Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英zh_TW
dc.contributor.advisorYng-Ing Leeen
dc.contributor.author蕭明zh_TW
dc.contributor.authorMing Hsiaoen
dc.date.accessioned2025-06-05T16:08:32Z-
dc.date.available2025-06-06-
dc.date.copyright2025-06-05-
dc.date.issued2025-
dc.date.submitted2025-06-02-
dc.identifier.citation[AK04] S. Angenent and D. Knopf. An example of neckpinching for Ricci Flow on Sn+1. Mathematical Research Letters, 11(4):493–518, 2004.

[BCRW19] R. H. Bamler, E. Cabezas-Rivas, and B. Wilking. The Ricci flow under almost nonnegative curvature conditions. Inventiones mathematicae, 217:95–126, 2019.

[Bre05] S. Brendle. Convergence of the Yamabe flow for arbitrary initial energy. Journal of Differential Geometry, 69:217–278, 2005.

[Bre07] S. Brendle. Convergence of the Yamabe flow in dimension 6 and higher. Inventiones Mathematicae, 170:541–576, 2007.

[BS09] S. Brendle and R. Schoen. Manifolds with 1/4-pinched curvature are space forms. Journal of the American Mathematical Society, 22:287–307, 2009.

[CCG+07] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni. The Ricci flow: techniques and applications, II: analytic aspects. Mathematical Surveys and Monographs, 2007.

[CH04] G. Carron and M. Herzlich. Conformally flat manifolds with nonnegative Ricci curvature. Compositio Mathematica, 142:798 – 810, 2004.

[Che09] B.-L. Chen. Strong uniqueness of the Ricci flow. Journal of Differential Geometry, 82(2):363 – 382, 2009.

[Che25] L. Cheng. Yamabe flow and locally conformally flat manifolds with positive pinched Ricci curvature. Calculus of Variations and Partial Differential Equations, 64:Paper No. 102, 2025.

[CHL24] P.-Y. Chan, S. Huang, and M.-C. Lee. Manifolds with Small Curvature Concentration. Annals of Partial Differential Equations, 10:Paper No. 23, 2024.

[Cho92] B. Chow. The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Comm. Pure Appl. Math., 45(8):1003–1013, 1992.

[CK20] K.-S. Chou and Y.-C. Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 40(5):2963–2986, 2020.

[CL23] P.-Y. Chan and M.-C. Lee. Gap Theorem on Riemannian manifolds using Ricci flow. arXiv:2305.01396, 2023.

[CRW15] E. Cabezas-Rivas and B. Wilking. How to produce a Ricci flow via Cheeger–Gromoll exhaustion. Journal of the European Mathematical Society, 17(12):3153–3194, 2015.

[CTY11] A. Chau, L.-F. Tam, and C. Yu. Pseudolocality for the Ricci Flow and Applications. Canadian Journal of Mathematics, 63(1):55–85, 2011.

[CZ02] B.-L. Chen and X.-P. Zhu. A Gap Theorem For Complete Noncompact Manifolds With Nonnegative Ricci Curvature. Commun. Anal. Geom, 10(1):217–239, 2002.

[CZ06] B.-L. Chen and X.-P. Zhu. Uniqueness of the Ricci flow on complete non-compact manifolds. Journal of Differential Geometry, 74(1):119 – 154, 2006.

[DeT83] Dennis M. DeTurck. Deforming metrics in the direction of their Ricci tensors. Journal of Differential Geometry, 18(1):157 – 162, 1983.

[Di 21] Francesco Di Giovanni. Rotationally symmetric Ricci flow on Rn+1. Advances in Mathematics, 381:Paper No. 107621, 2021.

[DS23] P. Daskalopoulos and M. Saez. Uniqueness of Entire Graphs Evolving by Mean Curvature Flow. Journal für die reine und angewandte Mathematik (Crelles Journal), 2023(796):201–227, 2023.

[ES92] L. C. Evans and J. Spruck. Motion of Level Sets by Mean Curvature III. The Journal of Geometric Analysis, 2(2):121–150, 1992.

[Gra89] Matthew A. Grayson. Shortening Embedded Curves. Annals of Mathematics, 129(1):71–111, 1989.

[GT11] G. Giesen and P. Topping. Existence of Ricci Flows of Incomplete Surfaces. Comm. Partial Differential Equations, 36(10):1860–1880, 2011.

[Ham82] Richard S. Hamilton. Three-manifolds with positive Ricci curvature. Journal of Differential Geometry, 17(2):255 – 306, 1982.

[Ham88] R. S. Hamilton. The Ricci Flow on Surfaces. Contemporary Mathematics, 71:237–261, 1988.

[Has20] R. Haslhofer. Some recent applications of mean curvature flow with surgery. 2020. https://www.math.toronto.edu/roberth/papers/Haslhofer_BarrettLecturesProceedings.pdf.

[He17] F. He. Existence and applications of Ricci flows via pseudolocality. arXiv:1610.01735, 2017.

[HL25] M. Hsiao and M.-C. Lee. Gap Theorem on locally conformally flat manifold. arXiv:2504.08189, 2025.

