請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李峻霣 | zh_TW |
| dc.contributor.advisor | Jiun-Yun Li | en |
| dc.contributor.author | 吳昊陽 | zh_TW |
| dc.contributor.author | Hao-Yang Wu | en |
| dc.date.accessioned | 2025-05-22T16:08:16Z | - |
| dc.date.available | 2025-08-26 | - |
| dc.date.copyright | 2025-05-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-04 | - |
| dc.identifier.citation | [1] G. E. Moore, “Cramming more components ontointegrated circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.
[2] G. E. Moore, “Progress in digital integrated electronics [Technical literature, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, pp. 11-13.],” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 36–37, 2006. [3] K. S. Kim et al., “The future of twodimensional semiconductors beyond Moore’s law,” Nature Nanotechnology, vol. 19, no. 7, pp. 895–906, 2024. [4] R.-H. . Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: from bulk to SOI to bulk,” IEEE Transactions on Electron Devices, vol. 39, no. 7, pp. 1704–1710, 1992. [5] E. Pop, S. Sinha, and K. E. Goodson, “Heat generation and transport in nanometer-scale transistors,” Proceedings of the IEEE, vol. 94, no. 8, pp. 1587–1601, 2006. [6] K. Rim et al., “Strained Si nMOSFETs for high performance CMOS technology,” in 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184), pp. 59–60, 2001. [7] K. Mistry et al., “A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100 % Pb free packaging,” 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, pp. 247–250, 2007. [8] S. Yamakawa et al., “Study of interface roughness dependence of electron mobility in Si inversion layers using the Monte Carlo method,” Journal of Applied Physics, vol. 79, no. 2, pp. 911–916, 1996. [9] H.-H. S. Lee and K. Chakrabarty, “Test challenges for 3D integrated circuits,” IEEE Design & Test of Computers, vol. 26, no. 5, pp. 26–35, 2009. [10] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects of two-dimensional transistors,” Nature, vol. 591, no. 7848, pp. 43–53, 2021. [11] C. Liu et al., “Two-dimensional materials for next-generation computing technologies,” Nature Nanotechnology, vol. 15, no. 7, pp. 545–557, 2020. [12] P. Ajayan, P. Kim, and K. Banerjee, “Two-dimensional van der Waals materials,” Physics Today, vol. 69, no. 9, pp. 38–44, 2016. [13] L. Cheng and Y. Liu, “What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides?,” Journal of the American Chemical Society, vol. 140, no. 51, pp. 17895–17900, 2018. [14] H. Yu et al., “Waferscale growth and transfer of highlyoriented monolayer MoS2 continuous films,” ACS Nano, vol. 11, no. 12, pp. 12001–12007, 2017. [15] L. Xie et al., “Graphene‐contacted ultrashort channel monolayer MoS2 transistors,” Advanced Materials, vol. 29, no. 37, p. 1702522, 2017. [16] Y. Liu et al., “Toward barrier free contact to molybdenum disulfide using graphene electrodes,” Nano Letters, vol. 15, no. 5, pp. 3030–3034, 2015. [17] W. Liu, D. Sarkar, J. Kang, W. Cao, and K. Banerjee, “Impact of contact on the operation and performance of back-gated monolayer MoS2 field-effect-transistors,” ACS Nano, vol. 9, no. 8, pp. 7904–7912, 2015. [18] N. Izyumskaya, Y. I. Alivov, S. W. Cho, Hadis Morkoç, H. Lee, and Y. James Kang, “Processing, structure, properties, and applications of PZT thin films,” Critical Reviews in Solid State and Materials Sciences, vol. 32, no. 3–4, pp. 111–202, 2007. [19] T. Mikolajick et al., “Next generation ferroelectric materials for semiconductor