請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐 | zh_TW |
| dc.contributor.advisor | Mario Hofmann | en |
| dc.contributor.author | 尤磊安 | zh_TW |
| dc.contributor.author | Khalil ur Rehman | en |
| dc.date.accessioned | 2025-05-27T16:05:23Z | - |
| dc.date.available | 2025-05-28 | - |
| dc.date.copyright | 2025-05-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-11 | - |
| dc.identifier.citation | (1) Ambrožič, M.; Lazar, A.; Kocjan, A. Percolation threshold in ceramic composites with isotropic conducting nanoparticles. Journal of the European Ceramic Society 2020, 40 (4), 1684-1691. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.12.006.
(2) Phan, C. H.; Mariatti, M.; Koh, Y. H. Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. Journal of Magnetism and Magnetic Materials 2016, 401, 472-478. DOI: https://doi.org/10.1016/j.jmmm.2015.10.067. (3) Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes--the route toward applications. science 2002, 297 (5582), 787-792. (4) Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites science and technology 2009, 69 (10), 1486-1498. (5) Lu, Q.; Choi, K.; Nam, J.-D.; Choi, H. J. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers 2021, 13 (4), 512. (6) Yang, R.-L.; Zhu, Y.-J.; Chen, F.-F.; Qin, D.-D.; Xiong, Z.-C. Recyclable, fire-resistant, superhydrophobic, and magnetic paper based on ultralong hydroxyapatite nanowires for continuous oil/water separation and oil collection. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 10140-10150. (7) Yang, W.; Wang, X.; Teng, X.; Qiao, Z.; Yu, H. Programmable multi-stimulus-responsive whirligig beetle inspired soft robot with multifunctionality based on composite materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 693, 134093. DOI: https://doi.org/10.1016/j.colsurfa.2024.134093. (8) Liu, H.; Xue, Q.; Zhao, J.; Zhang, Q. Enhanced supercapacitive performance of binary cooperative complementary Co(OH)2/Mn3O4 nanomaterials directly synthesized through ion diffusion method controlled by ion exchange membrane. Electrochimica Acta 2018, 260, 330-337. DOI: https://doi.org/10.1016/j.electacta.2017.12.067. (9) Deng, L.; Jia, W.; Zheng, W.; Liu, H.; Jiang, D.; Li, Z.; Tian, Y.; Zhang, W.; Liu, J. Hierarchically magnetic Ni–Al binary layered double hydroxides: Towards tunable dual electro/magneto-stimuli performances. Journal of industrial and engineering chemistry 2018, 58, 163-171. (10) Ashritha, M. G.; Hareesh, K. A review on Graphitic Carbon Nitride based binary nanocomposites as supercapacitors. Journal of Energy Storage 2020, 32, 101840. DOI: https://doi.org/10.1016/j.est.2020.101840. (11) Krishnaveni, K.; Subadevi, R.; Sivakumar, M. A solution-processed binary composite as a cathode material in lithium–sulfur batteries. Applied Physics A 2019, 125, 1-7. (12) Zhao, J.; Yin, F.; Ji, L.; Wang, C.; Shi, C.; Liu, X.; Yang, H.; Wang, X.; Kong, L. Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal–organic framework for Alzheimer’s disease therapy. Acs Appl Mater Inter 2020, 12 (40), 44447-44458. (13) Zheng, J.; Chen, J.; Jin, Y.; Wen, Y.; Mu, Y.; Wu, C.; Wang, Y.; Tong, P.; Li, Z.; Hou, X.; Tang, J. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023, 617 (7961), 499-506. DOI: 10.1038/s41586-023-05873-4. (14) Hernández-Díaz, L.; Hernández-Reta, J. C.; Encinas, A.; Nahmad-Molinari, Y. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles. J Phys Condens Matter 2010, 22 (19), 195101. DOI: 10.1088/0953-8984/22/19/195101 From NLM. (15) Aharony, A.; Stauffer, D. Introduction to percolation theory; Taylor & Francis, 2003. (16) Sahimi, M. Applications of percolation theory; CRC Press, 1994. (17) Bollobás, B.; Riordan, O. Percolation; Cambridge University Press, 2006. (18) Broadbent, S. R.; Hammersley, J. M. Percolation processes: I. Crystals and mazes. Mathematical Proceedings of the Cambridge Philosophical Society 1957, 53 (3), 629-641. DOI: 10.1017/S0305004100032680 From Cambridge University Press Cambridge Core. (19) Simien, D. The Role of Percolation Theory in Developing Next Generation Smart Nanomaterials. JOM 2016, 68 (1), 318-323. DOI: 10.1007/s11837-015-1631-1. (20) Gkourmpis, T. Electrically conductive polymer nanocomposites. Controlling the Morphology of Polymers: Multiple Scales of Structure and Processing 2016, 209-236. (21) Forero-Sandoval, I.; Franco-Bacca, A.; Cervantes-Álvarez, F.; Gómez-Heredia, C.; Ramírez-Rincón, J.; Ordonez-Miranda, J.; Alvarado-Gil, J. Electrical and thermal percolation in two-phase materials: A perspective. J Appl Phys 2022, 131 (23). (22) Li, M.; Liu, R.-R.; Lü, L.; Hu, M.-B.; Xu, S.; Zhang, Y.-C. Percolation on complex networks: Theory and application. Physics Reports 2021, 907, 1-68. (23) Stauffer, D. Scaling theory of percolation clusters. Physics reports 1979, 54 (1), 1-74. (24) Lee, J. N.; Park, C.; Whitesides, G. M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Analytical Chemistry 2003, 75 (23), 6544-6554. DOI: 10.1021/ac0346712. (25) Amjadi, M.; Kim, M. S.; Park, I. Flexible and sensitive foot pad for sole distributed force detection. In 14th IEEE international conference on nanotechnology, 2014; IEEE: pp 764-767. (26) Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. Acs Nano 2014, 8 (5), 5154-5163. (27) SQUID Magnetometer Quantum Design MPMS®3. Quantum Design, https://www.qd-taiwan.com/products/mpms3.html (accessed 10 Oct, 2024). (28) Ferreira, A. P.; Rawlinson-Malone, C. F.; Gamble, J.; Nicholson, S.; Tobyn, M. Chapter 10 - Applications of Multivariate Analysis to Monitor and Predict Pharmaceutical Materials Properties. In Multivariate Analysis in the Pharmaceutical Industry, Ferreira, A. P., Menezes, J. C., Tobyn, M. Eds.; Academic Press, 2018; pp 235-267. (29) Herting, M. G.; Kleinebudde, P. Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. International journal of pharmaceutics 2007, 338 (1-2), 110-118. (30) Sherman, R.; Middleman, L.; Jacobs, S. Electron transport processes in conductor‐filled polymers. Polymer Engineering & Science 1983, 23 (1), 36-46. (31) Albers, W. M.; Karttunen, M.; Wikström, L.; Vilkman, T. Effects of compression and filler particle coating on the electrical conductivity of thermoplastic elastomer composites. Journal of electronic materials 2013, 42, 2983-2989. (32) Balberg, I. Tunnelling and percolation in lattices and the continuum. Journal of Physics D: Applied Physics 2009, 42 (6), 064003. (33) Zhou, W.; Yu, Y.; Bai, S.; Hu, A. Laser direct writing of waterproof sensors inside flexible substrates for wearable electronics. Optics & Laser Technology 2021, 135, 106694. DOI: https://doi.org/10.1016/j.optlastec.2020.106694. (34) Wang, S.; Lei, K.; Wang, Z.; Wang, H.; Zou, D. Metal-based phase change material (PCM) microcapsules/nanocapsules: Fabrication, thermophysical characterization and application. Chemical Engineering Journal 2022, 438, 135559. DOI: https://doi.org/10.1016/j.cej.2022.135559. (35) Gopalakrishnan, S.; Müller, M.; Khemani, V.; Knap, M.; Demler, E.; Huse, D. A. Low-frequency conductivity in many-body localized systems. Physical Review B 2015, 92 (10), 104202. (36) Czycholl, G.; Kramer, B.; MacKinnon, A. Conductivity and localization of electron states in one dimensional disordered systems: Further numerical results. Zeitschrift für Physik B Condensed Matter 1981, 43 (1), 5-11. (37) Ritchie, E. T.; Casper, C. B.; Lee, T. A.; Atkin, J. M. Quantitative Local Conductivity Imaging of Semiconductors Using Near-Field Optical Microscopy. The Journal of Physical Chemistry C 2022, 126 (9), 4515-4521. DOI: 10.1021/acs.jpcc.1c10498. (38) Liu, D.; Kolehmainen, V.; Siltanen, S.; Seppanen, A. Estimation of conductivity changes in a region of interest with electrical impedance tomography. arXiv preprint arXiv:1403.6587 2014. (39) Mishra, D. K.; Bhowmik, C.; Bhowmik, S.; Pandey, K. M. Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review. Environmental Science and Pollution Research 2022, 29 (29), 43556-43587. DOI: 10.1007/s11356-022-19929-x. (40) Zhao, X.; Zou, D.; Wang, S. Flexible phase change materials: Preparation, properties and application. Chemical Engineering Journal 2022, 431, 134231. DOI: https://doi.org/10.1016/j.cej.2021.134231. (41) Xin, Y.; Cheng, Y.; Sun, L.; Ren, H.; Mao, X.; Yu, P.; Ban, X.; Lou, Y. Phase Separation‐Induced Electrical Conductivity for Liquid Metal‐Embedded Plastic Hybrid Composites with Metallic Conductivity and Recyclability. Advanced Electronic Materials 2024, 2400003. (42) Liu, H.; Xin, Y.; Bisoyi, H. K.; Peng, Y.; Zhang, J.; Li, Q. Stimuli‐Driven insulator–conductor transition in a flexible polymer composite enabled by biphasic liquid metal. Adv Mater 2021, 33 (43), 2104634. (43) Takale, B. B.; Patil, R. S. Preparation and Characterization of CuO Nanoparticles Dopped Paraffin Wax Composite for Solar Thermal Energy Storage in the Solar Drying Application. In Advances in Clean Energy and Sustainability, Volume 2, Singapore, 2024//, 2024; Tatiparti, S. S. V., Seethamraju, S., Eds.; Springer Nature Singapore: pp 201-211. (44) Gutiérrez-Blandón, C.; Cuadri, A. A.; Partal, P.; Tenorio-Alfonso, A.; Delgado-Sánchez, C.; Navarro, F. J. Rheological aspects of solid-to-liquid phase transitions in paraffin wax/bitumen blends for thermal energy storage applications. Applied Thermal Engineering 2024, 253, 123779. DOI: https://doi.org/10.1016/j.applthermaleng.2024.123779. (45) Paar, A. Viscosity of Paraffin Wax. Anton Paar, https://wiki.anton-paar.com/en/paraffin-wax/ (accessed 01 Oct,2024). (46) Burr, G. W.; Breitwisch, M. J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L. A.; Padilla, A. Phase change memory technology. Journal of Vacuum Science & Technology B 2010, 28 (2), 223-262. (47) Raoux, S.; Wełnic, W.; Ielmini, D. Phase change materials and their application to nonvolatile memories. Chemical reviews 2010, 110 (1), 240-267. (48) Xia, Q.; Wang, S.; Zhai, W.; Shao, C.; Xu, L.; Yan, D.; Yang, N.; Dai, K.; Liu, C.; Shen, C. Highly linear and low hysteresis porous strain sensor for wearable electronic skins. Composites Communications 2021, 26, 100809. (49) Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 2017, 8 (1), 1207. (50) Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019, 31 (48), 1904765. (51) Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. Acs Nano 2017, 11 (5), 4507-4513. (52) Chen, M.; Huang, C.; Liu, S.; Huang, P.; Li, Z.; Li, Y.; Fu, S. Novel flexible capacitive pressure sensor with a wide detection range enabled by carboxyl iron particle-paraffin wax/silicone composite. Composites Communications 2024, 47, 101884. DOI: https://doi.org/10.1016/j.coco.2024.101884. (53) Brito-Pereira, R.; Tubio, C. R.; Costa, P.; Lanceros-Mendez, S. Multifunctional wax based conductive and piezoresistive nanocomposites for sensing applications. Composites Science and Technology 2021, 213, 108892. DOI: https://doi.org/10.1016/j.compscitech.2021.108892. (54) Rahimi, R.; Ochoa, M.; Ziaie, B. Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics. Acs Appl Mater Inter 2016, 8 (26), 16907-16913. DOI: 10.1021/acsami.6b02952. (55) An, J.; Le, T. S. D.; Lim, C. H. J.; Tran, V. T.; Zhan, Z.; Gao, Y.; Zheng, L.; Sun, G.; Kim, Y. J. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science 2018, 5 (8), 1800496. (56) Au, T. H.; Trinh, D. T.; Tong, Q. C.; Do, D. B.; Nguyen, D. P.; Phan, M.-H.; Lai, N. D. Direct laser writing of magneto-photonic sub-microstructures for prospective applications in biomedical engineering. Nanomaterials 2017, 7 (5), 105. (57) Zacharatos, F.; Makrygianni, M.; Geremia, R.; Biver, E.; Karnakis, D.; Leyder, S.; Puerto, D.; Delaporte, P.; Zergioti, I. Laser Direct Write micro-fabrication of large area electronics on flexible substrates. Applied Surface Science 2016, 374, 117-123. DOI: https://doi.org/10.1016/j.apsusc.2015.10.066. (58) Tehrani, F.; Beltrán‐Gastélum, M.; Sheth, K.; Karajic, A.; Yin, L.; Kumar, R.; Soto, F.; Kim, J.; Wang, J.; Barton, S. Laser‐induced graphene composites for printed, stretchable, and wearable electronics. Advanced Materials Technologies 2019, 4 (8), 1900162. (59) Stellacci, F.; Bauer, C. A.; Meyer‐Friedrichsen, T.; Wenseleers, W.; Alain, V.; Kuebler, S. M.; Pond, S. J.; Zhang, Y.; Marder, S. R.; Perry, J. W. Laser and electron‐beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 2002, 14 (3), 194-198. (60) Chou, Y. C.; Jaw, T.-S. Divergence of dielectric constant near the percolation threshold. Solid State Communications 1988, 67 (7), 753-756. DOI: https://doi.org/10.1016/0038-1098(88)91021-6. (61) Efros, A. L. High volumetric capacitance near the insulator-metal percolation transition. Physical Review B 2011, 84 (15), 155134. DOI: 10.1103/PhysRevB.84.155134. (62) Roberts, A. The History of Science Fiction. Palgrave Macmillan: 2016. (63) Kim, J. J. Microscale Soft Robotics; Springer Cham, 2017. DOI: https://doi.org/10.1007/978-3-319-50286-1. (64) CAPRARI, G. Autonomous Micro-Robots: Applications and Limitations. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Lausanne, EPFL, Switzerland, 2003. https://infoscience.epfl.ch/entities/publication/86ee9b71-0c88-4d3a-8057-3580b75f9144. (65) Jeon, S.; Park, S. H.; Kim, E.; Kim, J. y.; Kim, S. W.; Choi, H. A Magnetically Powered Stem Cell‐Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Advanced healthcare materials 2021, 10 (19), 2100801. (66) Nguyen, K. T.; Lee, H.-S.; Kim, J.; Choi, E.; Park, J.-O.; Kim, C.-S. A composite electro-permanent magnetic actuator for microrobot manipulation. International Journal of Mechanical Sciences 2022, 229, 107516. (67) Zhou, H.; Mayorga‐Martinez, C. C.; Pumera, M. Microplastic removal and degradation by mussel‐inspired adhesive magnetic/enzymatic microrobots. Small methods 2021, 5 (9), 2100230. (68) Ergeneman, O.; Chatzipirpiridis, G.; Pokki, J.; Marin-Suárez, M.; Sotiriou, G. A.; Medina-Rodriguez, S.; Sánchez, J. F. F.; Fernández-Gutiérrez, A.; Pané, S.; Nelson, B. J. In vitro oxygen sensing using intraocular microrobots. IEEE transactions on biomedical engineering 2012, 59 (11), 3104-3109. (69) Wu, Z.; Zhang, Y.; Ai, N.; Chen, H.; Ge, W.; Xu, Q. Magnetic mobile microrobots for upstream and downstream navigation in biofluids with variable flow rate. Advanced Intelligent Systems 2022, 4 (7), 2100266. (70) Pistoia, G. Chapter 4 - Industrial Applications (Except Road Vehicles). In Battery Operated Devices and Systems, Pistoia, G. Ed.; Elsevier, 2009; pp 163-320. (71) Li, J.; Ji, F.; Ng, D. H.; Liu, J.; Bing, X.; Wang, P. Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chemical engineering journal 2019, 369, 611-620. (72) Jurado‐Sánchez, B.; Pacheco, M.; Rojo, J.; Escarpa, A. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angewandte Chemie International Edition 2017, 56 (24), 6957-6961. (73) Gwisai, T.; Mirkhani, N.; Christiansen, M. G.; Nguyen, T. T.; Ling, V.; Schuerle, S. Magnetic torque–driven living microrobots for increased tumor infiltration. Science Robotics 2022, 7 (71), eabo0665. (74) Dong, Y.; Wang, L.; Yuan, K.; Ji, F.; Gao, J.; Zhang, Z.; Du, X.; Tian, Y.; Wang, Q.; Zhang, L. Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. Acs Nano 2021, 15 (3), 5056-5067. (75) Han, K.; Shields IV, C. W.; Velev, O. D. Engineering of self‐propelling microbots and microdevices powered by magnetic and electric fields. Advanced Functional Materials 2018, 28 (25), 1705953. (76) Luo, T.; Wu, M. Biologically inspired micro-robotic swimmers remotely controlled by ultrasound waves. Lab on a Chip 2021, 21 (21), 4095-4103. (77) Palagi, S.; Singh, D. P.; Fischer, P. Light-Controlled Micromotors and Soft Microrobots. Advanced Optical Materials 2019, 7 (16), 1900370. DOI: https://doi.org/10.1002/adom.201900370. (78) Pawashe, C.; Floyd, S.; Diller, E.; Sitti, M. Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments. IEEE Transactions on Robotics 2012, 28 (2), 467-477. DOI: 10.1109/TRO.2011.2173835. (79) Sitti, M.; Wiersma, D. S. Pros and cons: Magnetic versus optical microrobots. Adv Mater 2020, 32 (20), 1906766. (80) Khan, M. I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsystem Technologies 2017, 23, 4391-4404. (81) Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. Emerging applications of stimuli-responsive polymer materials. Nat Mater 2010, 9 (2), 101-113. (82) Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl Mater Interfaces 2009, 1 (3), 532-536. DOI: 10.1021/am800251a From NLM. (83) Bar-Cohen, Y. Electroactive polymer actuators as artificial muscles. SPIE, Washington 2001. (84) Kim, O.; Kim, S. J.; Park, M. J. Low-voltage-driven soft actuators. Chemical Communications 2018, 54 (39), 4895-4904, 10.1039/C8CC01670D. DOI: 10.1039/C8CC01670D. (85) Yang, C.; Liu, Z.; Chen, C.; Shi, K.; Zhang, L.; Ju, X.