[Hoc19] R. Hochard. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-effondrées, à courbure minorée. PhD thesis, 2019.

[HS09] G. Huisken and C. Sinestrari. Mean curvature flow with surgeries of two-convex hypersurfaces. Inventiones Mathematicae, 175:137–221, 2009.

[Kot14] B. Kotschwar. An energy approach to the problem of uniqueness for the Ricci flow. Communications in Analysis and Geometry, 22(1):149–176, 2014.

[Lai19] Y. Lai. Ricci flow under local almost non-negative curvature conditions. Advances in Mathematics, 343:353–392, 2019.

[Lee19] M.-C. Lee. On the uniqueness of Ricci flow. The Journal of Geometric Analysis, 29(4):3098–3112, 2019.

[Lee25] M.-C. Lee. Uniqueness of Ricci flow with scaling invariant estimates. arXiv:2503.20292, 2025.

[LM21] M.-C. Lee and J. Ma. Uniqueness Theorem for non-compact mean curvature flow with possibly unbounded curvatures. Communications in Analysis and Geometry, 29(6):1475–1508, 2021.

[LT05] P. Lu and G. Tian. Uniqueness of standard solutions in the work of Perelman. 2005. https://api.semanticscholar.org/CorpusID:880662.

[LT19] M.-C. Lee and L.-F. Tam. Some curvature estimates of Kähler Ricci flow. Proc. Amer. Math. Soc., 147(6):2641–2654, 2019.

[LT22] M.-C. Lee and L.-F. Tam. Some local maximum principles along Ricci flows. Canadian Journal of Mathematics, 74(2):329–348, 2022.

[LT24] M.-C. Lee and P. Topping. Three-manifolds with non-negatively pinched Ricci curvature. arXiv:2204.00504, 2024.

[LY86] P. Li and S.-T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Mathematica, 156:153 – 201, 1986.

[Ma16] L. Ma. Gap theorems for locally conformally flat manifolds. Journal of Differential Equations, 260(2):1414–1429, 2016.

[Per02] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. arXiv:021159, 2002.

[Per03a] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:0307245, 2003.

[Per03b] G. Perelman. Ricci flow with surgery on three-manifolds. arXiv:0303109, 2003.

[She06] N. Sheridan. Hamilton’s Ricci Flow. 2006. https://web.math. princeton.edu/~nsher/ricciflow.pdf.

[Shi89] W.-X. Shi. Deforming the metric on complete Riemannian manifolds. Journal of Differential Geometry, 30(1):223 – 301, 1989.

[Sob24] A. Sobnack. Geometric Regularity Properties of the Curve Shortening Flow. Ph.D. thesis, September 2024.

[Sob25] A. Sobnack. A delayed interior area-to-height estimate for the Curve Short-ening Flow. arXiv:2502.16581, 2025.

[ST22] M. Simon and P. Topping. Local control on the geometry in 3D Ricci flow. Journal of Differential Geometry, 122(3):467 – 518, 2022.

[ST24] A. Sobnack and P. Topping. Delayed parabolic regularity for curve shortening flow. arXiv:2408.04049, 2024.

[Top06] P. Topping. Lectures on the Ricci Flow. Cambridge University Press, 2006.

[Top15] P. Topping. Uniqueness of instantaneously complete ricci flows. Geometry and Topology, 19(3):1477–1492, 2015.

[TY24] P. Topping and H. Yin. Smoothing a measure on a Riemann surface using Ricci flow. Ars Inveniendi Analytica, 2024.

[YS88] S.-T. Yau and R. Schoen. Conformally flat manifolds, Kleinian groups and scalar curvature. Inventiones mathematicae, 92(1):47–72, 1988.

[Zha15] Z.-H. Zhang. Generalization of the Hamilton–Ivey estimate to the higher dimensional Ricci flow with a vanishing Weyl tensor. Journal of Mathematical Analysis and Applications, 426(2):774-782, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97408-
dc.description.abstract本論文探討非緊流形上的幾何流的存在性與唯一性,主要關注 Ricci 流、曲線縮短流(curve shortening flow)和 Yamabe 流。

在第 II 章中,我們研究具有對稱性的 Ricci 流。我們證明在曲率衰減條件 |Rm(g(t))|<c/t 並附加某些條件下,Killing 向量場在 Ricci 流中得以保持(定理1, 2),其中唯一性在這個假設下仍然是個未解問題(近期已被解決 [Lee25])。此外,我們給出了在初使條件為旋轉對稱的完備度量且其 warped 函數單調遞增,Ricci 流的短時間存在性(定理 3)。值得注意的是,此存在性定理不須施加任何曲率條件。

在第 III 章中,我們證明平面 R^2 上圖形曲線縮短流的唯一性,其中初始條件條件落在 L^1(R)和C_{loc}(R-K),其中 K 為一有界子集,並且在無窮遠處快速衰減(定理 7)。雖然針對一般初始條件的存在性已經有相關研究,但目前唯一性僅在 L^{p>1}_{loc}(R) 初始條件下獲得證明。本研究在 p=1 的某些情況下證實了唯一性。

在第 IV 章中,我們證明具有非負 Ricci 曲率且局部共形平坦的完備流形的間隙定理(定理 8)。我們通過研究在不假設初始度量為的曲率有界的情況下,Yamabe 流的長時間存在性(定理 13),以獲得該間隙結果。
zh_TW
dc.description.abstractThis thesis explores the existence and uniqueness of geometric flows on noncompact manifolds, focusing on Ricci flow, curve shortening flow, and Yamabe flow.