process integration and their applications,” Journal of Applied Physics, vol. 129, no. 10, p. 100901, 2021. [20] J. L. Moll and Y. Tarui, “A new solid state memory resistor,” IEEE Transactions on Electron Devices, vol. 10, no. 5, p. 338, 1963. [21] R. Zuleeg and H. H. Wieder, “Effect of ferroelectric polarization on insulated-gate thin-film transistor parameters,” Solid-State Electronics, vol. 9, no. 6, pp. 657–661, 1966. [22] Shu-Yau Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Transactions on Electron Devices, vol. 21, no. 8, pp. 499–504, 1974. [23] Yushi Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Yasuo Tarui, “Interaction of PbTiO3 films with Si substrate,” Japanese Journal of Applied Physics, vol. 33, no. 9S, pp. 5172–5172, 1994. [24] G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, and L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100),” Surface Science, vol. 576, no. 1–3, pp. 67–75, 2005. [25] H. Mulaosmanovic, E. T. Breyer, S. Dünkel, S. Beyer, T. Mikolajick, and S. Slesazeck, “Ferroelectric field-effect transistors based on HfO2: a review,” Nanotechnology, vol. 32, no. 50, p. 502002, 2021. [26] S. Sakai and R. Ilangovan, “Metal–ferroelectric–insulator–semiconductor memory FET with long retention and high endurance,” IEEE Electron Device Letters, vol. 25, no. 6, pp. 369–371, 2004. [27] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011. [28] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," 2011 International Electron Devices Meeting, Washington, DC, USA, pp. 24.5.1-24.5.4, 2011. [29] J. Müller et al., "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, pp. 25-26, 2012. [30] H. Mulaosmanovic et al., "Evidence of single domain switching in hafnium oxide based FeFETs: enabler for multi-level FeFET memory cells," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, pp. 26.8.1-26.8.3, 2015. [31] M. Trentzsch et al., "A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 11.5.1-11.5.4, 2016. [32] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 19.7.1-19.7.4, 2017. [33] K. Florent et al., "Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 2.5.1-2.5.4, 2018. [34] E. T. Breyer et al., "Ultra-dense co-integration of FeFETs and CMOS logic enabling very-fine grained logic-in-memory," ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, pp. 118–121, 2019. [35] V. Milo, G. Malavena, C. Monzio Compagnoni, and D. Ielmini, “Memristive and CMOS devices for neuromorphic computing,” Materials, vol. 13, no. 1, p. 166, 2020. [36] R. Mathew and J. Ajayan, “Material processing, performance and reliability of MoS2 field effect transistor (FET) technology- A critical review,” Materials Science in Semiconductor Processing, vol. 160, p. 107397, 2023. [37] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Physical Review Letters, vol. 105, no. 13, p. 136805, 2010. [38] S. Golovynskyi et al., “Exciton and trion in few-layer MoS2: thickness- and temperature-dependent photoluminescence,” Applied Surface Science, vol. 515, p. 146033, 2020. [39] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, vol. 6, no. 3, pp. 147–150, 2011. [40] L. Gomez, I. berg, and J. L. Hoyt, “Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm,” IEEE Electron Device Letters, vol. 28, no. 4, pp. 285–287, 2007. [41] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science, vol. 319, no. 5867, pp. 1229–1232, 2008. [42] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Letters, vol. 13, no. 1, pp. 100–105, 