請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97381完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林守德 | zh_TW |
| dc.contributor.advisor | Shou-De Lin | en |
| dc.contributor.author | 蔡昀達 | zh_TW |
| dc.contributor.author | Yun-Da Tsai | en |
| dc.date.accessioned | 2025-05-22T16:08:32Z | - |
| dc.date.available | 2025-05-23 | - |
| dc.date.copyright | 2025-05-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-05 | - |
| dc.identifier.citation | [1] Inside airbnb : Hawaii, 2023. Accessed on: 10 September, 2023.
[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, [3] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, [4] Anthropic. Claude 3.5 and claude 3.7 models. https://www.anthropic.com/ [5] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, [6] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, [7] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, [8] C. Batten, N. Pinckney, M. Liu, H. Ren, and B. Khailany. Pyhdl-eval: An [9] I. Beltagy, M. E. Peters, and A. Cohan. [10] J. Bhandari, J. Knechtel, R. Narayanaswamy, S. Garg, and R. Karri. Llm- [11] J. Blocklove, [12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee- [13] F. Cassano, J. Gouwar, F. Lucchetti, C. Schlesinger, A. Freeman, C. J. An- [14] F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin, D. Pinckney, [15] K. Chang, Z. Chen, Y. Zhou, W. Zhu, kun wang, H. Xu, C. Li, M. Wang, [16] S. Chaudhary. Code alpaca: An instruction-following llama model for code [17] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and W. Chen. [18] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu. A systematic review of [19] L. Chen, S. Li, J. Yan, H. Wang, K. Gunaratna, V. Yadav, Z. Tang, V. Srini- [20] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Ed- [21] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, [22] F. Cui, C. Yin, K. Zhou, Y. Xiao, G. Sun, Q. Xu, Q. Guo, D. Song, D. Lin, [23] Y. Da Tsai and S. De Lin. Fast online inference for nonlinear contextual bandit [24] D. Das and V. Khetan. Deft: Data efficient fine-tuning for large language [25] G. DeepMind. Introducing gemini 2.0: Our next-generation ai models. [26] DeepSeek-AI, Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang, R. Xu, Y. Wu, [27] M. DeLorenzo, A. B. Chowdhury, V. Gohil, S. Thakur, R. Karri, S. Garg, [28] S. Diao, P. Wang, Y. Lin, and T. Zhang. Active prompting with chain-of- [29] X. Dong, Y. He, Z. Zhu, and J. Caverlee. Promptattack: Probing dialogue [30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un- [31] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, [32] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Kto: Model [33] X. Feng, Z. Wan, M. Wen, Y. Wen, W. Zhang, and J. Wang. [34] N. Friedman. Introducing github copilot: your ai pair programmer. 2021. [35] Z. Fu, H. Yang, A. M.-C. So, W. Lam, L. Bing, and N. Collier. [36] W. Gao, Z. Deng, Z. Niu, F. Rong, C. Chen, Z. Gong, W. Zhang, D. Xiao, F. Li, [37] R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin, and [38] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep [39] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, [40] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, [41] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, [42] P.-F. Guo, Y.-H. Chen, Y.-D. Tsai, and S.-D. Lin. Towards optimizing with [43] P.-F. Guo, Y.-D. Tsai, and S.-D. Lin. Benchmarking large language model [44] I. Guz, J. Elliott, M. Konstantin, S. Dane, V. Kassym, and W. Kan. Avito de- [45] T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun, T. B. [46] J. Ho, A. Jain, and P. Abbeel. [47] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and [48] B. Hui, H. Yuan, N. Gong, P. Burlina, and Y. Cao. [49] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, [50] R. Just, D. Jalali, and M. D. Ernst. Defects4j: a database of existing faults to [51] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and [52] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, [53] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for [54] B. Kawar, M. Elad, S. Ermon, and J. Song. Denoising diffusion restoration [55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017. [56] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis, Y. Jernite, [57] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, [58] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi. [59] B. Lei, Y. Li, and