In Chapter II, we study the property of Ricci flow with symmetry. We confirm Killing field preservation under curvature decay |Rm(g(t))|<c/t with additional conditions (Theorems 1, 2), where the uniqueness problem of Ricci flow remains open in this scenario (Recently it has been solved by Man-Chun Lee [Lee25]). We also establish the short-time existence for Ricci flow from a complete, rotationally symmetric metric with a non-decreasing warped function, without imposing curvature conditions (Theorem 3).

In Chapter III, we prove the uniqueness of graphical curve shortening flow on R^2 for L^1(R) and C_{loc}(R-K) initial data with fast decay at infinity (Theorem 7). While the existence results for the rough initial data are known, uniqueness has been established only for L^{p>1}_{loc}(R) data. Our work provides some affirmative evidence when p=1.

In Chapter IV, we prove a gap theorem for complete locally conformally flat manifolds with nonnegative Ricci curvature (Theorem 8) by investigating the long-time solution of Yamabe flow under nonnegative Ricci curvature without assuming bounded curvature on the initial metric (Theorem 13).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:08:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-05T16:08:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements . . . . . i
摘要 . . . . . iii
Abstract . . . . . v
Contents . . . . . vii
Chapter I Introduction . . . . . 1
Chapter II Rotationally symmetry and Ricci flow . . . . . 5
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
II.2.1 Construct a solution to (II.8) when X0 is bounded . . . . . . . . . . 11
II.2.2 C1-estimate of X . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
II.2.3 Complete the Proof of Theorem 1 . . . . . . . . . . . . . . . . . . 17
II.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
II.3.1 Construct a solution to (II.8) when X0 is exponentially growth . . . 20
II.3.2 Local maximal principle . . . . . . . . . . . . . . . . . . . . . . . 23
II.3.3 C1-estimate of exponential growth X . . . . . . . . . . . . . . . . . 28
II.3.4 Complete the proof of Theorem 2 . . . . . . . . . . . . . . . . . . . 31
II.4 The existence results of rotationally symmetric Ricci flow on Rn+1 . . . . 32
II.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
II.5.1 Pseudolocality theorem . . . . . . . . . . . . . . . . . . . . . . . . 36
II.5.2 A priori estimate for volume ratio . . . . . . . . . . . . . . . . . . 39
II.5.3 Complete the proof of Theorem 3 . . . . . . . . . . . . . . . . . . . 41
II.6 Entropy on complete and Rotationally symmetric Ricci flow . . . . . 44
Chapter III Uniqueness of 1D Ecker-Huisken flow with L1-decayed . . . . . 49
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.2 Uniqueness of rapidly decayed L1-initial data . . . . . . . . . . . . . 52
III.3 Some quantitative estimates . . . . . . . . . . . . . . . . . . . . . . 63
Chapter IV Gap Theorem on locally conformally flat manifold using Yamabe flow . . . . . 69
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IV.2 Preliminary of locally conformally flat Yamabe Flow . . . . . . . . . 73
IV.3 Long-Time Solution of (IV.4) . . . . . . . . . . . . . . . . . . . . . 77
IV.4 An Upper Bound of Heat Kernel . . . . . . . . . . . . . . . . . . . . 79
IV.5 Local Maximal Principle . . . . . . . . . . . . . . . . . . . . . . . . 85
IV.6 Long-time solution of Yamabe flow with 1/t decayed . . . . . . . . . 96
IV.7 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . 101
-
dc.language.isoen-
dc.subjectYamabe 流zh_TW
dc.subjectRicci 流zh_TW
dc.subject曲線縮短流zh_TW
dc.subject非緊緻流形zh_TW
dc.subject間隙定理zh_TW
dc.subjectgap theoremen
dc.subjectopen manifolden
dc.subjectRicci flowen
dc.subjectcurve shortening flowen
dc.subjectYamabe flowen
dc.title非緊緻黎曼流形上的幾何流zh_TW
dc.titleGeometric flows on complete noncompact Riemannian manifoldsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee崔茂培;蔡宗潤;王慕道zh_TW
dc.contributor.oralexamcommitteeMao-Pei Tsui ;Chung-Jun Tsai ;Mu-Tao Wangen
dc.subject.keyword非緊緻流形,Ricci 流,曲線縮短流,Yamabe 流,間隙定理,zh_TW
dc.subject.keywordopen manifold,Ricci flow,curve shortening flow,Yamabe flow,gap theorem,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202500973-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-02-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-06-06-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf660.76 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved