Academy of Sciences, 2018. 115(18): p. 4755-4760. Abdullah, A., Maged, M., Hairul-Islam M, I., Osama I, A., Maha, H., Manal, A., and Hamza, H., Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis. PLOS ONE, 2019. 14(4): p. e0215981. He, C.-X., Prevot, N., Boitard, C., Avner, P., and Rogner, U.C., Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2. Immunogenetics, 2010. 62(9): p. 585-592. Marlowe, J.L., Fan, Y., Chang, X., Peng, L., Knudsen, E.S., Xia, Y., and Puga, A., The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis. Mol Biol Cell, 2008. 19(8): p. 3263-71. Chang, F., Wang, L., Kim, Y., Kim, M., Lee, S., and Lee, S.-w. The Aryl Hydrocarbon Receptor Regulates Invasiveness and Motility in Acute Myeloid Leukemia Cells through Expressional Regulation of Non-Muscle Myosin Heavy Chain IIA. International Journal of Molecular Sciences, 2024. 25, DOI: 10.3390/ijms25158147. Contador-Troca, M., Alvarez-Barrientos, A., Barrasa, E., Rico-Leo, E.M., Catalina-Fernández, I., Menacho-Márquez, M., . . . Fernández-Salguero, P.M., The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis, 2013. 34(12): p. 2683-2693. Jin, D.Q., Jung, J.W., Lee, Y.S., and Kim, J.A., 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits cell proliferation through arylhydrocarbon receptor-mediated G1 arrest in SK-N-SH human neuronal cells. Neurosci Lett, 2004. 363(1): p. 69-72. Williamson, M.A., Gasiewicz, T.A., and Opanashuk, L.A., Aryl hydrocarbon receptor expression and activity in cerebellar granule neuroblasts: implications for development and dioxin neurotoxicity. Toxicol Sci, 2005. 83(2): p. 340-8. Dever, D.P., Adham, Z.O., Thompson, B., Genestine, M., Cherry, J., Olschowka, J.A., . . . Opanashuk, L.A., Aryl hydrocarbon receptor deletion in cerebellar granule neuron precursors impairs neurogenesis. Dev Neurobiol, 2016. 76(5): p. 533-50. Latchney, S.E., Hein, A.M., O'Banion, M.K., DiCicco-Bloom, E., and Opanashuk, L.A., Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem, 2013. 125(3): p. 430-45. Akahoshi, E., Yoshimura, S., and Ishihara-Sugano, M., Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study. Environ Health, 2006. 5: p. 24. Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott, M., Tritschler, I., Trump, S., . . . Platten, M., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478(7368): p. 197-203. Wu, P.Y., Yu, I.S., Lin, Y.C., Chang, Y.T., Chen, C.C., Lin, K.H., . . . Lee, H., Activation of Aryl Hydrocarbon Receptor by Kynurenine Impairs Progression and Metastasis of Neuroblastoma. Cancer Res, 2019. 79(21): p. 5550-5562. Wang, W.-D., Wang, Y., Wen, H.-J., Buhler, D.R., and Hu, C.-H., Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo. Biochemical Pharmacology, 2004. 68(1): p. 63-71. Nuti, R., Gargaro, M., Matino, D., Dolciami, D., Grohmann, U., Puccetti, P., . . . Macchiarulo, A., Ligand binding and functional selectivity of L-tryptophan metabolites at the mouse aryl hydrocarbon receptor (mAhR). J Chem Inf Model, 2014. 54(12): p. 3373-83. Wang, B.J., Wu, P.Y., Lu, Y.C., Chang, C.H., Lin, Y.C., Tsai, T.C., . . . Lee, H., Establishment of a cell-free bioassay for detecting dioxin-like compounds. Toxicol Mech Methods, 2013. 23(6): p. 464-70. Brunton, P.J., Russell, J.A., and Hirst, J.J., Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol, 2014. 