Q. Chen. Autocoder: Enhancing code large language model [60] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, [61] K. Li, Y. He, Y. Wang, Y. Li, W. Wang, P. Luo, Y. Wang, L. Wang, [62] M. Li, Y. Zhang, S. He, Z. Li, H. Zhao, J. Wang, N. Cheng, and T. Zhou. [63] M. Li, Y. Zhang, Z. Li, J. Chen, L. Chen, N. Cheng, J. Wang, T. Zhou, and [64] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, [65] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, [66] P. P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Chen, P. Wu, [67] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, [68] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning, 2023. [69] J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by chatGPT [70] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Al- [71] M. Liu, N. Pinckney, B. Khailany, and H. Ren. Verilogeval: Evaluating large [72] M. Liu, Y.-D. Tsai, W. Zhou, and H. Ren. [73] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie. Rtlcoder: Out- [74] W. Liu, W. Zeng, K. He, Y. Jiang, and J. He. What makes good data for [75] Y. Liu, G. Deng, Y. Li, K. Wang, Z. Wang, X. Wang, T. Zhang, Y. Liu, [76] Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao, T. Zhang, [77] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, [78] S. Lu, N. Duan, H. Han, D. Guo, S. won Hwang, and A. Svyatkovskiy. Reacc: [79] Y. Lu, S. Liu, Q. Zhang, and Z. Xie. [80] Y. Lu, S. Liu, Q. Zhang, and Z. Xie. Rtllm: An open-source benchmark for [81] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, [82] J. Ma, A. Cao, Z. Xiao, J. Zhang, C. Ye, and J. Zhao. Jailbreaking prompt at- [83] M. Ma, J. Ren, L. Zhao, D. Testuggine, and X. Peng. [84] A. Maćkiewicz and W. Ratajczak. [85] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. [86] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approxima- [87] K. Meding, L. M. S. Buschoff, R. Geirhos, and F. A. Wichmann. Trivial or [88] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. [89] Meta AI. Introducing meta llama 3: The most capable openly available llm [90] B. B. Moser, F. Raue, and A. Dengel. A study in dataset pruning for image [91] N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo, S. Singh, [92] D. Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv [93] A. Naik. On the limitations of embedding based methods for measuring func- [94] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, [95] D. Nichols, J. H. Davis, Z. Xie, A. Rajaram, and A. Bhatele. [96] Nvidia, [97] OpenAI. Openai models api. 2023. [98] H. Pearce, B. Tan, and R. Karri. Dave: Deriving automatically verilog from en- [99] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, [100] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang, and B. Yu. Betterv: Controlled verilog [101] G. Penedo, H. Kydlíček, L. von Werra, and T. Wolf. Fineweb, April 2024. [102] B. Peng, C. Li, P. He, M. Galley, and J. Gao. Instruction tuning with gpt-4. [103] Z. Peng, W. Wang, L. Dong, Y. Hao, S. Huang, S. Ma, and F. Wei. Kosmos-2: [104] F. Perez and I. Ribeiro. Ignore previous prompt: Attack techniques for lan- [105] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. [106] Y. Qin, S. Liang, Y. Ye, K. Zhu, L. Yan, Y. Lu, Y. Lin, X. Cong, X. Tang, [107] R. Qiu, G. L. Zhang, R. Drechsler, U. Schlichtmann, and B. Li. Autobench: [108] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. [109] M. F. Rahman, W. Liu, S. B. Suhaim, S. Thirumuruganathan, N. Zhang, and [110] S. N. Roy. On a heuristic method of test construction and its use in multivari- [111] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, [112] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, [113] S. Schoch, R. Mishra, and Y. Ji. Data selection for fine-tuning large language [114] D. W. Scott. Scott’s rule. Wiley Interdisciplinary Reviews: Computational [115] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, [116] A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, P. J. Liu, J. Harri- [117] C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute opti- [118] J. Song, C. Meng, and S. Ermon. [119] Y. Song, C. Lothritz, D. Tang, T. F. Bissyandé, and J. Klein. Revisiting code [120] B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. Morcos. [121] R. Stickgold. Sleep-dependent memory consolidation. Nature, 437(7063):1272– [122] H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang, M. Osten- [123] S. Sudalairaj, A. Bhandwaldar, A. Pareja, K. Xu, D. D. Cox, and A. Srivastava. [124] S. Takamaeda-Yamazaki. Pyverilog: A python-based hardware design process- [125] Q. Team. Qwq-32b: Embracing the power of reinforcement learning, March [126] A. TehraniJamsaz, A. Bhattacharjee, L. Chen, N. K. Ahmed, A. Yazdan- [127] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and [128] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, [129] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash- [130] T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong. [131] T.-H. Tsai, Y.-D. Tsai, and S.-D. Lin. lil'hdoc: an algorithm for good arm iden- [132] Y. Tsai, M. Liu, and H. Ren. Rtlfixer: Automatically fixing rtl syntax errors [133] Y.-D. Tsai and S.-D. Lin. Handling concept drift in non-stationary bandit [134] Y.-D. Tsai, C. Liow, Y. S. Siang, and S.-D. Lin. Toward more generalized [135] Y.-D. Tsai, M. Liu, and H. Ren. Code less, align more: Efficient llm fine-tuning [136] Y.-D. Tsai, T.-H. Tsai, and S.-D. Lin. Differential good arm identification. [137] Y.-D. Tsai, Y.-C. Tsai, B.-W. Huang, C.-P. Yang, and S.-D. Lin. Automl-gpt: [138] Y.-D. Tsai, T.-Y. Yen, P.-F. Guo, Z.-Y. Li, and S.-D. Lin. Text-centric align- [139] Y.-D. Tsai, T.-Y. Yen, K.-T. Liao, and S.-D. Lin. Enhance modality robust- [140] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshy- [141] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative [142] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural [143] M. P. Walker and R. Stickgold. Sleep-dependent learning and memory consol- [144] A. J. Wang, K. Q. Lin, D. J. Zhang, S. W. Lei, and M. Z. Shou. Too large; data [145] H. Wang, Y. Zhang, and X. Yu. An overview of image caption generation meth- [146] S. Wang, Z. Zhao, X. Ouyang, Q. Wang, and D. Shen. Chatcad: Interactive [147] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Ha- [148] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. [149] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, [150] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, [151] Y. Wei, O. Duchenne, J. Copet, Q. Carbonneaux, L. Zhang, D. Fried, G. Syn- [152] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang. Magicoder: Source code is [153] Y. Weng, M. Zhu, F. Xia, B. Li, S. He, S. Liu, B. Sun, K. Liu, and J. Zhao. [154] S. Williams and M. Baxter. Icarus verilog: open-source verilog more than a [155] M. Wortsman, P. J. Liu, L. Xiao, K. Everett, A. Alemi, B. Adlam, J. D. Co- [156] Y. Wu, D. Huang, W. Shi, W. Wang, L. Gao, S. Liu, Z. Nan, K. Yuan, [157] Y.-A. Wu, Y.-D. Tsai, and S.-D. Lin. [158] C. S. Xia, Y. Wei, and L. Zhang. Automated program repair in the era of [159] M. Xia, S. Malladi, S. Gururangan, S. Arora, and D. Chen. Less: Selecting in- [160] T. Xie, Z. Gao, Q. Ren, H. Luo, Y. Hong, B. Dai, J. Zhou, K. Qiu, Z. Wu, [161] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and D. Jiang. [162] Y. Xu and W. Wang. Linkprompt: Natural and universal adversarial attacks [163] Y. Xu, Y. Yao, Y. Huang, M. Qi, M. Wang, B. Gu, and N. Sundaresan. [164] Y. Yang, P. Huang, J. Cao, J. Li, Y. Lin, and F. Ma. A prompt-based approach [165] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. Re- [166] T.-Y. Yen, Y.-D. Tsai, K.-T. Liao, and S.-D. Lin. Enhance the robustness of [167] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions [168] Z. Yu, X. Zhang, N. Shang, Y. Huang, C. Xu, Y. Zhao, W. Hu, and Q. Yin. [169] B. Zhang, Z. Liu, C. Cherry, and O. Firat. [170] D. Zhang, S. Zhoubian, Y. Yue, Y. Dong, and J. Tang. [171] F. Zhang, B. Chen, Y. Zhang, J. Liu, D. Zan, Y. Mao, J.-G. Lou, and W. Chen. [172] H. Zhang, P.-N. Kung, M. Yoshida, G. Van den Broeck, and N. Peng. Adapt- [173] K. Zhang, G. Li, Y. Dong, J. Xu, J. Zhang, J. Su, Y. Liu, and Z. Jin. Codedpo: [174] Y. Zhao, D. Huang, C. Li, P. Jin, Z. Nan, T. Ma, L. Qi, Y. Pan, Z. Zhang, [175] C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu, L. Yu, [176] B. Zhu, B. Lin, M. Ning, Y. Yan, J. Cui, H. Wang, Y. Pang, W. Jiang, [177] J. Zhu, Y. Shen, D. Zhao, and B. Zhou. In-domain gan inversion for real image | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97381 | - |