2012. [43] D. J. Late, B. Liu, S. Ramakrishna, V. P. Dravid, and R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano, vol. 6, no. 6, pp. 5635–5641, 2012. [44] A. Molina-Sánchez, K. Hummer, and L. Wirtz, “Vibrational and optical properties of MoS2 : from monolayer to bulk,” Surface Science Reports, vol. 70, no. 4, pp. 554–586, 2015. [45] J. Yan, C. Ma, P. Liu, and G. Yang, “Plasmon-induced energy transfer and photoluminescence manipulation in MoS2 with a different number of layers,” ACS Photonics, vol. 4, no. 5, pp. 1092–1100, 2017. [46] E. Pollmann et al., “Apparent differences between single layer molybdenum disulphide fabricated via chemical vapour deposition and exfoliation,” Nanotechnology, vol. 31, no. 50, p. 505604, 2020. [47] R.-J. Wu, Effects of fabrication processes and measurement ambience on electron transport of tin disulfide, M.S. thesis, National Taiwan University, Taipei, Taiwan, 2023. [48] S.-C. Su, Fabrication of 2D/3D heterojunction tunnel field-effect transistors, M.S. thesis, National Taiwan University, Taipei, Taiwan, 2023. [49] Y. Zhang et al., “Thickness considerations of two-dimensional layered semiconductors for transistor applications,” Scientific Reports, vol. 6, no. 1, p. 29615, 2016. [50] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2021. [51] Lee, Young Tack, et al. “Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel.” Small, vol. 10, no. 12, 2, pp. 2356–2361, 2014. [52] C.-S. C. Chien, H.-M. Chang, W.-T. Lee, M.-R. Tang, C.-H. Wu, and S.-C. Lee, “High performance MoS2 TFT using graphene contact first process,” AIP Advances, vol. 7, no. 8, p. 085018, 2017. [53] P. Wu and J. Appenzeller, “Explaining steep-slope switching in carbon nanotube Dirac-source field-effect transistors,” IEEE Transactions on Electron Devices, vol. 69, no. 9, pp. 5270–5275, 2022. [54] Z. Tang et al., “A steep-slope MoS2/graphene dirac-source field-effect transistor with a large drive current,” Nano Letters, vol. 21, no. 4, pp. 1758–1764, 2021. [55] S. Mengxing, X. Dan, S. Yilin, L. Weiwei, and R. Tianling, “The electrical performances of monolayer MoS2-based transistors under ultra-low temperature,” 2018 IEEE 18th International Conference on Nanotechnology, pp. 420–425, 2018. [56] X. Liu et al., “Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure,” Journal of Applied Physics, vol. 118, no. 12, p. 124506, 2015. [57] F. Nan, K. Nagashio, and A. Toriumi, “Subthreshold transport in mono- and multilayered MoS2 FETs,” Applied Physics Express, vol. 8, no. 6, p. 065203, 2015. [58] C. Enz, A. Beckers and F. Jazaeri, "Cryo-CMOS compact modeling," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 25.3.1-25.3.4, 2020. [59] Z. Yu et al., “Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors,” Advanced Functional Materials, vol. 27, no. 19, p. 1604093, 2017. [60] Jae Young Kim, M. Choi, and Ho Won Jang, “Ferroelectric field effect transistors: progress and perspective,” APL Materials, vol. 9, no. 2, p. 021102, 2021 [61] X. Chen, X. Han, and D. Zhou, “PVDF-based ferroelectric polymers in modern flexible electronics,” Advancede Electronic Materials, vol. 3, no. 5, p. 1600460, 2017. [62] J. Müller et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 99, no. 11, p. 112901, 2011. [63] J. Müller et al., “Ferroelectricity in yttrium-doped hafnium oxide,” Journal of Applied Physics, vol. 110, no. 11, p. 114113, 2011. [64] S. Mueller et al., “Incipient ferroelectricity in Al-doped HfO2 thin films,” Advanced Functional Materials, vol. 22, no. 11, pp. 