113: p. 106-36. Kelleher, M.A., Hirst, J.J., and Palliser, H.K., Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci, 2013. 20(11): p. 1365-75. Jenkins, S.I., Pickard, M.R., Khong, M., Smith, H.L., Mann, C.L., Emes, R.D., and Chari, D.M., Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS Chem Neurosci, 2014. 5(1): p. 51-63. Melcangi, R.C., Giatti, S., and Garcia-Segura, L.M., Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev, 2016. 67: p. 25-40. Pelletier, G., Steroidogenic enzymes in the brain: morphological aspects. Prog Brain Res, 2010. 181: p. 193-207. Diotel, N., Do Rego, J.L., Anglade, I., Vaillant, C., Pellegrini, E., Vaudry, H., and Kah, O., The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci, 2011. 5: p. 137. Wu, P.Y., Chuang, P.Y., Chang, G.D., Chan, Y.Y., Tsai, T.C., Wang, B.J., . . . Lee, H., Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci, 2019. 10(9): p. 4031-4042. Kuo, C.T., Wang, J.Y., Lu, S.R., Lai, Y.S., Chang, H.H., Hsieh, J.T., . . . Lee, H., A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments. Sci Rep, 2019. 9(1): p. 10120. Liao, Y.-T., Yu, Z.-K., Huang, Y.-X., Lin, K.-H., Kuo, C.-T., Yang, T.-S., . . . Lee, H., Synergistic drug combination screening using a nanodroplet processing platform to enhance neuroblastoma treatment in TH-MYCN transgenic mice. Bioengineering & Translational Medicine, 2025. n/a(n/a): p. e70007. Tomayko, M.M. and Reynolds, C.P., Determination of subcutaneous tumor size in athymic (nude) mice. (0344-5704 (Print)). Chung, D., Shum, A., and Caraveo, G., GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol, 2020. 8: p. 567537. Schmechel, D.E., Brightman, M.W., and Marangos, P.J., Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Research, 1980. 190(1): p. 195-214. Chen, L., Esfandiari, A., Reaves, W., Vu, A., Hogarty, M.D., Lunec, J., and Tweddle, D.A., Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. Int J Oncol, 2018. 52(3): p. 967-977. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97411 | - |
| dc.description.abstract | 神經母細胞瘤是嬰兒期最常見的顱外實體腫瘤,起源於胚胎發育期間神經脊細胞的異常增生,通常發生於與交感神經系統相關的區域。芳香烴接受器(Aryl hydrocarbon receptor, AHR)為一種配體活化的轉錄因子,已知能促進神經母細胞瘤細胞的分化。四氫皮質酮(Tetrahydrocorticosterone, THB)作為一種內源性糖皮質激素,近期被鑑定為可活化AHR的內源性配體,並能調控斑馬魚的神經生成與神經分化。此外,一種結構上與THB相似的合成化合物,稱為Compound Y,亦已被開發。基於上述發現,本研究假設Compound Y與THB可透過活化AHR,促進神經母細胞瘤細胞分化,進而抑制其增生。在本研究中,Compound Y與THB皆可有效抑制神經母細胞瘤細胞的增生,並提升神經分化標誌物,包括生長相關蛋白43(GAP43)與神經元特異性烯醇酶(NSE)的表現。此外,本研究亦建立一套以GAP43啟動子活性為基礎的螢光酶篩選平台,以加速分化促進劑的篩選流程。利用來自TH-MYCN轉基因小鼠的原代神經母細胞瘤細胞進行體外實驗,進一步確認Compound Y具有抑制細胞增生的作用。體內分析亦顯示,Compound Y能顯著延緩腫瘤進展並延長TH-MYCN小鼠的存活時間。綜合以上結果,Compound Y與THB具備透過AHR介導的分化機制治療神經母細胞瘤的潛力,為未來的治療策略提供重要依據。 | zh_TW |
| dc.description.abstract | Neuroblastoma is the most common extracranial solid tumor in infancy, originating from aberrant proliferation of neural crest cells during embryonic development and typically arising in regions associated with the sympathetic nervous system. The aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, has been shown to promote the differentiation of neuroblastoma cells. Tetrahydrocorticosterone (THB), a glucocorticoid, was recently identified as an endogenous AHR activator that regulates neurogenesis and neural differentiation in zebrafish. In addition, a synthetic compound structurally similar to THB, referred to as Compound Y, has been developed. Based on these findings, it was hypothesized that both Compound Y and THB promote neuroblastoma cell differentiation through AHR activation, thereby inhibiting cell proliferation. In this study, both Compound Y and THB were demonstrated to inhibit neuroblastoma cell proliferation while enhancing the expression of neural differentiation markers, including growth-associated protein 43 (GAP43) and neuron-specific enolase (NSE). To facilitate efficient identification of differentiation-inducing compounds, a luciferase-based screening platform targeting GAP43 promoter activity was established. Additionally, ex vivo experiments using primary neuroblastoma cells derived from TH-MYCN transgenic mice confirmed the growth-inhibitory effects of Compound Y. In vivo analysis further demonstrated that Compound Y significantly slowed tumor progression and prolonged survival in TH-MYCN mice. Collectively, these findings highlight the therapeutic potential of Compound Y and THB in neuroblastoma treatment by targeting AHR-mediated differentiation pathways. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:09:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-05T16:09:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 中文摘要 III Abstract IV Table of Contents VI List of Figures VIII 1. Introduction 01 1-1 Neuroblastoma 01 1-2 Aryl hydrocarbon receptor 06 1-3 Tetrahydrocorticosterone 10 Rationale 12 2. Materials and methods 13 2-1 Cell culture 13 2-2 Chemical reagents 13 2-3 Cell viability assay 14 2-4 Western blot 14 2.5 Plasmid construction and luciferase assay 16 2-6 Bioinspired Nanodroplet Processing (BioNDP) platform 16 2-7 Primary tumor cells isolation 17 2-8 Animal maintenance 18 2-9 Statistical analysis 19 3. Results 21 3-1 Compound Y and THB inhibit neuroblastoma cell proliferation 21 3-2 Compound Y and THB induce neuronal differentiation in neuroblastoma cells 21 3-3 Compound Y and THB enhance GAP43 promoter activity in SK-N-SH cells 22 3-4 Compound Y inhibits proliferation of primary neuroblastoma cells 23 3-5 Compound Y attenuates neuroblastoma tumor growth in vivo 24 3-6 Compound Y prolongs survival in TH-MYCN mice 24 4. Discussion 26 5. References 29 6. Figures 40 | - |
| dc.language.iso | en | - |
| dc.subject | 芳香烴接受器 | zh_TW |
| dc.subject | TH-MYCN轉基因小鼠 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | 神經分化 | zh_TW |
| dc.subject | 四氫皮質酮 | zh_TW |
| dc.subject | Neural differentiation | en |
| dc.subject | Neuroblastoma | en |
| dc.subject | TH-MYCN transgenic mice | en |
| dc.subject | Tetrahydrocorticosterone | en |
| dc.subject | Aryl hydrocarbon receptor | en |
| dc.title | 四氫皮質酮和其異構體對於神經母細胞瘤治療之研究 | zh_TW |
| dc.title | Investigating the Effect of Tetrahydrocorticosterone and Its Isomers on Neuroblastoma Treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許文明;廖永豐;吳沛翊 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ming Hsu;Yung-Feng Liao;Pei-Yi Wu | en |
| dc.subject.keyword | 四氫皮質酮,芳香烴接受器,神經分化,神經母細胞瘤,TH-MYCN轉基因小鼠, | zh_TW |
| dc.subject.keyword | Tetrahydrocorticosterone,Aryl hydrocarbon receptor,Neural differentiation,Neuroblastoma,TH-MYCN transgenic mice, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202501007 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-29 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2025-06-06 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