| dc.description.abstract | 大型語言模型(Large Language Models, LLMs)在各類自然語言任務上取得了顯著成果,近年來亦積極拓展至多模態領域與資源受限環境。然而,現有方法多仰賴高成本的監督式微調,或假設訓練與推論條件相同,因而在面對未見模態、有限資料或計算資源受限情境時,泛化能力仍存在顯著侷限。
本論文系統性地探討提升大型語言模型在現實環境中可用性的途徑,聚焦於泛化能力與資源限制下的適應性。首先,提出一套以文字為中心的多模態對齊框架,將文本、圖像、表格及波形等異質模態轉換為自然語言描述,使模型能夠透過即時提示學習(in-context learning)應對未見或動態變化的模態組合,無需重新訓練。為強化模型在面對噪聲或缺失模態時的魯棒性,本論文亦設計出對抗式提示(adversarial prompting)技術,於提示層級生成語意挑戰性高的擾動資料,以提升模型韌性。 除多模態對齊外,論文亦探討推論階段最佳化策略,透過提示搜尋與不確定性量化,於無需額外訓練的情況下提升模型效能,為傳統擴大參數規模或重訓練以外,提供另一種高效途徑。同時,本研究針對資源稀缺領域如 Verilog 程式碼生成,設計出正確性保證的合成資料生成流程及邏輯增強型推理模型,於有限資料條件下達成最新最佳表現。 綜合上述,本論文提出的方法在對齊、最佳化與合成資料生成三大面向上,皆展現了在不同模態、資源限制與應用場景下,顯著提升大型語言模型適用性、擴展性與效率的潛力。 | zh_TW |
| dc.description.abstract | Large Language Models (LLMs) have achieved remarkable success across a wide range of natural language tasks, and recent efforts have sought to extend their capabilities to multimodal domains and resource-constrained environments. However, existing approaches often rely on costly supervised fine-tuning or assume fixed training conditions, limiting their generalization when facing unseen modalities, limited data, or restricted compute resources.
This dissertation presents a systematic study toward generalizing LLM usability under real-world constraints. First, it introduces a robust text-centric alignment framework that enables LLMs to seamlessly integrate diverse modalities—including text, images, tables, and any modalities — via natural language interfaces. This approach supports in-context adaptation to unseen or dynamically changing modalities without requiring retraining. To enhance robustness against noisy and missing modalities, an adversarial prompting technique is proposed, generating semantically challenging perturbations at the prompt level to stress-test model reliability. Beyond multimodal setting, the dissertation investigates inference-time optimization strategies for LLMs, leveraging prompt search and uncertainty quantification to improve performance without additional model training. This perspective offers an efficient alternative to scaling model parameters or retraining from scratch. Additionally, the work addresses low-resource domains such as Verilog code generation by designing correct-by-construction synthetic data pipelines and logic-enhanced reasoning models, achieving state-of-the-art performance with minimal data. Together, these contributions form a unified effort to enhance the adaptability, scalability, and efficiency of large language models under practical constraints. The results demonstrate that principled methods for alignment, optimization, and synthetic data generation can significantly broaden the usability of LLMs across modalities, resource regimes, and application domains. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:08:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-05-22T16:08:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii Acknowledgements iv 摘要 vi Abstract viii Contents x List of Figures xiv List of Tables xxiv Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Foundations of Generalization and Resource Constraints in Large Language Models 6 2.1 Large Language Models and Scaling Laws . . . . . . . . . . . . . 6 2.2 Dimensions of Generalization and Resource Constraints . . . . . 9 2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 Robust In-context Multimodal Alignment with Text-Centric Interfaces 17 3.1 Modality Mismatch and Robustness . . . . . . . . . . . . . . . . 18 3.2 Text-Centric Alignment for Multi-Modal Learning . . . . . . . . . 20 3.3 Text-Centric Adversarial Training and Prompting . . . . . . . . . 27 3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Scalability and Efficiency . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 4 Inference-Time Optimization and Uncertainty-Aware Reasoning 61 4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3 Prompt Optimization with Uncertainty Feedback . . . . . . . . . 64 4.4 Benchmarking Prompt Uncertainty . . . . . . . . . . . . . . . . . 68 4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Chapter 5 Efficient and Enhanced Code Generation in Low-Resource RTL Language 79 5.1 Challenges in Hardware-Oriented Code Modeling . . . . . . . . . 