2412–2417, 2012. [65] M. H. Park et al., “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677–4690, 2017. [66] U. Schroeder, Cheol Seong Hwang, and Hiroshi Funakubo, Ferroelectricity in doped hafnium oxide. Woodhead Publishing, 2019. [67] J. Müller et al., “Ferroelectricity in simple binary ZrO2 and HfO2,” Nano Letters, vol. 12, no. 8, pp. 4318–4323, 2012. [68] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, “Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides,” Advanced Electronic Materials, vol. 5, no. 3, p. 1800522, 2018. [69] M. H. Park et al., “Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films,” Nanoscale, vol. 10, no. 2, pp. 716–725, 2018. [70] K. Toprasertpong, M. Takenaka, and S. Takagi, “Memory window in ferroelectric field-effect transistors: analytical approach,” IEEE Transactions on Electron Devices, vol. 69, no. 12, pp. 7113–7119, 2022. [71] K. Yang et al., “Perspective on ferroelectric devices: lessons from interfacial chemistry,” Chemistry of Materials, vol. 35, no. 6, pp. 2219–2237, 2023 [72] J. Xiang, Wen Hsin Chang, Takuya Saraya, T. Hiramoto, Toshifumi Irisawa, and M. Kobayashi, “Ultrathin MoS2-channel FeFET memory with enhanced ferroelectricity in HfZrO2 and body-potential control,” IEEE journal of the Electron Devices Society, vol. 10, pp. 72–77, 2022. [73] P.-C. Shen, C. Lin, H. Wang, K. H. Teo, and J. Kong, “Ferroelectric memory field-effect transistors using CVD monolayer MoS2 as resistive switching channel,” Applied Physics Letters, vol. 116, no. 3, p. 033501, 2020. [74] S. Zhang et al., “Low voltage operating 2D MoS2 ferroelectric memory transistor with Hf1-xZrxO2 gate structure,” Nanoscale Research Letters, vol. 15, no. 157, pp. 1–9, 2020. [75] X. Wang et al., “Van der Waals engineering of ferroelectric heterostructures for long-retention memory,” Nature Communications, vol. 12, no. 1, p. 1109, 2021. [76] F. Liu et al., “Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes,” Nature Communications, vol. 7, no. 1, pp. 1–6, 2016. [77] C. Leblanc, S. Song, and D. Jariwala, “2D ferroelectrics and ferroelectrics with 2D: materials and device prospects,” Current Opinion in Solid State and Materials Science, vol. 32, p. 101178, 2024. [78] H. J. Kim et al., “Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer,” Applied Physics Letters, vol. 105, no. 19, p. 192903, 2014. [79] G. N. Parsons, S. M. George, and M. Knez, “Progress and future directions for atomic layer deposition and ALD-based chemistry,” MRS Bulletin, vol. 36, no. 11, pp. 865–871, 2011. [80] S. S. Fields et al., “Origin of ferroelectric phase stabilization via the clamping effect in ferroelectric hafnium zirconium oxide thin films,” Advanced Electronic Materials, vol. 8, no. 12, p. 2200601, 2022. [81] Y. Goh, S. H. Cho, S.-H. K. Park, and S. Jeon, “Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode,” Nanoscale, vol. 12, no. 16, pp. 9024–9031, 2020. [82] J. Wang et al., “Excellent ferroelectric properties of Hf0.5Zr0.5O2 thin films induced by Al2O3 dielectric layer,” IEEE Electron Device Letters, vol. 40, no. 12, pp. 1937–1940, 2019. [83] J. Sun, C. Huang, J. Wang, and H. Liu, “Mechanical properties and microstructure of ZrO2–TiN–Al2O3 composite ceramics,” Materials Science and Engineering A, vol. 416, no. 1–2, pp. 104–108, 2005. [84] K. Chae, A. C. Kummel, and K. Cho, “Hafnium–zirconium oxide interface models with a semiconductor and metal for ferroelectric devices,” Nanoscale Advances, vol. 3, no. 16, pp. 4750–4755, 2021. [85] N. Kaushik