-J.; Wang, W.; Xie, R.; Chu, L.-Y. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators. Acs Appl Mater Inter 2017, 9 (18), 15758-15767. (86) Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J.; Smith, J. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart materials and structures 1998, 7 (6), R15. (87) Osada, Y.; Okuzaki, H.; Hori, H. A polymer gel with electrically driven motility. Nature 1992, 355 (6357), 242-244. (88) Zolfagharian, A.; Kouzani, A. Z.; Khoo, S. Y.; Nasri-Nasrabadi, B.; Kaynak, A. Development and analysis of a 3D printed hydrogel soft actuator. Sensors and Actuators A: Physical 2017, 265, 94-101. (89) He, Z.; Chen, W.; Zhou, Y.; Weng, H.; Shen, X. The Importance of AI Algorithm Combined With Tunable LCST Smart Polymers in Biomedical Applications. Frontiers in Computing and Intelligent Systems 2023, 6 (3), 92-95. (90) Yu, C.; Duan, Z.; Yuan, P.; Li, Y.; Su, Y.; Zhang, X.; Pan, Y.; Dai, L. L.; Nuzzo, R. G.; Huang, Y. Electronically programmable, reversible shape change in two-and three-dimensional hydrogel structures. Adv. Mater 2013, 25 (11), 1541-1546. (91) Fan, W.; Shan, C.; Guo, H.; Sang, J.; Wang, R.; Zheng, R.; Sui, K.; Nie, Z. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Science Advances 2019, 5 (4), eaav7174. DOI: doi:10.1126/sciadv.aav7174. (92) Hu, X.; Ge, Z.; Wang, X.; Jiao, N.; Tung, S.; Liu, L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites Part B: Engineering 2022, 228, 109451. DOI: https://doi.org/10.1016/j.compositesb.2021.109451. (93) Liu, Y.; Lin, G.; Medina-Sánchez, M.; Guix, M.; Makarov, D.; Jin, D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. Acs Nano 2023, 17 (10), 8899-8917. DOI: 10.1021/acsnano.3c01609. (94) Soler, L.; Magdanz, V.; Fomin, V. M.; Sanchez, S.; Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. Acs Nano 2013, 7 (11), 9611-9620. (95) Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro‐and nanomotors. Angewandte Chemie International Edition 2015, 54 (5), 1414-1444. (96) Magdanz, V.; Guix, M.; Hebenstreit, F.; Schmidt, O. G. Dynamic polymeric microtubes for the remote‐controlled capture, guidance, and release of sperm cells. Adv Mater 2016, 28 (21), 4084-4089. (97) Ji, Q.; Moughames, J.; Chen, X.; Fang, G.; Huaroto, J. J.; Laude, V.; Martínez, J. A. I.; Ulliac, G.; Clévy, C.; Lutz, P. 4D Thermomechanical metamaterials for soft microrobotics. Communications Materials 2021, 2 (1), 93. (98) Aghakhani, A.; Yasa, O.; Wrede, P.; Sitti, M. Acoustically powered surface-slipping mobile microrobots. Proceedings of the National Academy of Sciences 2020, 117 (7), 3469-3477. (99) Ren, L.; Nama, N.; McNeill, J. M.; Soto, F.; Yan, Z.; Liu, W.; Wang, W.; Wang, J.; Mallouk, T. E. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science advances 2019, 5 (10), eaax3084. (100) Martella, D.; Nocentini, S.; Nuzhdin, D.; Parmeggiani, C.; Wiersma, D. S. Photonic microhand with autonomous action. Adv Mater 2017, 29 (42), 1704047. (101) Li, D.; Liu, C.; Yang, Y.; Wang, L.; Shen, Y. Micro-rocket robot with all-optic actuating and tracking in blood. Light: Science & Applications 2020, 9 (1), 84. (102) Zhang, Y.; Zhang, L.; Yang, L.; Vong, C. I.; Chan, K. F.; Wu, W. K.; Kwong, T. N.; Lo, N. W.; Ip, M.; Wong, S. H. Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Science advances 2019, 5 (1), eaau9650. (103) Jing, W.; Chowdhury, S.; Guix, M.; Wang, J.; An, Z.; Johnson, B. V.; Cappelleri, D. J. A microforce-sensing mobile microrobot for automated micromanipulation tasks. IEEE Transactions on Automation Science and Engineering 2018, 16 (2), 518-530. (104) Diller, E.; Pawashe, C.; Floyd, S.; Sitti, M. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. The International Journal of Robotics Research 2011, 30 (14), 1667-1680. (105) Inoue, T.; Iwatani, K.; Shimoyama, I.; Miura, H. Micromanipulation using magnetic field. Proceedings of 1995 IEEE International Conference on Robotics and Automation 1995, 1, 679-684 vol.671. (106) Zhang, Z.; Wang, X.; Liu, J.; Dai, C.; Sun, Y. Robotic Micromanipulation: Fundamentals and Applications. Annual Review of Control, Robotics, and Autonomous Systems 2019, 2 (1), 181-203. DOI: 10.1146/annurev-control-053018-023755 (acccessed 2023/11/30). (107) Lee, H.; Kim, D.-i.; Kwon, S.-h.; Park, S. Magnetically Actuated Drug Delivery Helical Microrobot with Magnetic Nanoparticle Retrieval Ability. Acs Appl Mater Inter 2021, 13 (17), 19633-19647. DOI: 10.1021/acsami.1c01742. (108) Lee, J. G.; Raj, R. R.; Day, N. B.; Shields, C. W. t. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. Acs Nano 2023, 17 (15), 14196-14204. DOI: 10.1021/acsnano.3c03723 From NLM. (109) Lin, Z.; Fan, X.; Sun, M.; Gao, C.; He, Q.; Xie, H. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. Acs Nano 2018, 12 (3), 2539-2545. DOI: 10.1021/acsnano.7b08344. (110) Kantaros, Y.; Johnson, B. V.; Chowdhury, S.; Cappelleri, D. J.; Zavlanos, M. M. Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks. IEEE Transactions on Robotics 2018, 34 (6), 1472-1489. DOI: 10.1109/TRO.2018.2861901. (111) Choi, J.; Hwang, J.; Kim, J. y.; Choi, H. Recent progress in magnetically actuated microrobots for targeted delivery of therapeutic agents. Advanced Healthcare Materials 2021, 10 (6), 2001596. (112) Yigit, B.; Alapan, Y.; Sitti, M. Programmable collective behavior in dynamically self‐assembled mobile microrobotic swarms. Advanced Science 2019, 6 (6), 1801837. (113) Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. Acs Appl Mater Inter 2022, 14 (5), 6320-6330. DOI: 10.1021/acsami.1c16859. (114) Nguyen, K. T.; Go, G.; Jin, Z.; Darmawan, B. A.; Yoo, A.; Kim, S.; Nan, M.; Lee, S. B.; Kang, B.; Kim, C. S. A magnetically guided self‐rolled microrobot for targeted drug delivery, real‐time X‐Ray imaging, and microrobot retrieval. Advanced Healthcare Materials 2021, 10 (6), 2001681. (115) Felfoul, O.; Mohammadi, M.; Taherkhani, S.; De Lanauze, D.; Zhong Xu, Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 2016, 11 (11), 941-947. (116) Liu, Q.; Ye, X.; Wu, H.; Zhang, X. A multiphysics model of magnetic hydrogel under a moving magnet for targeted drug delivery. International Journal of Mechanical Sciences 2022, 215, 106963. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106963. (117) Khalil, I. S. M.; Adel, A.; Mahdy, D.; Micheal, M. M.; Mansour, M.; Hamdi, N.; Misra, S. Magnetic localization and control of helical robots for clearing superficial blood clots. APL Bioengineering 2019, 3 (2). DOI: 10.1063/1.5090872 (acccessed 9/18/2024). (118) Nguyen, K. T.; Kim, S. J.; Min, H. K.; Hoang, M. C.; Go, G.; Kang, B.; Kim, J.; Choi, E.; Hong, A.; Park, J. O.; Kim, C. S. Guide-Wired Helical Microrobot for Percutaneous Revascularization in Chronic Total Occlusion in-Vivo Validation. IEEE Transactions on Biomedical Engineering 2021, 68 (8), 2490-2498. DOI: 10.1109/TBME.2020.3046513. (119) Meng, K.; Jia, Y.; Yang, H.; Niu, F.; Wang, Y.; Sun, D. Motion Planning and Robust Control for the Endovascular Navigation of a Microrobot. IEEE Transactions on Industrial Informatics 2020, 16 (7), 4557-4566. DOI: 10.1109/TII.2019.2950052. (120) Diller, E.; Ye, Z.; Sitti, M. Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011, 2011; pp 1291-1296. DOI: 10.1109/IROS.2011.6094968. (121) Yu, J.; Yang, L.; Du, X.; Chen, H.; Xu, T.; Zhang, L. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms. IEEE Transactions on Robotics 2022, 38 (3), 1552-1570. DOI: 10.1109/TRO.2021.3130432. (122) Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Science Robotics 2019, 4 (28), eaav8006. DOI: doi:10.1126/scirobotics.aav8006. (123) Chen, H.; Yu, J. Magnetic Microrobotic Swarms in Fluid Suspensions. Current Robotics Reports 2022, 3 (3), 127-137. DOI: 10.1007/s43154-022-00085-6. (124) Zimmermann, C. J.; Petruska, A. J.; Neeves, K. B.; Marr, D. W. M. Coupling Magnetic Torque and Force for Colloidal Microbot Assembly and Manipulation. Advanced Intelligent Systems 2023, 5 (12), 2300332. DOI: https://doi.org/10.1002/aisy.202300332. (125) Kummer, M. P.; Abbott, J. J.; Kratochvil, B. E.; Borer, R.; Sengul, A.; Nelson, B. J. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Transactions on Robotics 2010, 26 (6), 1006-1017. DOI: 10.1109/TRO.2010.2073030. (126) Hsu, A.; Zhao, H.; Gaudreault, M.; Foy, A. W.; Pelrine, R. Magnetic Milli-Robot Swarm Platform: A Safety Barrier Certificate Enabled, Low-Cost Test Bed. IEEE Robotics and Automation Letters 2020, 5, 2913-2920. (127) Becker, A. T.; Fekete, S. P.; Huang, L.; Keldenich, P.; Kleist, L.; Krupke, D.; Rieck, C.; Schmidt, A. Targeted Drug Delivery: Algorithmic Methods for Collecting a Swarm of Particles with Uniform, External Forces. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May-31 Aug. 2020, 2020; pp 2508-2514. DOI: 10.1109/ICRA40945.2020.9196551. (128) Li, W.; Chen, H.; Yi, Z.; Fang, F.; Guo, X.; Wu, Z.; Gao, Q.; Shao, L.; Xu, J.; Meng, G.; Zhang, W. Self-vectoring electromagnetic soft robots with high operational dimensionality. Nat Commun 2023, 14 (1), 182. DOI: 10.1038/s41467-023-35848-y. (129) Kim, Y.; Parada, G. A.; Liu, S.; Zhao, X. Ferromagnetic soft continuum robots. Science Robotics 2019, 4 (33), eaax7329. DOI: doi:10.1126/scirobotics.aax7329. (130) Yu, J.; Wang, B.; Du, X.; Wang, Q.; Zhang, L. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun 2018, 9 (1), 3260. (131) Yu, J.; Jin, D.; Chan, K.-F.; Wang, Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun 2019, 10 (1), 5631. (132) Wang, M.; Wu, T.; Liu, R.; Zhang, Z.; Liu, J. Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering 2023, 24, 21-38. DOI: https://doi.org/10.1016/j.eng.2023.02.011. (133) Hoefflinger, B. ITRS: The international technology roadmap for semiconductors. In Chips 2020: a guide to the future of nanoelectronics, Springer, 2011; pp 161-174. (134) Perreault, D. J.; Hu, J.; Rivas, J. M.; Han, Y.; Leitermann, O.; Pilawa-Podgurski, R. C. N.; Sagneri, A.; Sullivan, C. R. Opportunities and Challenges in Very High Frequency Power Conversion. In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 15-19 Feb. 2009, 2009; pp 1-14. DOI: 10.1109/APEC.2009.4802625. (135) Sira-Ramirez, H. J.; Silva-Ortigoza, R. Control design techniques in power electronics devices; Springer Science & Business Media, 2006. (136) Charles R. Sullivan, B. A. R., Aaron L. F. Stein and Phyo Aung Kyaw. On size and magnetics: Why small efficient power inductors are rare. IEEE. (137) Zhang, H. P.; Makse, H. A. Jamming transition in emulsions and granular materials. Physical Review E 2005, 72 (1), 011301. DOI: 10.1103/PhysRevE.72.011301. (138) Huang, J.; Zhang, J.; Xu, D.; Zhang, S.; Tong, H.; Xu, N. From jammed solids to mechanical metamaterials : A brief review. Current Opinion in Solid State and Materials Science 2023, 27 (1), 101053. DOI: https://doi.org/10.1016/j.cossms.2022.101053. (139) Cates, M. E.; Wittmer, J. P.; Bouchaud, J. P.; Claudin, P. Jamming, Force Chains, and Fragile Matter. Phys Rev Lett 1998, 81 (9), 1841-1844. DOI: 10.1103/PhysRevLett.81.1841. (140) Giannatsis, J.; Dedoussis, V. Additive fabrication technologies applied to medicine and health care: a review. The International Journal of Advanced Manufacturing Technology 2009, 40 (1), 116-127. DOI: 10.1007/s00170-007-1308-1. (141) Frazier, W. E. Metal additive manufacturing: a review. Journal of Materials Engineering and performance 2014, 23, 1917-1928. (142) Pillitteri, S.; Lumay, G.; Opsomer, E.; Vandewalle, N. From jamming to fast compaction dynamics in granular binary mixtures. Sci Rep-Uk 2019, 9 (1), 7281. DOI: 10.1038/s41598-019-43519-6. (143) Meng, F.; Liu, K.; Qin, T. Numerical analysis of multi-scale mechanical theory of densified powder compaction. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018, 40 (9), 430. DOI: 10.1007/s40430-018-1337-8. (144) Ozawa, M.; Berthier, L.; Coslovich, D. Exploring the jamming transition over a wide range of critical densities. SciPost Physics 2017, 3 (4), 027. (145) Liu, X.; Tan, H.; Rigoni, C.; Hartikainen, T.; Asghar, N.; van Dijken, S.; Timonen, J. V. I.; Peng, B.; Ikkala, O. Magnetic field–driven particle assembly and jamming for bistable memory and response plasticity. Science Advances 2022, 8 (45), eadc9394. DOI: doi:10.1126/sciadv.adc9394. (146) Liu, X.; Tan, H.; Stråka, E.; Hu, X.; Chen, M.; van Dijken, S.; Scacchi, A.; Sammalkorpi, M.; Ikkala, O.; Peng, B. Trainable bioinspired magnetic sensitivity adaptation using ferromagnetic colloidal assemblies. Cell Reports Physical Science 2024, 5 (4), 101923. DOI: https://doi.org/10.1016/j.xcrp.2024.101923. (147) Hu, W.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554 (7690), 81-85. (148) Go, G.; Choi, H.; Jeong, S.; Lee, C.; Ko, S. Y.; Park, J.-O.; Park, S. Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot. IEEE Transactions on Magnetics 2014, 51 (4), 1-7. (149) Yao, H.; Hempel, M.; Hsieh, Y.-P.; Kong, J.; Hofmann, M. Characterizing percolative materials by straining. Nanoscale 2019, 11 (3), 1074-1079. (150) Usov, N. A.; Serebryakova, O. N.; Tarasov, V. P. Interaction Effects in Assembly of Magnetic Nanoparticles. Nanoscale Research Letters 2017, 12 (1), 489. DOI: 10.1186/s11671-017-2263-x. (151) Kotera, H.; Sawada, M.; Shima, S. Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. International Journal of Mechanical Sciences 2000, 42 (1), 129-145. DOI: https://doi.org/10.1016/S0020-7403(98)00108-8. (152) Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C. Alignment of magnetic uniaxial particles in a magnetic field: Simulation. Journal of Magnetism and Magnetic Materials 2014, 365, 64-69. DOI: https://doi.org/10.1016/j.jmmm.2014.04.037. (153) Erokhin, S.; Berkov, D. Mechanical orientation of fine magnetic particles in powders by an external magnetic field: simulation‐based optimization. physica status solidi (b) 2020, 257 (12), 2000404. DOI: https://doi.org/10.1002/pssb.202000404. (154) Jaeger, H. M.; Nagel, S. R.; Behringer, R. P. Granular solids, liquids, and gases. Rev Mod Phys 1996, 68 (4), 1259-1273. DOI: 10.1103/RevModPhys.68.1259. (155) Majmudar, T. S.; Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 2005, 435 (7045), 1079-1082. DOI: 10.1038/nature03805. (156) Song, C.; Wang, P.; Makse, H. A. A phase diagram for jammed matter. Nature 2008, 453 (7195), 629-632. DOI: 10.1038/nature06981. (157) DEMLab: Discrete Element Method Laboratory. (accessed. (158) Vaganov, M. V.; Borin, D. Y.; Odenbach, S.; Raikher, Y. L. Magnetic Response of Magnetoactive Elastomers with Allowance for Slippage at the Particle-Matrix Interfaces. Advanced Theory and Simulations 2021, 4 (5), 2000327. DOI: https://doi.org/10.1002/adts.202000327 (acccessed 2023/11/30). (159) Koynov, A.; Romanski, F.; Cuitiño, A. M. Effects of particle size disparity on the compaction behavior of binary mixtures of pharmaceutical powders. Powder Technology 2013, 236, 5-11. DOI: https://doi.org/10.1016/j.powtec.2012.07.046. (160) Chatterjee, S.; Hui, P. C.-l.; Kan, C.-w. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers 2018, 10 (5), 480. (161) Bhatti, M. R. A.; Kernin, A.; Tausif, M.; Zhang, H.; Papageorgiou, D.; Bilotti, E.; Peijs, T.; Bastiaansen, C. W. M. Light-Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Advanced Optical Materials 2022, 10 (10), 2102186. DOI: https://doi.org/10.1002/adom.202102186. (162) Bar-Cohen, Y.; Anderson, I. A. Electroactive polymer (EAP) actuators—background review. Mechanics of Soft Materials 2019, 1 (1), 5. DOI: 10.1007/s42558-019-0005-1. (163) Brown, J. J.; Bright, V. M. Thermal Actuators. In Encyclopedia of Nanotechnology, Bhushan, B. Ed.; Springer Netherlands, 2016; pp 4117-4138. (164) Sa, J.; Kwon, J.; Jang, G. Sawtooth head helical magnetic robots to improve drilling performance for robotic endovascular intervention. AIP Advances 2023, 13 (2). (165) Wu, R.; Zhu, Y.; Cai, X.; Wu, S.; Xu, L.; Yu, T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. In Micromachines, 2022; Vol. 13. (166) Law, J.; Wang, X.; Luo, M.; Xin, L.; Du, X.; Dou, W.; Wang, T.; Shan, G.; Wang, Y.; Song, P.; et al. Microrobotic swarms for selective embolization. Science Advances 8 (29), eabm5752. DOI: 10.1126/sciadv.abm5752 (acccessed 2023/11/30). (167) Yang, L.; Zhang, L. Motion Control in Magnetic Microrobotics: From Individual and Multiple Robots to Swarms. Annual Review of Control, Robotics, and Autonomous Systems 2021, 4 (1), 509-534. DOI: 10.1146/annurev-control-032720-104318 (acccessed 2023/11/30). (168) Stoychev, G.; Kirillova, A.; Ionov, L. Light‐responsive shape‐changing polymers. Advanced Optical Materials 2019, 7 (16), 1900067. (169) Zeng, H.; Wasylczyk, P.; Wiersma, D. S.; Priimagi, A. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater 2018, 30 (24), 1703554. (170) Iwaso, K.; Takashima, Y.; Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nature Chemistry 2016, 8 (6), 625-632. DOI: 10.1038/nchem.2513. (171) Cheng, Y.; Chan, K. H.; Wang, X.-Q.; Ding, T.; Li, T.; Lu, X.; Ho, G. W. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. Acs Nano 2019, 13 (11), 13176-13184. DOI: 10.1021/acsnano.9b06144. (172) Li, C.; Lau, G. C.; Yuan, H.; Aggarwal, A.; Dominguez, V. L.; Liu, S.; Sai, H.; Palmer, L. C.; Sather, N. A.; Pearson, T. J.; et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot 2020, 5 (49). DOI: 10.1126/scirobotics.abb9822 From NLM. (173) Souza, A. D.; Vagadia, M.; Daivajna, M. Effect of nanoscale size reduction on the magnetic properties of Pr0.6Sr0.4MnO3. Journal of Magnetism and Magnetic Materials 2021, 538, 168280. DOI: https://doi.org/10.1016/j.jmmm.2021.168280. (174) Arteaga-Cardona, F.; Martha-Aguilar, N. G.; Estevez, J. O.; Pal, U.; Méndez-Rojas, M. Á.; Salazar-Kuri, U. Variations in magnetic properties caused by size dispersion and particle aggregation on CoFe2O4. SN Applied Sciences 2019, 1 (5), 412. DOI: 10.1007/s42452-019-0447-y. (175) Zhou, Y.; Zhu, X.; Li, S. Effect of particle size on magnetic and electric transport properties of La 0.67 Sr 0.33 MnO 3 coatings. Physical Chemistry Chemical Physics 2015, 17 (46), 31161-31169. (176) Sung Lee, J.; Myung Cha, J.; Young Yoon, H.; Lee, J.-K.; Keun Kim, Y. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Sci Rep-Uk 2015, 5 (1), 12135. DOI: 10.1038/srep12135. (177) Johnson, H.; Lowrie, W.; Kent, D. V. Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles. Geophysical Journal International 1975, 41 (1), 1-10. (178) Heider, F.; Zitzelsberger, A.; Fabian, K. Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Physics of the Earth and Planetary interiors 1996, 93 (3-4), 239-256. (179) Goya, G. F.; Berquo, T.; Fonseca, F. C.; Morales, M. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 2003, 94 (5), 3520-3528. (180) Ma, M.; Wu, Y.; Zhou, J.; Sun, Y.; Zhang, Y.; Gu, N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials 2004, 268 (1-2), 33-39. (181) Smolensky, E. D.; Park, H. Y.; Zhou, Y.; Rolla, G. A.; Marjańska, M.; Botta, M.; Pierre, V. C. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents. J Mater Chem B 2013, 1 (22), 2818-2828. DOI: 10.1039/c3tb00369h From NLM. (182) Li, Q.; Kartikowati, C. W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep-Uk 2017, 7 (1), 9894. DOI: 10.1038/s41598-017-09897-5. (183) Kim, Y. H.; Marom, E. M.; Herndon, J. E., 2nd; McAdams, H. P. Pulmonary vein diameter, cross-sectional area, and shape: CT analysis. Radiology 2005, 235 (1), 43-49; discussion 49-50. DOI: 10.1148/radiol.2351032106 From NLM. (184) Geleto, G.; Getnet, W.; Tewelde, T. Mean Normal Portal Vein Diameter Using Sonography among Clients Coming to Radiology Department of Jimma University Hospital, Southwest Ethiopia. Ethiop J Health Sci 2016, 26 (3), 237-242. DOI: 10.4314/ejhs.v26i3.6 From NLM. (185) Nelson, B. J.; Pané, S. Delivering drugs with microrobots. Science 2023, 382 (6675), 1120-1122. DOI: doi:10.1126/science.adh3073. (186) Willyard, C. Medical microrobots that can travel inside your body are (still) on their way. 2023. (187) Lee, Y.; Koehler, F.; Dillon, T.; Loke, G.; Kim, Y.; Marion, J.; Antonini, M. J.; Garwood, I. C.; Sahasrabudhe, A.; Nagao, K. Magnetically Actuated Fiber‐Based Soft Robots. Adv Mater 2023, 35 (38), 2301916. (188) Gao, W.; Kagan, D.; Pak, O. S.; Clawson, C.; Campuzano, S.; Chuluun‐Erdene, E.; Shipton, E.; Fullerton, E. E.; Zhang, L.; Lauga, E. Cargo‐towing fuel‐free magnetic nanoswimmers for targeted drug delivery. small 2012, 8 (3), 460-467. (189) Kim, D.-i.; Lee, H.; Kwon, S.-h.; Choi, H.; Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sensors and Actuators B: Chemical 2019, 289, 65-77. (190) Chautems, C.; Zeydan, B.; Charreyron, S.; Chatzipirpiridis, G.; Pané, S.; Nelson, B. J. Magnetically powered microrobots: a medical revolution underway? European Journal of Cardio-Thoracic Surgery 2017, 51 (3), 405-407. DOI: 10.1093/ejcts/ezw432 (acccessed 11/14/2024). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97398 | - |
| dc.description.abstract | 二元混合物為研究兩種不同材料之間相互作用產生的新興現象提供了一個有前景的方法。透過控製成分、粒徑和分佈等參數,這些混合物可以表現出增強的性能,如導電性、介電行為和磁響應,這對於電子、材料科學、機器人和能源儲存中的各種應用至關重要。二元混合物的獨特優勢在於它們能夠定制電學和磁學特性,這是單獨的成分無法實現的。
我們研究了由導電金屬顆粒和非導電聚合物(例如蠟)組成的組件的局部電導率,可用於相變記憶體和壓力感測器。此外,透過雷射寫入在非導電組件中創建選擇性導電路徑,為柔性電子電路開闢了新途徑。 此外,我們也探討如何改變二元顆粒組件的形態來優化其磁性,並應用於磁性微致動器和微型機器人。這些設備有可能徹底改變遠端操作和基於群體的協作。由於在產生和調控磁場方面存在的根本挑戰,控制單一磁性系統的傳統方法無法縮小到微觀尺度。 我們展示了一種新穎的致動機制,使磁性微致動器具有前所未有的易於製造和尺寸縮放。透過對二元粒子混合物進行機械干擾,可以誘發磁有序和明顯的各向異性。結合模擬和實驗研究證實了來自鄰近粒子的阻止力作為這種行為的起源的重要性。磁特性對組裝形態的敏感度可用於生產利用顆粒尺寸或壓力的微小變化的新型致動器。我們演示了將粒子膨脹轉換為磁扭矩鎖定,從而實現微型機器人中的主動磁控制,以用於未來的遠端操作應用。 | zh_TW |
| dc.description.abstract | Binary mixtures offer a promising approach for studying emergent phenomena resulting from the interplay between two distinct materials. By controlling parameters such as composition, particle size, and distribution, these mixtures can exhibit enhanced properties such as electrical conductivity, dielectric behavior, and magnetic response, which are essential for various applications in electronics, materials science, robotics, and energy storage. The unique advantage of binary mixtures lies in their ability to tailor electrical and magnetic properties that cannot be achieved by individual components alone.
We investigated electrical localized conductivity in assemblies composed of conductive metal particles and non-conductive polymers (e.g., wax), which can be used for phase change memory and pressure sensors. Further, selective conductive paths were created in non-conductive assemblies by laser writing, opening new routes for flexible electronic circuits. Moreover, we explore how changing the morphology of binary particle assemblies can optimize their magnetic properties, with applications in magnetic micro-actuators and microrobots. These devices have the potential to revolutionize remote manipulation and swarm-based collaboration. Conventional approaches to controlling individual magnetic systems cannot be shrunk to the microscale due to fundamental challenges in the generation and modification of magnetic fields. We demonstrate a novel actuation mechanism that imparts magnetic micro-actuators with unprecedented ease of fabrication and dimensional scaling. Through mechanical jamming in binary particle mixtures, magnetic ordering and pronounced anisotropy could be induced. Combined simulation and experimental investigation confirm the importance of arresting forces from neighboring particles as the origin of this behavior. This sensitivity of magnetic properties on assembly morphology can be exploited to produce novel actuators that utilize minute changes in particle size or pressure. We demonstrate the transduction of particle swelling into magnetic torque locking that enables active magnetic control in microrobots for future remote operating applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-27T16:05:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-05-27T16:05:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract i
Abstract (Chinese Version) iii Acknowledgment iv List of Figures ix List of Tables xiii Denotation xiv 1. Chapter 1 1 Introduction 1 Research Question: 1 Binary Mixture 2 Percolation 4 Percolation theory 5 Organization of Thesis 7 2. Chapter 2 8 Binary Mixture preparation and characterization 8 Preparation of Binary particle (Ni and Al2O3) mixture for electrical and magnetic measurements 8 PDMS Preparation 9 PDMS balls Mold 9 PDMS Swelling procedure 10 PDMS and Magnetic sphere assembly 11 Fabrication of Porous PDMS Using Sugar Cube as Templates 12 Making Porous PDMS and Nickel particles 12 Superconducting Quantum Interference Device (SQUID) 13 CHI600E electrochemical workstation/ Analyzer 14 HP4145B Semiconductor Analyzer 15 Tapping Machine for packing powder 16 3. Chapter 3 17 Electrical Properties and Applications 17 Electrical percolation 17 Ni and Teflon Percolation 18 Importance of the Nickel and paraffin wax composite 24 Studying percolation of Nickel and paraffin wax composites 24 Localized Conductivity Through Phase Change 27 Effect of Magnetic Forces on the Localized Electrical Conductivity 36 Selective Localized conductivity 37 Nickel-Paraffin Composite Application in Phase Change Memory 40 Pressure sensor 41 Laser writing 42 Problems with Nickel-paraffin Wax composite 48 1. Thermal Expansion: 48 2. Non-uniformity: 48 3. Low conductive path resolution: 48 4. Inconsistent Nickel Dispersion Due to Paraffin Wax Cooling: 49 Percolation of Nickel in Aluminum oxide (Al2O3) 50 High Capacitance Near Percolation Threshold 53 4. Chapter 4 55 Magnetic Properties and Application in magnetic micro-robotics 55 History of Robotics 55 Why Microrobots 56 Different Actuation Mechanisms for Micro-robots 58 PH based Actuation in materials 58 Electric field-based Actuation 58 Heat based Actuation 58 Why Magnetic microrobots 61 Application magnetic micro-robotics 62 Magnetic micro-robotics in Drug Delivery 62 Microrobots in Cardiovascular Disease 64 Object and Micromanipulation 65 Magnetic Microrobots Swarms 65 Individual Control of Magnetic Micro-robotics 66 Challenges in Scaling down Magnetic actuators and sensors. 67 Jamming in Binary Mixture 68 Our approach 70 SEM Characterization 70 Electrical conduction depends on nickel particle concentrations 71 Magnetic properties 72 Introducing jamming in binary mixture 73 Introducing jamming through particle swelling 77 MagMeT 78 Scaling MagMet Micro-Scale 79 Torque Calculation 81 (a). MagMet torque calculation 81 (b). Microscale robot torque calculation 82 5. Chapter 5 84 Conclusion and Future Outlook 84 Conclusion 84 Future Work 86 Light-based Materials 86 Publication and Conferences 88 Appendix 89 Percolation Study: 89 Capacitance at Percolation Threshold 90 Magnetic measurements 90 How small magnetic particles can be used for magnetic robotics: effect of particle size reduction on magnetic properties 93 Transition to Superparamagnetism: 93 Change in Coercivity 93 Decreased Magnetization: 94 Critical Size Effects: 94 How small can microrobots can used inside the body 95 References 96 | - |
| dc.language.iso | en | - |
| dc.subject | 局域導電性 | zh_TW |
| dc.subject | 相變記憶體 | zh_TW |
| dc.subject | 壓力感測器 | zh_TW |
| dc.subject | 粒子堵塞 | zh_TW |
| dc.subject | 磁性微致動器 | zh_TW |
| dc.subject | 二元混合物 | zh_TW |
| dc.subject | 滲流理論 | zh_TW |
| dc.subject | magnetic micro-actuator | en |
| dc.subject | Binary mixture | en |
| dc.subject | electrical percolation | en |
| dc.subject | localized conductivity | en |
| dc.subject | phase change memory | en |
| dc.subject | particle jamming | en |
| dc.subject | tunable magnetic response | en |
| dc.title | 二元粒子混合物的湧現現象及其在電子學與機器人領域的應用 | zh_TW |
| dc.title | Emergent Phenomena in Binary Particle Mixtures and their Applications in Electronics and Robotics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 謝雅萍 | zh_TW |
| dc.contributor.coadvisor | Ya-Ping Hsieh | en |
| dc.contributor.oralexamcommittee | 陳永芳;梁啟德;林靖衛 | zh_TW |
| dc.contributor.oralexamcommittee | Yang-Fang Chen ;Chi-Te Liang;Ching-Wei Lin | en |
| dc.subject.keyword | 二元混合物,滲流理論,局域導電性,相變記憶體,壓力感測器,粒子堵塞,磁性微致動器, | zh_TW |
| dc.subject.keyword | Binary mixture,electrical percolation,localized conductivity,phase change memory,particle jamming,tunable magnetic response,magnetic micro-actuator, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202404705 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 分子科學與技術國際研究生博士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