79 5.2 Language Agents and Environment Feedback for Code Generation 80 5.3 High-Quality Synthetic Data Generation . . . . . . . . . . . . . . 101 5.4 Data Pruning for Efficient Fine-Tuning . . . . . . . . . . . . . . . 125 Chapter 6 Reinforcement Learning for RTL Structured Logic Reasoning 143 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 Background: Reasoning Models and RL Training Methods . . . . 145 6.3 Simplified RTL Reasoning Tasks . . . . . . . . . . . . . . . . . . 148 6.4 Reinforcement Learning Approaches . . . . . . . . . . . . . . . . 151 6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 154 Chapter 7 Conclusion 158 7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 158 7.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 References 163 Appendix A — Multimodal Mismatch Experiment Detail Setup 191 A.1 Model Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 191 A.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 A.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 A.4 Foundation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Appendix B — Multimodal Mismatch Detailed Prompt 195 Appendix C — Multimodal Mismatch Implementation Details 198 C.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 198 Appendix D — Multimodal Mismatch Examples 200 D.1 Modality Mismatch Intermediate Examples . . . . . . . . . . . . 200 D.2 Modality Robustness Qualitative Analysis and Findings . . . . . 202 Appendix E — Modality Robustness Analysis 207 Appendix F — Multimodal Robustness Qualitative Examples 212 F.1 Recovery Across Modalities . . . . . . . . . . . . . . . . . . . . . 212 F.2 Knowledge-Based Compensation for Missing Information . . . . . 214 F.3 Factors Influencing Adoption Outcomes . . . . . . . . . . . . . . 215 Appendix G — Prompt Templates and Additional Analysis for Optimization and Uncertainty 217 G.1 Question Prompt Templates . . . . . . . . . . . . . . . . . . . . . 217 G.2 Optimization Task Prompts . . . . . . . . . . . . . . . . . . . . . 218 G.3 All Model Dataset Pairs Uncertainty Metrics Scatter Plots . . . . 218 Appendix H — RTLFixer Appendix 222 Appendix I — CraftRTL Details 226 I.1 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 I.2 Further Discussions and Broader Impacts . . . . . . . . . . . . . 239 I.3 Examples of Targeted Code Repair Data . . . . . . . . . . . . . . 243 I.4 Examples of Correct-by-Construction Data for Non-Textual Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 I.5 Prompt Templates . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Appendix J — Details of Efficient Code Data Pruning 282 J.1 Code Samples from Data Pruning . . . . . . . . . . . . . . . . . . 282 J.2 Pruning Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 | - |
| dc.language.iso | en | - |
| dc.subject | 多模態對齊 | zh_TW |
| dc.subject | 程式碼生成 | zh_TW |
| dc.subject | 推理模型 | zh_TW |
| dc.subject | 提示詞優化 | zh_TW |
| dc.subject | 推理階段擴展 | zh_TW |
| dc.subject | 語言不確定性 | zh_TW |
| dc.subject | 硬體描述語言 | zh_TW |
| dc.subject | Verilog | zh_TW |
| dc.subject | 大語言模型 | zh_TW |
| dc.subject | Verilog | en |
| dc.subject | Large Language Model | en |
| dc.subject | Multimodal Alignment | en |
| dc.subject | Code Generation | en |
| dc.subject | Reasoning Modeling | en |
| dc.subject | Prompt Optimization | en |
| dc.subject | Inference Scaling | en |
| dc.subject | Language Uncertainty | en |
| dc.subject | RTL | en |
| dc.title | 賦能大型語言模型多領域資源挑戰 | zh_TW |
| dc.title | Generalizing Large Language Model Usability Across Resource-Constrained | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林軒田;陳縕儂;陳尚澤;廖耿德 | zh_TW |
| dc.contributor.oralexamcommittee | Hsuan-Tien Lin;Yun-Nung Chen;Shang-Tse Chen;Keng-Te Liao | en |
| dc.subject.keyword | 大語言模型,多模態對齊,程式碼生成,推理模型,提示詞優化,推理階段擴展,語言不確定性,硬體描述語言,Verilog, | zh_TW |
| dc.subject.keyword | Large Language Model,Multimodal Alignment,Code Generation,Reasoning Modeling,Prompt Optimization,Inference Scaling,Language Uncertainty,RTL,Verilog, | en |
| dc.relation.page | 283 | - |
| dc.identifier.doi | 10.6342/NTU202500894 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-05-23 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 13.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