et al., “Reversible hysteresis inversion in MoS2 field effect transistors,” npj 2D Materials and Applications, vol. 1, no. 1, pp. 1–9, 2017. [86] E. Yurchuk et al., “Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories,” IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501–3507, 2016. [87] J. Kim, J. Jeong, S. Lee, S. Jeong, and Y. Roh, “Analysis of asymmetrical hysteresis phenomena observed in TMD-based field effect transistors,” AIP Advances, vol. 8, no. 9, p. 095114, 2018. [88] S. P. Jana, S. Gupta, and A. K. Gupta, “Blocking transition of interface traps in MoS2/SiO2 field-effect transistors,” Physical Review. B, vol. 108, no. 19, p. 195411, 2023. [89] M. Si, Z. Lin, J. Noh, J. Li, W. Chung and P. D. Ye, "The impact of channel semiconductor on the memory characteristics of ferroelectric field-effect transistors," IEEE Journal of the Electron Devices Society, vol. 8, pp. 846-849, 2020. [90] F. Mo, X. Mei, Takuya Saraya, T. Hiramoto, and M. Kobayashi, “A simulation study on memory characteristics of InGaZnO-channel ferroelectric FETs with 2D planar and 3D structures,” Japanese Journal of Applied Physics, vol. 61, no. SC, pp. SC1013–SC1013, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97380 | - |
| dc.description.abstract | 二維材料在奈米尺度下展現良好電性,如高載子遷移率,使其成為有希望延續摩爾定律的選擇。隨著人工智慧發展,記憶體需求增加,二氧化鉿鐵電材料記憶體引起關注,因其與現代積體電路製程相容,有快速寫入速度與低功耗優點。鐵電場效電晶體(FeFETs)是單電晶體記憶體元件,並具有高保存時間(retention)與高耐久度(endurance)優點,可在未來運用於記憶體內運算(In-Memory Computing)。然而,隨著元件尺度微縮,傳統半導體塊材面臨限制,如載子遷移率因表面散射下降、短通道效應與散熱等挑戰。二維半導體本身無懸浮鍵特性,使通道載子具有高遷移率而不受表面散射影響,與減少漏電流優點。這篇論文研究二維材料通道鐵電場效電晶體,二硫化鉬(MoS2)作為通道,氧化鉿鋯(Hf0.5Zr0.5O2, HZO)作為鐵電閘極介電質。首先,製作以二氧化矽作為閘極介電質之二硫化鉬電晶體並進行電性分析,隨後,將氧化層替換為氧化鉿鋯,製作鐵電場效電晶體並進行電性分析。
第一部分,製作二硫化鉬電晶體,使用高摻雜矽基板作為底閘極,二氧化矽作為閘極氧化層,鉻/金作為源極/汲極金屬,在充滿氮氣的手套箱環境中利用機械式剝離法分離塊材二硫化鉬,並用乾式轉移將薄膜轉移到元件上。二硫化鉬厚度100 奈米之電晶體展現良好電流開關比105(過驅電壓1.1 伏特),與次臨界擺幅150 mV/dec。另一元件二硫化鉬厚度20 奈米之電晶體,額外使用石墨烯作為源極/汲極接觸金屬,電流開關比提升至106,石墨烯功函數隨電壓上升而下降,與二硫化鉬形成較好的歐姆接觸。此外,元件次臨界擺幅提升至90 mV/dec,石墨烯是狄拉克(Dirac)材料,減少電子密度在費米能階之上的分佈,使電子注入通道更集中。 第二部分,分別在金屬-鐵電(介電層)-半導體(MF(I)S)電容結構與二維材料鐵電電晶體中比較四種不同鐵電氧化鉿鋯與氧化鋁堆疊。對於電容,氧化鋁堆疊在氧化鉿鋯上展現最大剩餘極化值,在退火時上方氧化鋁有助於形成氧化鉿鋯鐵電特性。對於二維材料鐵電電晶體,只有氧化鋁堆疊在氧化鉿鋯上的元件展現逆時針ID-VG,對應其鐵電電晶體特性。其他元件展現順時針ID-VG,歸因於閘極電壓掃描時於氧化層/半導體介面發生電荷捕捉效應,較高濃度的介面電荷抵消鐵電遲滯現象。 | zh_TW |
| dc.description.abstract | Two-dimensional (2D) materials exhibit excellent electrical properties at a nanometer scale, such as high carrier mobility, making them a promising candidate to extend Moore’s Law. With the growing demand for memory driven by advancements in artificial intelligence (AI), HfO2-based ferroelectric materials are considered promising candidate for non-volatile memory due to their VLSI compatibility, fast write speeds, and low power consumption. FeFETs, as one-transistor (1T) memory device with high retention and endurance, hold potential for future in-memory computing. However, as devices are further scaled down, bulk semiconductors face limitations, such as decreased carrier mobility due to surface scattering, short-channel effects, and heat dissipation challenges. 2D semiconductors with dangle-bond-free nature allow these materials to maintain high carrier mobility and reduce the leakage current. This study focuses on 2D-based FeFETs using MoS2 as a channel material and Hf0.5Zr0.5O2 (HZO) as a ferroelectric gate dielectric. First, MoS2 MOSFETs with SiO2 as a dielectric layer are fabricated and characterized. Then replacing the oxide with ferroelectric HZO to fabricate FeFETs and investigate their device characteristics.
In the first part, 2D FETs were fabricated with highly doped Si substrates serving as a bottom gate, followed by the deposition of SiO2 as a gate dielectric and Cr/Au as electrodes to the source/drain (S/D). Then MoS2 thin films are mechanically exfoliated and dry transferred onto the sample in a nitrogen-filled glove box to finish the processes. 2D FET with 100 nm-thick MoS2 achieved a high current on/off ratio of 105 under an overdrive voltage 1.1 V and a subthreshold swing (SS) 150 mV/dec. Additionally, another device with MoS2 20 nm-thick, using graphene as the S/D contact, the on/off ratio is improved to 106. The workfunction of graphene decreases as the voltage increases, forming a better Ohmic contact with MoS2. Furthermore, the SS is improved to 90 mV/dec, which might be attributed to the density-state switching by using graphene as a Dirac source. In the second part, four different oxide stacks of Al2O3 and ferroelectric HZO are investigated in metal-ferroelectric(interlayer)-semiconductor (MF(I)S) capacitors and 2D FeFETs. For the capacitors, the stack with Al2O3 on HZO shows higher remnant polarization. The presence of the cap Al2O3 during rapid thermal annealing (RTA) step leads to an enhancement of the ferroelectricity. For 2D FeFETs, only the stack of Al2O3 on HZO showed counterclockwise hysteresis loop of I-V characteristics, a signature of ferroelectric switching. Other devices show clockwise hysteresis loops, which is attributed to the charge trapping effects at the oxide/semiconductor interface during the gate sweeps. A higher density of charge trapping may counterbalance the ferroelectricity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-05-22T16:08:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-05-22T16:08:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 vi 表次 x 第 1 章 引言 1 1.1 研究動機 1 1.2 二維材料 2 1.3 鐵電記憶體 4 1.4 論文架構 9 第 2 章 二硫化鉬場效電晶體 10 2.1 二硫化鉬場效電晶體文獻回顧 10 2.2 二硫化鉬材料分析 13 2.3 元件製作流程 15 2.4 元件電性量測 17 2.5 低溫量測 20 2.6 結論 22 第 3 章 二維鐵電場效電晶體 24 3.1 二維鐵電場效電晶體文獻回顧 24 3.2 元件製程流程 32 3.3 元件電性量測 34 3.4 結論 43 第 4 章 結論與未來工作 45 4.1 結論 45 4.2 未來工作 46 參考文獻 47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二維 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 鐵電記憶體 | zh_TW |
| dc.subject | 鐵電 | zh_TW |
| dc.subject | 氧化鉿鋯 | zh_TW |
| dc.subject | HZO | en |
| dc.subject | Ferroelectric | en |
| dc.subject | FeFETs | en |
| dc.subject | 2D | en |
| dc.subject | MoS2 | en |
| dc.title | 二硫化鉬鐵電場效電晶體於記憶體的應用 | zh_TW |
| dc.title | MoS2 Ferroelectric Field-Effect Transistors for Memory Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李敏鴻;蘇俊榮 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Hung Lee;Chun-Jung Su | en |
| dc.subject.keyword | 二硫化鉬,二維,氧化鉿鋯,鐵電,鐵電記憶體, | zh_TW |
| dc.subject.keyword | MoS2,2D,HZO,Ferroelectric,FeFETs, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202500905 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-05 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 元件材料與異質整合學位學程 | - |
| dc.date.embargo-lift | 2025-08-26 | - |
| 顯示於系所單位: | 元件材料與異質整合學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
